Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Cancer Immunol Immunother ; 73(8): 141, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832974

ABSTRACT

The genomic landscape of esophageal squamous cell cancer (ESCC), as well as its impact on the regulation of immune microenvironment, is not well understood. Thus, tumor samples from 92 patients were collected from two centers and subjected to targeted-gene sequencing. We identified frequently mutated genes, including TP53, KMT2C, KMT2D, LRP1B, and FAT1. The most frequent mutation sites were ALOX12B (c.1565C > T), SLX4 (c.2786C > T), LRIG1 (c.746A > G), and SPEN (c.6915_6917del) (6.5%). Pathway analysis revealed dysregulation of cell cycle regulation, epigenetic regulation, PI3K/AKT signaling, and NOTCH signaling. A 17-mutated gene-related risk model was constructed using random survival forest analysis and showed significant prognostic value in both our cohort and the validation cohort. Based on the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression (ESTIMATE) algorithm, the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm, and the MCPcounter algorithm, we found that the risk score calculated by the risk model was significantly correlated with stimulatory immune checkpoints (TNFSF4, ITGB2, CXCL10, CXCL9, and BTN3A1; p < 0.05). Additionally, it was significantly associated with markers that are important in predicting response to immunotherapy (CD274, IFNG, and TAMM2; p < 0.05). Furthermore, the results of immunofluorescence double staining showed that patients with high risk scores had a significantly higher level of M2 macrophage than those with low risk scores (p < 0.05). In conclusion, our study provides insights into the genomic landscape of ESCC and highlights the prognostic value of a genomic mutation signature associated with the immune microenvironment in southern Chinese patients with ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Mutation , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Prognosis , Male , Female , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/pathology , Middle Aged , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Esophageal Neoplasms/mortality , Biomarkers, Tumor/genetics , Aged , China , Adult , Genomics/methods , Asian People/genetics , East Asian People
2.
J Microbiol Biotechnol ; 34(5): 1164-1177, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38719775

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is among the most common malignant tumors of the digestive tract, with the sixth highest fatality rate worldwide. The ESCC-related dataset, GSE20347, was downloaded from the Gene Expression Omnibus (GEO) database, and weighted gene co-expression network analysis was performed to identify genes that are highly correlated with ESCC. A total of 91 transcriptome expression profiles and their corresponding clinical information were obtained from The Cancer Genome Atlas database. A mitochondria-associated risk (MAR) model was constructed using the least absolute shrinkage and selection operator Cox regression analysis and validated using GSE161533. The tumor microenvironment and drug sensitivity were explored using the MAR model. Finally, in vitro experiments were performed to analyze the effects of hub genes on the proliferation and invasion abilities of ESCC cells. To confirm the predictive ability of the MAR model, we constructed a prognostic model and assessed its predictive accuracy. The MAR model revealed substantial differences in immune infiltration and tumor microenvironment characteristics between high- and low-risk populations and a substantial correlation between the risk scores and some common immunological checkpoints. AZD1332 and AZD7762 were more effective for patients in the low-risk group, whereas Entinostat, Nilotinib, Ruxolutinib, and Wnt.c59 were more effective for patients in the high-risk group. Knockdown of TYMS significantly inhibited the proliferation and invasive ability of ESCC cells in vitro. Overall, our MAR model provides stable and reliable results and may be used as a prognostic biomarker for personalized treatment of patients with ESCC.


Subject(s)
Cell Proliferation , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Mitochondria , Tumor Microenvironment , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/mortality , Esophageal Neoplasms/immunology , Cell Line, Tumor , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/pathology , Cell Proliferation/drug effects , Cell Proliferation/genetics , Mitochondria/genetics , Prognosis , Transcriptome , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Biomarkers, Tumor/genetics , Gene Regulatory Networks
3.
Cancer Lett ; 593: 216951, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734159

