Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.769
Filter
1.
Vet Res ; 55(1): 70, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822378

ABSTRACT

Adaptation of avian pathogenic E. coli (APEC) to changing host environments including virulence factors expression is vital for disease progression. FdeC is an autotransporter adhesin that plays a role in uropathogenic Escherichia coli (UPEC) adhesion to epithelial cells. Expression of fdeC is known to be regulated by environmental conditions in UPEC and Shiga toxin-producing E. coli (STEC). The observation in a previous study that an APEC strain IMT5155 in which the fdeC gene was disrupted by a transposon insertion resulted in elevated adhesion to chicken intestinal cells prompted us to further explore the role of fdeC in infection. We found that the fdeC gene prevalence and FdeC variant prevalence differed between APEC and nonpathogenic E. coli genomes. Expression of the fdeC gene was induced at host body temperature, an infection relevant condition. Disruption of fdeC resulted in greater adhesion to CHIC-8E11 cells and increased motility at 42 °C compared to wild type (WT) and higher expression of multiple transporter proteins that increased inorganic ion export. Increased motility may be related to increased inorganic ion export since this resulted in downregulation of YbjN, a protein known to supress motility. Inactivation of fdeC in APEC strain IMT5155 resulted in a weaker immune response in chickens compared to WT in experimental infections. Our findings suggest that FdeC is upregulated in the host and contributes to interactions with the host by down-modulating motility during colonization. A thorough understanding of the regulation and function of FdeC could provide novel insights into E. coli pathogenesis.


Subject(s)
Adhesins, Escherichia coli , Bacterial Adhesion , Chickens , Escherichia coli Infections , Poultry Diseases , Poultry Diseases/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Animals , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Escherichia coli/physiology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
2.
Proc Natl Acad Sci U S A ; 121(23): e2315850121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814871

ABSTRACT

Rosettes are self-organizing, circular multicellular communities that initiate developmental processes, like organogenesis and embryogenesis, in complex organisms. Their formation results from the active repositioning of adhered sister cells and is thought to distinguish multicellular organisms from unicellular ones. Though common in eukaryotes, this multicellular behavior has not been reported in bacteria. In this study, we found that Escherichia coli forms rosettes by active sister-cell repositioning. After division, sister cells "fold" to actively align at the 2- and 4-cell stages of clonal division, thereby producing rosettes with characteristic quatrefoil configuration. Analysis revealed that folding follows an angular random walk, composed of ~1 µm strokes and directional randomization. We further showed that this motion was produced by the flagellum, the extracellular tail whose rotation generates swimming motility. Rosette formation was found to require de novo flagella synthesis suggesting it must balance the opposing forces of Ag43 adhesion and flagellar propulsion. We went on to show that proper rosette formation was required for subsequent morphogenesis of multicellular chains, rpoS gene expression, and formation of hydrostatic clonal-chain biofilms. Moreover, we found self-folding rosette-like communities in the standard motility assay, indicating that this behavior may be a general response to hydrostatic environments in E. coli. These findings establish self-organization of clonal rosettes by a prokaryote and have implications for evolutionary biology, synthetic biology, and medical microbiology.


Subject(s)
Escherichia coli , Flagella , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/growth & development , Flagella/metabolism , Cell Division , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics
3.
Sci Rep ; 14(1): 12271, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806637

ABSTRACT

The impact of recombinant protein production (RPP) on host cells and the metabolic burden associated with it undermine the efficiency of the production system. This study utilized proteomics to investigate the dynamics of parent and recombinant cells induced at different time points for RPP. The results revealed significant changes in both transcriptional and translational machinery that may have impacted the metabolic burden, growth rate of the culture and the RPP. The timing of protein synthesis induction also played a critical role in the fate of the recombinant protein within the host cell, affecting protein and product yield. The study identified significant differences in the expression of proteins involved in fatty acid and lipid biosynthesis pathways between two E. coli host strains (M15 and DH5⍺), with the E. coli M15 strain demonstrating superior expression characteristics for the recombinant protein. Overall, these findings contribute to the knowledge base for rational strain engineering for optimized recombinant protein production.


Subject(s)
Escherichia coli , Proteomics , Recombinant Proteins , Escherichia coli/metabolism , Escherichia coli/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Proteomics/methods , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Protein Biosynthesis
4.
PLoS Genet ; 20(5): e1011287, 2024 May.
Article in English | MEDLINE | ID: mdl-38768229

ABSTRACT

In many organisms, stress responses to adverse environments can trigger secondary functions of certain proteins by altering protein levels, localization, activity, or interaction partners. Escherichia coli cells respond to the presence of specific cationic antimicrobial peptides by strongly activating the PhoQ/PhoP two-component signaling system, which regulates genes important for growth under this stress. As part of this pathway, a biosynthetic enzyme called QueE, which catalyzes a step in the formation of queuosine (Q) tRNA modification is upregulated. When cellular QueE levels are high, it co-localizes with the central cell division protein FtsZ at the septal site, blocking division and resulting in filamentous growth. Here we show that QueE affects cell size in a dose-dependent manner. Using alanine scanning mutagenesis of amino acids in the catalytic active site, we pinpoint residues in QueE that contribute distinctly to each of its functions-Q biosynthesis or regulation of cell division, establishing QueE as a moonlighting protein. We further show that QueE orthologs from enterobacteria like Salmonella typhimurium and Klebsiella pneumoniae also cause filamentation in these organisms, but the more distant counterparts from Pseudomonas aeruginosa and Bacillus subtilis lack this ability. By comparative analysis of E. coli QueE with distant orthologs, we elucidate a unique region in this protein that is responsible for QueE's secondary function as a cell division regulator. A dual-function protein like QueE is an exception to the conventional model of "one gene, one enzyme, one function", which has divergent roles across a range of fundamental cellular processes including RNA modification and translation to cell division and stress response.


Subject(s)
Cell Division , Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Cell Division/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Nucleoside Q/metabolism , Nucleoside Q/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Klebsiella pneumoniae/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Gene Expression Regulation, Bacterial , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism
5.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38724452

ABSTRACT

AIM: Biotechnical processes in Escherichia coli often operate with artificial plasmids. However, these bioprocesses frequently encounter plasmid loss. To ensure stable expression of heterologous genes in E. coli BL21(DE3), a novel plasmid addiction system (PAS) was developed. METHODS AND RESULTS: This PAS employed an essential gene grpE encoding a cochaperone in the DnaK-DnaJ-GrpE chaperone system as the selection marker, which represented a chromosomal ΔgrpE mutant harboring episomal expression plasmids that carry supplementary grpE alleles to restore the deficiency. To demonstrate the feasibility of this system, it was implemented in phloroglucinol (PG) biosynthesis, manifesting improved host tolerance to PG and increased PG production. Specifically, PG titer significantly improved from 0.78 ± 0.02 to 1.34 ± 0.04 g l-1, representing a 71.8% increase in shake-flask fermentation. In fed-batch fermentation, the titer increased from 3.71 ± 0.11 to 4.54 ± 0.10 g l-1, showing a 22.4% increase. RNA sequencing and transcriptome analysis revealed that the improvements were attributed to grpE overexpression and upregulation of various protective chaperones and the biotin acetyl-CoA carboxylase ligase coding gene birA. CONCLUSION: This novel PAS could be regarded as a typical example of nonanabolite- and nonmetabolite-related PAS. It effectively promoted plasmid maintenance in the host, improved tolerance to PG, and increased the titer of this compound.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Phloroglucinol , Plasmids , Escherichia coli/genetics , Escherichia coli/metabolism , Phloroglucinol/metabolism , Phloroglucinol/analogs & derivatives , Plasmids/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fermentation , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism
6.
J Agric Food Chem ; 72(19): 11029-11040, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38699920

ABSTRACT

l-Phenylalanine (l-Phe) is widely used in the food and pharmaceutical industries. However, the biosynthesis of l-Phe using Escherichia coli remains challenging due to its lower tolerance to high concentration of l-Phe. In this study, to efficiently synthesize l-Phe, the l-Phe biosynthetic pathway was reconstructed by expressing the heterologous genes aroK1, aroL1, and pheA1, along with the native genes aroA, aroC, and tyrB in the shikimate-producing strain E. coli SA09, resulting in the engineered strain E. coli PHE03. Subsequently, adaptive evolution was conducted on E. coli PHE03 to enhance its tolerance to high concentrations of l-Phe, resulting in the strain E. coli PHE04, which reduced the cell mortality to 36.2% after 48 h of fermentation. To elucidate the potential mechanisms, transcriptional profiling was conducted, revealing MarA, a DNA-binding transcriptional dual regulator, as playing a crucial role in enhancing cell membrane integrity and fluidity for improving cell tolerance to high concentrations of l-Phe. Finally, the titer, yield, and productivity of l-Phe with E. coli PHE05 overexpressing marA were increased to 80.48 g/L, 0.27 g/g glucose, and 1.68 g/L/h in a 5-L fed-batch fermentation, respectively.