ABSTRACT

Neoadjuvant immunotherapy represents promising strategy in the treatment of esophageal squamous cell carcinoma (ESCC). However, the mechanisms underlying its impact on treatment sensitivity or resistance remain a subject of controversy. In this study, we conducted single-cell RNA and T/B cell receptor (scTCR/scBCR) sequencing of CD45+ immune cells on samples from 10 patients who received neoadjuvant immunotherapy and chemotherapy. We also validated our findings using multiplexed immunofluorescence and analyzed bulk RNA-seq from other cohorts in public database. By integrating analysis of 87357 CD45+ cells, we found GZMK + effector memory T cells (Tem) were relatively enriched and CXCL13+ exhausted T cells (Tex) and regulator T cells (Treg) decreased among responders, indicating a persistent anti-tumor memory process. Additionally, the enhanced presence of BCR expansion and somatic hypermutation process within TNFRSF13B + memory B cells (Bmem) suggested their roles in antigen presentation. This was further corroborated by the evidence of the T-B co-stimulation pattern and CXCL13-CXCR5 axis. The complexity of myeloid cell heterogeneity was also particularly pronounced. The elevated expression of S100A7 in ESCC, as detected by bulk RNA-seq, was associated with an exhausted and immunosuppressive tumor microenvironment. In summary, this study has unveiled a potential regulatory network among immune cells and the clonal dynamics of their functions, and the mechanisms of exhaustion and memory conversion between GZMK + Tem and TNFRSF13B + Bmem from antigen presentation and co-stimulation perspectives during neoadjuvant PD-1 blockade treatment in ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Immunotherapy , Neoadjuvant Therapy , Single-Cell Analysis , Humans , Neoadjuvant Therapy/methods , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/immunology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/therapy , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Immunotherapy/methods , Single-Cell Analysis/methods , Female , Male , Tumor Microenvironment/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Chemokine CXCL13/genetics , Chemokine CXCL13/metabolism , Middle Aged , Aged , Memory T Cells/immunology , Memory T Cells/metabolism , Leukocyte Common Antigens/metabolism , Leukocyte Common Antigens/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/immunology , Receptors, CXCR5/metabolism , Receptors, CXCR5/genetics
4.
BMC Cancer ; 24(1): 649, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802821

ABSTRACT

BACKGROUND: Neoadjuvant immune checkpoint blockade (ICB) combined with chemoradiotherapy offers high pathologic complete response (pCR) rate for patients with locally advanced esophageal squamous cell carcinomas (ESCC). But the dynamic tumor immune microenvironment modulated by such neoadjuvant therapy remains unclear. PATIENTS AND METHODS: A total of 41 patients with locally advanced ESCC were recruited. All patients received neoadjuvant toripalimab combined with concurrent chemoradiotherapy. Matched pre- and post-treatment tissues were obtained for fluorescent multiplex immunohistochemistry (mIHC) and IHC analyses. The densities and spatial distributions of immune cells were determined by HALO modules. The differences of immune cell patterns before and after neoadjuvant treatment were investigated. RESULTS: In the pre-treatment tissues, more stromal CD3 + FoxP3 + Tregs and CD86+/CD163 + macrophages were observed in patients with residual tumor existed in the resected lymph nodes (pN1), compared with patients with pCR. The majority of macrophages were distributed in close proximity to tumor nest in pN1 patients. In the post-treatment tissues, pCR patients had less CD86 + cell infiltration, whereas higher CD86 + cell density was significantly associated with higher tumor regression grades (TRG) in non-pCR patients. When comparing the paired pre- and post-treatment samples, heterogeneous therapy-associated immune cell patterns were found. Upon to the treatment, CD3 + T lymphocytes were slightly increased in pCR patients, but markedly decreased in non-pCR patients. In contrast, a noticeable increase and a less obvious decrease of CD86 + cell infiltration were respectively depicted in non-pCR and pCR patients. Furthermore, opposite trends of the treatment-induced alterations of CD8 + and CD15 + cell infiltrations were observed between pN0 and pN1 patients. CONCLUSIONS: Collectively, our data demonstrate a comprehensive picture of tumor immune landscape before and after neoadjuvant ICB combined with chemoradiotherapy in ESCC. The infiltration of CD86 + macrophage may serve as an unfavorable indicator for neoadjuvant toripalimab combined with chemoradiotherapy.