Subject(s)
Escherichia coli , Fermentation , Metabolic Engineering , Phenylalanine , Escherichia coli/genetics , Escherichia coli/metabolism , Phenylalanine/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Biosynthetic Pathways
7.
Biochem Biophys Res Commun ; 716: 150009, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38697010

ABSTRACT

The SOS response is a condition that occurs in bacterial cells after DNA damage. In this state, the bacterium is able to reсover the integrity of its genome. Due to the increased level of mutagenesis in cells during the repair of DNA double-strand breaks, the SOS response is also an important mechanism for bacterial adaptation to the antibiotics. One of the key proteins of the SOS response is the SMC-like protein RecN, which helps the RecA recombinase to find a homologous DNA template for repair. In this work, the localization of the recombinant RecN protein in living Escherichia coli cells was revealed using fluorescence microscopy. It has been shown that the RecN, outside the SOS response, is predominantly localized at the poles of the cell, and in dividing cells, also localized at the center. Using in vitro methods including fluorescence microscopy and optical tweezers, we show that RecN predominantly binds single-stranded DNA in an ATP-dependent manner. RecN has both intrinsic and single-stranded DNA-stimulated ATPase activity. The results of this work may be useful for better understanding of the SOS response mechanism and homologous recombination process.


Subject(s)
DNA, Bacterial , Escherichia coli , Microscopy, Fluorescence , Single Molecule Imaging , Microscopy, Fluorescence/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Single Molecule Imaging/methods , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , SOS Response, Genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Protein Binding , Rec A Recombinases/metabolism , Rec A Recombinases/genetics , Optical Tweezers
8.
Proc Natl Acad Sci U S A ; 121(20): e2316271121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709929

ABSTRACT

Random mutagenesis, including when it leads to loss of gene function, is a key mechanism enabling microorganisms' long-term adaptation to new environments. However, loss-of-function mutations are often deleterious, triggering, in turn, cellular stress and complex homeostatic stress responses, called "allostasis," to promote cell survival. Here, we characterize the differential impacts of 65 nonlethal, deleterious single-gene deletions on Escherichia coli growth in three different growth environments. Further assessments of select mutants, namely, those bearing single adenosine triphosphate (ATP) synthase subunit deletions, reveal that mutants display reorganized transcriptome profiles that reflect both the environment and the specific gene deletion. We also find that ATP synthase α-subunit deleted (ΔatpA) cells exhibit elevated metabolic rates while having slower growth compared to wild-type (wt) E. coli cells. At the single-cell level, compared to wt cells, individual ΔatpA cells display near normal proliferation profiles but enter a postreplicative state earlier and exhibit a distinct senescence phenotype. These results highlight the complex interplay between genomic diversity, adaptation, and stress response and uncover an "aging cost" to individual bacterial cells for maintaining population-level resilience to environmental and genetic stress; they also suggest potential bacteriostatic antibiotic targets and -as select human genetic diseases display highly similar phenotypes, - a bacterial origin of some human diseases.


Subject(s)
Escherichia coli , Stress, Physiological , Escherichia coli/genetics , Escherichia coli/metabolism , Stress, Physiological/genetics , Mutation , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Deletion , Transcriptome , Gene Expression Regulation, Bacterial , Adaptation, Physiological/genetics , Loss of Function Mutation
9.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195032, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692564