Subject(s)
Chemoradiotherapy , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Immune Checkpoint Inhibitors , Neoadjuvant Therapy , Tumor Microenvironment , Humans , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Neoadjuvant Therapy/methods , Male , Female , Chemoradiotherapy/methods , Esophageal Neoplasms/therapy , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , Middle Aged , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment/immunology , Aged , Adult , Macrophages/immunology , Macrophages/metabolism
5.
World J Gastroenterol ; 30(19): 2496-2501, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38817664

ABSTRACT

Immune checkpoint inhibitor therapy has dramatically improved patient prognosis, and thereby transformed the treatment in various cancer types including esophageal squamous cell carcinoma (ESCC) in the past decade. Monoclonal antibodies that selectively inhibit programmed cell death-1 (PD-1) activity has now become standard of care in the treatment of ESCC in metastatic settings, and has a high expectation to provide clinical benefit during perioperative period. Further, anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) monoclonal antibody has also been approved in the treatment of recurrent/metastatic ESCC in combination with anti-PD-1 antibody. Well understanding of the existing evidence of immune-based treatments for ESCC, as well as recent clinical trials on various combinations with chemotherapy for different clinical settings including neoadjuvant, adjuvant, and metastatic diseases, may provide future prospects of ESCC treatment for better patient outcomes.


Subject(s)
CTLA-4 Antigen , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Immune Checkpoint Inhibitors , Immunotherapy , Neoadjuvant Therapy , Humans , Esophageal Neoplasms/therapy , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , Esophageal Neoplasms/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/drug therapy , Neoadjuvant Therapy/methods , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Treatment Outcome , Chemotherapy, Adjuvant/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Prognosis , Neoplasm Recurrence, Local/prevention & control , Neoplasm Recurrence, Local/immunology
6.
Cancer Res Commun ; 4(6): 1399-1409, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38717153

ABSTRACT

Cyclin E overexpression as a result of CCNE1 amplification is a critical driver of genomic instability in gastric cancer, but its clinical implication is largely unknown. Thus, we integrated genomic, transcriptomic, and immune profiling analysis of 7,083 esophagogastric tumors and investigated the impact of CCNE1 amplification on molecular features and treatment outcomes. We identified CCNE1 amplification in 6.2% of esophageal adenocarcinoma samples, 7.0% of esophagogastric junction carcinoma, 4.2% of gastric adenocarcinoma samples, and 0.8% of esophageal squamous cell carcinoma. Metastatic sites such as lymph node and liver showed an increased frequency of CCNE1 amplification relative to primary tumors. Consistent with a chromosomal instability phenotype, CCNE1 amplification was associated with decreased CDH1 mutation and increased TP53 mutation and ERBB2 amplification. We observed no differences in immune biomarkers such as PD-L1 expression and tumor mutational burden comparing CCNE1-amplified and nonamplified tumors, although CCNE1 amplification was associated with changes in immune populations such as decreased B cells and increased M1 macrophages from transcriptional analysis. Real-world survival analysis demonstrated that patients with CCNE1-amplified gastric cancer had worse survival after trastuzumab for HER2-positive tumors, but better survival after immunotherapy. These data suggest that CCNE1-amplified gastric cancer has a distinct molecular and immune profile with important therapeutic implications, and therefore further investigation of CCNE1 amplification as a predictive biomarker is warranted. SIGNIFICANCE: Advanced gastric cancer has a relatively dismal outcome with a 5-year overall survival of less than 10%. Furthermore, while comprehensive molecular analyses have established molecular subtypes within gastric cancers, biomarkers of clinical relevance in this cancer type are lacking. Overall, this study demonstrates that CCNE1 amplification is associated with a distinct molecular profile in gastric cancer and may impact response to therapy, including targeted therapy and/or immunotherapy.


Subject(s)
Cyclin E , Esophageal Neoplasms , Gene Amplification , Oncogene Proteins , Stomach Neoplasms , Humans , Cyclin E/genetics , Oncogene Proteins/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/mortality , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , Receptor, ErbB-2/genetics , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Biomarkers, Tumor/genetics , Mutation , Male , Esophagogastric Junction/pathology , Female , Trastuzumab/therapeutic use , Tumor Suppressor Protein p53/genetics , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/mortality , Antigens, CD/genetics , Cadherins
7.
Front Immunol ; 15: 1312380, 2024.
Article in English | MEDLINE | ID: mdl-38726002