ABSTRACT

Small non-coding 6S RNA mimics DNA promoters and binds to the σ70 holoenzyme of bacterial RNA polymerase (RNAP) to suppress transcription of various genes mainly during the stationary phase of cell growth or starvation. This inhibition can be relieved upon synthesis of short product RNA (pRNA) performed by RNAP from the 6S RNA template. Here, we have shown that pRNA synthesis depends on specific contacts of 6S RNA with RNAP and interactions of the σ finger with the RNA template in the active site of RNAP, and is also modulated by the secondary channel factors. We have adapted a molecular beacon assay with fluorescently labeled σ70 to analyze 6S RNA release during pRNA synthesis. We found the kinetics of 6S RNA release to be oppositely affected by mutations in the σ finger and in the CRE pocket of core RNAP, similarly to the reported role of these regions in promoter-dependent transcription. Secondary channel factors, DksA and GreB, inhibit pRNA synthesis and 6S RNA release from RNAP, suggesting that they may contribute to the 6S RNA-mediated switch in transcription during stringent response. Our results demonstrate that pRNA synthesis depends on a similar set of contacts between RNAP and 6S RNA as in the case of promoter-dependent transcription initiation and reveal that both processes can be regulated by universal transcription factors acting on RNAP.


Subject(s)
DNA-Directed RNA Polymerases , Escherichia coli Proteins , RNA, Bacterial , Sigma Factor , Transcription, Genetic , DNA-Directed RNA Polymerases/metabolism , Sigma Factor/metabolism , Sigma Factor/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , Promoter Regions, Genetic , RNA, Untranslated/metabolism , RNA, Untranslated/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Protein Binding , Transcriptional Elongation Factors
10.
Microb Ecol ; 87(1): 63, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691135

ABSTRACT

Bacterial azoreductases are enzymes that catalyze the reduction of ingested or industrial azo dyes. Although azoreductase genes have been well identified and characterized, the regulation of their expression has not been systematically investigated. To determine how different factors affect the expression of azoR, we extracted and analyzed transcriptional data from the Gene Expression Omnibus (GEO) resource, then confirmed computational predictions by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results showed that azoR expression was lower with higher glucose concentration, agitation speed, and incubation temperature, but higher at higher culture densities. Co-expression and clustering analysis indicated ten genes with similar expression patterns to azoR: melA, tpx, yhbW, yciK, fdnG, fpr, nfsA, nfsB, rutF, and chrR (yieF). In parallel, constructing a random transposon library in E. coli K-12 and screening 4320 of its colonies for altered methyl red (MR)-decolorizing activity identified another set of seven genes potentially involved in azoR regulation. Among these genes, arsC, relA, plsY, and trmM were confirmed as potential azoR regulators based on the phenotypic decolorization activity of their transposon mutants, and the expression of arsC and relA was confirmed, by qRT-PCR, to significantly increase in E. coli K-12 in response to different MR concentrations. Finally, the significant decrease in azoR transcription upon transposon insertion in arsC and relA (as compared to its expression in wild-type E. coli) suggests their probable involvement in azoR regulation. In conclusion, combining in silico analysis and random transposon mutagenesis suggested a set of potential regulators of azoR in E. coli.


Subject(s)
DNA Transposable Elements , Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , Nitroreductases , DNA Transposable Elements/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Nitroreductases/genetics , Nitroreductases/metabolism , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Mutagenesis , Genome, Bacterial , Computational Biology , Mutagenesis, Insertional
11.
Proc Natl Acad Sci U S A ; 121(21): e2400260121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743624

ABSTRACT

We introduce ZEPPI (Z-score Evaluation of Protein-Protein Interfaces), a framework to evaluate structural models of a complex based on sequence coevolution and conservation involving residues in protein-protein interfaces. The ZEPPI score is calculated by comparing metrics for an interface to those obtained from randomly chosen residues. Since contacting residues are defined by the structural model, this obviates the need to account for indirect interactions. Further, although ZEPPI relies on species-paired multiple sequence alignments, its focus on interfacial residues allows it to leverage quite shallow alignments. ZEPPI can be implemented on a proteome-wide scale and is applied here to millions of structural models of dimeric complexes in the Escherichia coli and human interactomes found in the PrePPI database. PrePPI's scoring function is based primarily on the evaluation of protein-protein interfaces, and ZEPPI adds a new feature to this analysis through the incorporation of evolutionary information. ZEPPI performance is evaluated through applications to experimentally determined complexes and to decoys from the CASP-CAPRI experiment. As we discuss, the standard CAPRI scores used to evaluate docking models are based on model quality and not on the ability to give yes/no answers as to whether two proteins interact. ZEPPI is able to detect weak signals from PPI models that the CAPRI scores define as incorrect and, similarly, to identify potential PPIs defined as low confidence by the current PrePPI scoring function. A number of examples that illustrate how the combination of PrePPI and ZEPPI can yield functional hypotheses are provided.