ABSTRACT

Objective: The choice of neoadjuvant therapy for esophageal squamous cell carcinoma (ESCC) is controversial. This study aims to provide a basis for clinical treatment selection by establishing a predictive model for the efficacy of neoadjuvant immunochemotherapy (NICT). Methods: A retrospective analysis of 30 patients was conducted, divided into Response and Non-response groups based on whether they achieved major pathological remission (MPR). Differences in genes and immune microenvironment between the two groups were analyzed through next-generation sequencing (NGS) and multiplex immunofluorescence (mIF). Variables most closely related to therapeutic efficacy were selected through LASSO regression and ROC curves to establish a predictive model. An additional 48 patients were prospectively collected as a validation set to verify the model's effectiveness. Results: NGS suggested seven differential genes (ATM, ATR, BIVM-ERCC5, MAP3K1, PRG, RBM10, and TSHR) between the two groups (P < 0.05). mIF indicated significant differences in the quantity and location of CD3+, PD-L1+, CD3+PD-L1+, CD4+PD-1+, CD4+LAG-3+, CD8+LAG-3+, LAG-3+ between the two groups before treatment (P < 0.05). Dynamic mIF analysis also indicated that CD3+, CD8+, and CD20+ all increased after treatment in both groups, with a more significant increase in CD8+ and CD20+ in the Response group (P < 0.05), and a more significant decrease in PD-L1+ (P < 0.05). The three variables most closely related to therapeutic efficacy were selected through LASSO regression and ROC curves: Tumor area PD-L1+ (AUC= 0.881), CD3+PD-L1+ (AUC= 0.833), and CD3+ (AUC= 0.826), and a predictive model was established. The model showed high performance in both the training set (AUC= 0.938) and the validation set (AUC= 0.832). Compared to the traditional CPS scoring criteria, the model showed significant improvements in accuracy (83.3% vs 70.8%), sensitivity (0.625 vs 0.312), and specificity (0.937 vs 0.906). Conclusion: NICT treatment may exert anti-tumor effects by enriching immune cells and activating exhausted T cells. Tumor area CD3+, PD-L1+, and CD3+PD-L1+ are closely related to therapeutic efficacy. The model containing these three variables can accurately predict treatment outcomes, providing a reliable basis for the selection of neoadjuvant treatment plans.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Neoadjuvant Therapy , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/drug therapy , Neoadjuvant Therapy/methods , Esophageal Neoplasms/therapy , Esophageal Neoplasms/immunology , Esophageal Neoplasms/drug therapy , Male , Female , Middle Aged , Retrospective Studies , Prognosis , Aged , Biomarkers, Tumor , Treatment Outcome , Immunotherapy/methods
8.
J Immunother Cancer ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38724465

ABSTRACT

BACKGROUND: CD276 (B7-H3), a pivotal immune checkpoint, facilitates tumorigenicity, invasiveness, and metastasis by escaping immune surveillance in a variety of tumors; however, the underlying mechanisms facilitating immune escape in esophageal squamous cell carcinoma (ESCC) remain enigmatic. METHODS: We investigated the expression of CD276 in ESCC tissues from patients by using immunohistochemistry (IHC) assays. In vivo, we established a 4-nitroquinoline 1-oxide (4NQO)-induced CD276 knockout (CD276wKO) and K14cre; CD276 conditional knockout (CD276cKO) mouse model of ESCC to study the functional role of CD276 in ESCC. Furthermore, we used the 4NQO-induced mouse model to evaluate the effects of anti-CXCL1 antibodies, anti-Ly6G antibodies, anti-NK1.1 antibodies, and GSK484 inhibitors on tumor growth. Moreover, IHC, flow cytometry, and immunofluorescence techniques were employed to measure immune cell proportions in ESCC. In addition, we conducted single-cell RNA sequencing analysis to examine the alterations in tumor microenvironment following CD276 depletion. RESULTS: In this study, we elucidate that CD276 is markedly upregulated in ESCC, correlating with poor prognosis. In vivo, our results indicate that depletion of CD276 inhibits tumorigenesis and progression of ESCC. Furthermore, conditional knockout of CD276 in epithelial cells engenders a significant downregulation of CXCL1, consequently reducing the formation of neutrophil extracellular trap networks (NETs) via the CXCL1-CXCR2 signaling axis, while simultaneously augmenting natural killer (NK) cells. In addition, overexpression of CD276 promotes tumorigenesis via increasing NETs' formation and reducing NK cells in vivo. CONCLUSIONS: This study successfully elucidates the functional role of CD276 in ESCC. Our comprehensive analysis uncovers the significant role of CD276 in modulating immune surveillance mechanisms in ESCC, thereby suggesting that targeting CD276 might serve as a potential therapeutic approach for ESCC treatment.


Subject(s)
B7 Antigens , Chemokine CXCL1 , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Receptors, Interleukin-8B , Animals , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Mice , Humans , Receptors, Interleukin-8B/metabolism , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , B7 Antigens/metabolism , Chemokine CXCL1/metabolism , Extracellular Traps/metabolism , Tumor Escape , Female , Male , Mice, Knockout , Tumor Microenvironment
9.
Cancer Med ; 13(9): e7228, 2024 May.
Article in English | MEDLINE | ID: mdl-38733174

ABSTRACT

BACKGROUND: The molecular and immunological characteristics of primary tumors and positive lymph nodes in esophageal squamous cell carcinoma (ESCC) are unknown and the relationship with recurrence is unclear, which this study attempted to explore. METHODS: A total of 30 ESCC patients with lymph node positive (IIB-IVA) were enrolled. Among them, primary tumor and lymph node specimens were collected from each patient, and subjected to 551-tumor-targeted DNA sequencing and 289-immuno-oncology RNA panel sequencing to identify the different molecular basis and immunological features, respectively. RESULTS: The primary tumors exhibited a higher mutation burden than lymph nodes (p < 0.001). One-year recurrent ESCC exhibited a higher Mucin16 (MUC16) mutation rate (p = 0.038), as well as univariate and multivariate analysis revealed that MUC16 mutation is independent genetic factor associated with reduced relapse-free survival (univariate, HR: 5.39, 95% CI: 1.67-17.4, p = 0.005; multivariate, HR: 7.36, 95% CI: 1.79-30.23, p = 0.006). Transcriptomic results showed non-relapse group had higher cytolytic activity (CYT) score (p = 0.025), and was enriched in the IFN-α pathway (p = 0.036), while those in the relapsed group were enriched in the TNF-α/NF-κB (p = 0.001) and PI3K/Akt pathway (p = 0.014). CONCLUSION: The difference in molecular characteristics between primary lesions and lymph nodes may be the cause of the inconsistent clinical outcomes. Mutations of MUC16 and poor immune infiltration are associated with rapid relapse of nodes-positive ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Lymph Nodes , Lymphatic Metastasis , Mutation , Neoplasm Recurrence, Local , Humans , Male , Female , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/surgery , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Middle Aged , Neoplasm Recurrence, Local/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , Esophageal Neoplasms/surgery , Esophageal Neoplasms/mortality , Lymph Nodes/pathology , Lymph Nodes/immunology , Aged , Biomarkers, Tumor/genetics , Prognosis , Membrane Proteins , CA-125 Antigen
10.
Cancer Invest ; 42(3): 243-259, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38616306

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) presents a five-year survival rate below 20%, underscoring the need for improved prognostic markers. Our study analyzed ESCC-specific datasets to identify consistently differentially expressed genes. A Venn analysis followed by gene network interactions revealed 23 key genes, from which we built a prognostic model using the COX algorithm (p = 0.000245, 3-year AUC = 0.967). This model stratifies patients into risk groups, with high-risk individuals showing worse outcomes and lower chemotherapy sensitivity. Moreover, a link between risk scores and M2 macrophage infiltration, as well as significant correlations with immune checkpoint genes (e.g., SIGLEC15, PDCD1LG2, and HVCR2), was discovered. High-risk patients had lower Tumor Immune Dysfunction and Exclusion (TIDE) values, suggesting potential responsiveness to immune checkpoint blockade (ICB) therapy. Our efficient 23-gene prognostic model for ESCC indicates a dual utility in assessing prognosis and guiding therapeutic decisions, particularly in the context of ICB therapy for high-risk patients.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/mortality , Prognosis , Esophageal Neoplasms/genetics , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/immunology , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Biomarkers, Tumor/genetics , Male , Female , Gene Expression Regulation, Neoplastic , Drug Resistance, Neoplasm/genetics , Middle Aged , Gene Regulatory Networks
11.
Br J Cancer ; 130(11): 1770-1782, 2024 May.
Article in English | MEDLINE | ID: mdl-38600327