Subject(s)
Proteome , Proteome/metabolism , Humans , Protein Interaction Mapping/methods , Models, Molecular , Escherichia coli/metabolism , Escherichia coli/genetics , Databases, Protein , Protein Binding , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Proteins/chemistry , Proteins/metabolism , Sequence Alignment
12.
Proc Natl Acad Sci U S A ; 121(21): e2321512121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748582

ABSTRACT

The outer membrane (OM) of didermic gram-negative bacteria is essential for growth, maintenance of cellular integrity, and innate resistance to many antimicrobials. Its asymmetric lipid distribution, with phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet, is required for these functions. Lpt proteins form a transenvelope bridge that transports newly synthesized LPS from the inner membrane (IM) to OM, but how the bulk of phospholipids are transported between these membranes is poorly understood. Recently, three members of the AsmA-like protein family, TamB, YhdP, and YdbH, were shown to be functionally redundant and were proposed to transport phospholipids between IM and OM in Escherichia coli. These proteins belong to the repeating ß-groove superfamily, which includes eukaryotic lipid-transfer proteins that mediate phospholipid transport between organelles at contact sites. Here, we show that the IM-anchored YdbH protein interacts with the OM lipoprotein YnbE to form a functional protein bridge between the IM and OM in E. coli. Based on AlphaFold-Multimer predictions, genetic data, and in vivo site-directed cross-linking, we propose that YnbE interacts with YdbH through ß-strand augmentation to extend the continuous hydrophobic ß-groove of YdbH that is thought to shield acyl chains of phospholipids as they travel through the aqueous intermembrane periplasmic compartment. Our data also suggest that the periplasmic protein YdbL prevents extensive amyloid-like multimerization of YnbE in cells. We, therefore, propose that YdbL has a chaperone-like function that prevents uncontrolled runaway multimerization of YnbE to ensure the proper formation of the YdbH-YnbE intermembrane bridge.


Subject(s)
Bacterial Outer Membrane Proteins , Bacterial Outer Membrane , Escherichia coli Proteins , Escherichia coli , Homeostasis , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Phospholipids/metabolism , Lipopolysaccharides/metabolism , Lipoproteins/metabolism , Cell Membrane/metabolism
13.
Nat Commun ; 15(1): 4446, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789441

ABSTRACT

Stop codon readthrough events give rise to longer proteins, which may alter the protein's function, thereby generating short-lasting phenotypic variability from a single gene. In order to systematically assess the frequency and origin of stop codon readthrough events, we designed a library of reporters. We introduced premature stop codons into mScarlet, which enabled high-throughput quantification of protein synthesis termination errors in E. coli using fluorescent microscopy. We found that under stress conditions, stop codon readthrough may occur at rates as high as 80%, depending on the nucleotide context, suggesting that evolution frequently samples stop codon readthrough events. The analysis of selected reporters by mass spectrometry and RNA-seq showed that not only translation but also transcription errors contribute to stop codon readthrough. The RNA polymerase was more likely to misincorporate a nucleotide at premature stop codons. Proteome-wide detection of stop codon readthrough by mass spectrometry revealed that temperature regulated the expression of cryptic sequences generated by stop codon readthrough in E. coli. Overall, our findings suggest that the environment affects the accuracy of protein production, which increases protein heterogeneity when the organisms need to adapt to new conditions.


Subject(s)
Codon, Terminator , Escherichia coli Proteins , Escherichia coli , Protein Biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Codon, Terminator/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Transcription, Genetic , Codon, Nonsense/genetics , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Gene Expression Regulation, Bacterial
14.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791189

ABSTRACT

The membrane Fo factor of ATP synthase is highly sensitive to mutations in the proton half-channel leading to the functional blocking of the entire protein. To identify functionally important amino acids for the proton transport, we performed molecular dynamic simulations on the selected mutants of the membrane part of the bacterial FoF1-ATP synthase embedded in a native lipid bilayer: there were nine different mutations of a-subunit residues (aE219, aH245, aN214, aQ252) in the inlet half-channel. The structure proved to be stable to these mutations, although some of them (aH245Y and aQ252L) resulted in minor conformational changes. aH245 and aN214 were crucial for proton transport as they directly facilitated H+ transfer. The substitutions with nonpolar amino acids disrupted the transfer chain and water molecules or neighboring polar side chains could not replace them effectively. aE219 and aQ252 appeared not to be determinative for proton translocation, since an alternative pathway involving a chain of water molecules could compensate the ability of H+ transmembrane movement when they were substituted. Thus, mutations of conserved polar residues significantly affected hydration levels, leading to drastic changes in the occupancy and capacity of the structural water molecule clusters (W1-W3), up to their complete disappearance and consequently to the proton transfer chain disruption.


Subject(s)
Escherichia coli , Molecular Dynamics Simulation , Mutation , Proton-Translocating ATPases , Protons , Escherichia coli/genetics , Proton-Translocating ATPases/chemistry , Proton-Translocating ATPases/genetics , Proton-Translocating ATPases/metabolism , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Protein Conformation
15.
Emerg Microbes Infect ; 13(1): 2352432, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712634

ABSTRACT

This study investigated resistance evolution mechanisms of conjugated plasmids and bacterial hosts under different concentrations of antibiotic pressure. Ancestral strain ECNX52 was constructed by introducing the blaNDM-5-carrying IncX3 plasmid into E. coli C600, and was subjected to laboratory evolution under different concentrations of meropenem pressure. Minimal inhibitory concentrations and conjugation frequency were determined. Fitness of these strains was assessed. Whole genome sequencing and transcriptional changes were performed. Ancestral host or plasmids were recombined with evolved hosts or plasmids to verify plasmid or host factors in resistance evolution. Role of the repA mutation on plasmid copy number was determined. Two out of the four clones (EM2N1 and EM2N3) exhibited four-fold increase in MIC when exposed to a continuous pressure of 2 µg/mL MEM (1/32 MIC), by down regulating expression of outer membrane protein ompF. Besides, all four clones displayed four-fold increase in MIC and higher conjugation frequency when subjected to a continuous pressure of 4 µg/mL MEM (1/16 MIC), attributing to increasing plasmid copy number generated by repA D140Y (GAT→TAT) mutation. Bacterial hosts and conjugative plasmids can undergo resistance evolution under certain concentrations of antimicrobial pressure by reducing the expression of outer membrane proteins or increasing plasmid copy numbers.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Proteins , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Porins , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Porins/genetics , Porins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Carbapenems/pharmacology , Meropenem/pharmacology , Mutation , Evolution, Molecular , Conjugation, Genetic , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Whole Genome Sequencing , Gene Dosage , beta-Lactamases/genetics
16.
Nat Commun ; 15(1): 4462, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796512

ABSTRACT

Virulence and metabolism are often interlinked to control the expression of essential colonisation factors in response to host-associated signals. Here, we identified an uncharacterised transporter of the dietary monosaccharide ʟ-arabinose that is widely encoded by the zoonotic pathogen enterohaemorrhagic Escherichia coli (EHEC), required for full competitive fitness in the mouse gut and highly expressed during human infection. Discovery of this transporter suggested that EHEC strains have an enhanced ability to scavenge ʟ-arabinose and therefore prompted us to investigate the impact of this nutrient on pathogenesis. Accordingly, we discovered that ʟ-arabinose enhances expression of the EHEC type 3 secretion system, increasing its ability to colonise host cells, and that the underlying mechanism is dependent on products of its catabolism rather than the sensing of ʟ-arabinose as a signal. Furthermore, using the murine pathogen Citrobacter rodentium, we show that ʟ-arabinose metabolism provides a fitness benefit during infection via virulence factor regulation, as opposed to supporting pathogen growth. Finally, we show that this mechanism is not restricted to ʟ-arabinose and extends to other pentose sugars with a similar metabolic fate. This work highlights the importance integrating central metabolism with virulence regulation in order to maximise competitive fitness of enteric pathogens within the host-niche.


Subject(s)
Arabinose , Citrobacter rodentium , Enterohemorrhagic Escherichia coli , Arabinose/metabolism , Animals , Mice , Citrobacter rodentium/pathogenicity , Citrobacter rodentium/metabolism , Citrobacter rodentium/genetics , Humans , Virulence , Enterohemorrhagic Escherichia coli/pathogenicity , Enterohemorrhagic Escherichia coli/metabolism , Enterohemorrhagic Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Virulence Factors/metabolism , Virulence Factors/genetics , Enterobacteriaceae Infections/microbiology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Escherichia coli Infections/microbiology , Female
17.
PLoS One ; 19(5): e0298746, 2024.
Article in English | MEDLINE | ID: mdl-38787890

ABSTRACT

Enterohemorrhagic E. coli (EHEC) is considered to be the most dangerous pathotype of E. coli, as it causes severe conditions such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Antibiotic treatment of EHEC infections is generally not recommended since it may promote the production of the Shiga toxin (Stx) and lead to worsened symptoms. This study explores how exposure to the fluoroquinolone ciprofloxacin reorganizes the transcriptome and proteome of EHEC O157:H7 strain EDL933, with special emphasis on virulence-associated factors. As expected, exposure to ciprofloxacin caused an extensive upregulation of SOS-response- and Stx-phage proteins, including Stx. A range of other virulence-associated factors were also upregulated, including many genes encoded by the LEE-pathogenicity island, the enterohemolysin gene (ehxA), as well as several genes and proteins involved in LPS production. However, a large proportion of the genes and proteins (17 and 8%, respectively) whose expression was upregulated upon ciprofloxacin exposure (17 and 8%, respectively) are not functionally assigned. This indicates a knowledge gap in our understanding of mechanisms involved in EHECs response to antibiotic-induced stress. Altogether, the results contribute to better understanding of how exposure to ciprofloxacin influences the virulome of EHEC and generates a knowledge base for further studies on how EHEC responds to antibiotic-induced stress. A deeper understanding on how EHEC responds to antibiotics will facilitate development of novel and safer treatments for EHEC infections.


Subject(s)
Ciprofloxacin , Proteomics , Transcriptome , Ciprofloxacin/pharmacology , Proteomics/methods , Virulence/drug effects , Transcriptome/drug effects , Enterohemorrhagic Escherichia coli/drug effects , Enterohemorrhagic Escherichia coli/pathogenicity , Enterohemorrhagic Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Virulence Factors/metabolism , Proteome/metabolism , Gene Expression Profiling , Humans
18.
PeerJ ; 12: e17336, 2024.
Article in English | MEDLINE | ID: mdl-38784397

ABSTRACT

Background: Urinary tract infections (UTIs) are very common worldwide. According to their symptomatology, these infections are classified as pyelonephritis, cystitis, or asymptomatic bacteriuria (AB). Approximately 75-95% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which is an extraintestinal bacterium that possesses virulence factors for bacterial adherence and invasion in the urinary tract. In addition, UPEC possesses type 6 secretion systems (T6SS) as virulence mechanisms that can participate in bacterial competition and in bacterial pathogenicity. UPEC UMN026 carries three genes, namely, ECUMN_0231, ECUMN_0232, and ECUMN_0233, which encode three uncharacterized proteins related to the T6SS that are conserved in strains from phylogroups B2 and D and have been proposed as biomarkers of UTIs. Aim: To analyze the frequency of the ECUMN_0231, ECUMN_0232, ECUMN_0233, and vgrG genes in UTI isolates, as well as their expression in Luria Bertani (LB) medium and urine; to determine whether these genes are related to UTI symptoms or bacterial competence and to identify functional domains on the putative proteins. Methods: The frequency of the ECUMN and vgrG genes in 99 clinical isolates from UPEC was determined by endpoint PCR. The relationship between gene presence and UTI symptomatology was determined using the chi2 test, with p < 0.05 considered to indicate statistical significance. The expression of the three ECUMN genes and vgrG was analyzed by RT-PCR. The antibacterial activity of strain UMN026 was determined by bacterial competence assays. The identification of functional domains and the docking were performed using bioinformatic tools. Results: The ECUMN genes are conserved in 33.3% of clinical isolates from patients with symptomatic and asymptomatic UTIs and have no relationship with UTI symptomatology. Of the ECUMN+ isolates, only five (15.15%, 5/33) had the three ECUMN and vgrG genes. These genes were expressed in LB broth and urine in UPEC UMN026 but not in all the clinical isolates. Strain UMN026 had antibacterial activity against UPEC clinical isolate 4014 (ECUMN-) and E. faecalis but not against isolate 4012 (ECUMN+). Bioinformatics analysis suggested that the ECUMN genes encode a chaperone/effector/immunity system. Conclusions: The ECUMN genes are conserved in clinical isolates from symptomatic and asymptomatic patients and are not related to UTI symptoms. However, these genes encode a putative chaperone/effector/immunity system that seems to be involved in the antibacterial activity of strain UMN026.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Molecular Chaperones , Urinary Tract Infections , Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/immunology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/pathogenicity , Humans , Urinary Tract Infections/microbiology , Urinary Tract Infections/immunology , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/immunology , Escherichia coli Proteins/metabolism , Female , Virulence Factors/genetics , Virulence Factors/immunology , Male , Middle Aged , Adult
19.
BMC Vet Res ; 20(1): 220, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783285

ABSTRACT

BACKGROUND: Mammary Pathogenic Escherichia coli (MPEC) is an important pathogen that can escape the attack of the host immune system through biofilm formation and proliferate in the mammary gland continuously, resulting in mastitis in cows and causing enormous economic losses. As an effector of AI-2 quorum sensing, LsrR extensively affects the expression levels of hundreds of genes related to multiple biological processes in model E. coli strain. However, the regulatory role of LsrR in MPEC and whether it is involved in pathogenesis has been seldom reported. RESULTS: In this study, the function of LsrR in strain MPEC5, obtained from a milk sample in dairy cows with mastitis, was investigated by performing high-throughput sequencing (RNA-seq) assays. The results revealed that LsrR down-regulated the transcript levels of fimAICDFGH (encoding Type 1 pili), which have been reported to be associated with biofilm formation process. Biofilm assays confirmed that deletion of lsrR resulted in a significant increase in biofilm formation in vitro. In addition, electrophoretic mobility shift assay (EMSA) provided evidence that LsrR protein could directly bind to the promoter regions of fimAICDFGH in a dose-dependent manner. CONCLUSIONS: These results indicate that LsrR protein inhibits the biofilm formation ability of MPEC5 by directly binding to the fimAICDFGH promoter region. This study presents a novel clue for further exploration of the prevention and treatment of MPEC.


Subject(s)
Biofilms , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , Mastitis, Bovine , Biofilms/growth & development , Animals , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Escherichia coli/genetics , Cattle , Female , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Mastitis, Bovine/microbiology , Mammary Glands, Animal/microbiology , Repressor Proteins
20.
World J Microbiol Biotechnol ; 40(7): 203, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753033

ABSTRACT

The viable but non-culturable (VBNC) state is considered a survival strategy employed by bacteria to endure stressful conditions, allowing them to stay alive. Bacteria in this state remain unnoticed in live cell counts as they cannot proliferate in standard culture media. VBNC cells pose a significant health risk because they retain their virulence and can revive when conditions normalize. Hence, it is crucial to develop fast, reliable, and cost-effective methods to detect bacteria in the VBNC state, particularly in the context of public health, food safety, and microbial control assessments. This research examined the biomolecular changes in Escherichia coli W3110 induced into the VBNC state in artificial seawater under three different stress conditions (temperature, metal, and antibiotic). Initially, confirmation of VBNC cells under various stresses was done using fluorescence microscopy and plate counts. Subsequently, lipid peroxidation was assessed through the TBARS assay, revealing a notable increase in peroxidation end-products in VBNC cells compared to controls. ATR-FTIR spectroscopy and chemomometrics were employed to analyze biomolecular changes, uncovering significant spectral differences in RNA, protein, and nucleic acid concentrations in VBNC cells compared to controls. Notably, RNA levels increased, while protein and nucleic acid amounts decreased. ROC analyses identified the 995 cm- 1 RNA band as a consistent marker across all studied stress conditions, suggesting its potential as a robust biomarker for detecting cells induced into the VBNC state under various stressors.


Subject(s)
Biomarkers , Escherichia coli , Lipid Peroxidation , Microbial Viability , Escherichia coli/growth & development , Escherichia coli/genetics , Escherichia coli/metabolism , Spectroscopy, Fourier Transform Infrared/methods , Anti-Bacterial Agents/pharmacology , Stress, Physiological , Seawater/microbiology , Seawater/chemistry , Temperature , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Culture Media/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...