ABSTRACT

BACKGROUND: Tumour-associated macrophages (TAMs) are an important component of the tumour microenvironment (TME). However, the crosstalk between oesophageal squamous cell carcinoma (ESCC) cells and TAMs remains largely unexplored. METHODS: Clinical samples and the TCGA database were used to evaluate the relevance of SPP1 and TAM infiltration in ESCC. Mouse models were constructed to investigate the roles of macrophages educated by SPP1 in ESCC. Macrophage phenotypes were determined using qRT‒PCR and immunohistochemical staining. RNA sequencing was performed to elucidate the mechanism. RESULTS: Increasing expression of SPP1 correlated with M2-like TAM accumulation in ESCC, and they both predicted poor prognosis in the ESCC cohort. Knockdown of SPP1 significantly inhibited the infiltration of M2 TAMs in xenograft tumours. In vivo mouse model experiments showed that SPP1-mediated education of macrophages plays an essential role in the progression of ESCC. Mechanistically, SPP1 recruited macrophages and promoted M2 polarisation via CD44/PI3K/AKT signalling activation and then induced VEGFA and IL6 secretion to sustain ESCC progression. Finally, blockade of SPP1 with RNA aptamer significantly inhibited tumour growth and M2 TAM infiltration in xenograft mouse models. CONCLUSIONS: This study highlights SPP1-mediated crosstalk between ESCC cells and TAMs in ESCC. SPP1 could serve as a potential target in ESCC therapy.


Subject(s)
Disease Progression , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Osteopontin , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Animals , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Mice , Esophageal Neoplasms/pathology , Esophageal Neoplasms/immunology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor Microenvironment/immunology , Osteopontin/genetics , Osteopontin/metabolism , Cell Line, Tumor , Macrophages/metabolism , Macrophages/immunology , Female , Xenograft Model Antitumor Assays , Male , Prognosis , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , Mice, Nude , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics
12.
J Gene Med ; 26(3): e3667, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38442944

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a predominant subtype of esophageal cancer with relatively high mortality worldwide. Serine peptidase inhibitor Kazal-type 5 (SPINK5) is reported to be downregulated in ESCC. However, its explicit role in ESCC remains further investigation. METHODS: The tumor tissues and adjacent non-cancerous tissues were obtained from 196 patients with ESCC for the determination of SPINK5 mRNA levels. Additionally, the relationship between SPINK5 mRNA levels and clinicopathological features of ESCC patients was explored. The effects of SPINK5 on the invasion and migration of ESCC cells were assessed using Transwell assays. Furthermore, SPINK5 mRNA and LEKTI protein were measured in ESCC cell lines after treatment with poly (I:C), lipopolysaccharide (LPS) or unmethylated CpG DNA. Moreover, the correlation between expression of SPINK5 and nuclear factor-kappa B (NF-κB) signaling pathway-related genes was analyzed in the TCGA-ESCC cohort, and the effects of SPINK5 on NF-κB transcription was analyzed using a luciferase reporter gene assay. Finally, the correlations between SPINK5 and infiltration of immune cells, immune scores, stromal scores and ESTIMATE (i.e., Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) scores were explored. RESULTS: SPINK5 mRNA levels were downregulated in tumor tissues, which was significantly correlated with higher lymph node metastases. Overexpressed SPINK5 inhibited cell invasion and migration in ESCC cell lines. Mechanistically, LPS-induced activation of Toll-like receptor 4 (TLR4) decreased SPINK5 mRNA and LEKTI in KYSE150 and KYSE70 cells. Spearman correlation analysis revealed that SPINK5 mRNA was significantly negatively correlated with a total of seven NF-κB signaling pathway-related genes in TCGA-ESCC patients. Moreover, downregulation of SPINK5 increased and upregulation of SPINK5 decreased the activity of the NF-κB promoter in HEK293T cells. Finally, immune cells infiltration analysis revealed that SPINK5 was significantly correlated with the infiltration of various immune cells, stromal scores, immune scores and ESTIMATE scores. CONCLUSIONS: SPINK5 plays critical roles in the TLR4/NF-κB pathway and immune cells infiltration, which might contribute to the ESCC metastasis. The findings of the present study may provide a promising biomarker for the diagnosis and treatment of esophageal squamous cell carcinoma.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Serine Peptidase Inhibitor Kazal-Type 5 , Humans , Esophageal Neoplasms/immunology , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/metabolism , HEK293 Cells , Lipopolysaccharides , NF-kappa B/metabolism , RNA, Messenger/metabolism , Serine Peptidase Inhibitor Kazal-Type 5/metabolism , Toll-Like Receptor 4/metabolism
13.
Scand J Gastroenterol ; 59(6): 722-729, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38362884

ABSTRACT

OBJECTIVE: To explore the effects of pretreatment peripheral blood panimmune-inflammation value (PIV), systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) on the efficacy and prognostic value of immunotherapy in patients with inoperable advanced or locally advanced oesophageal squamous cell carcinoma (ESCC). METHODS: Clinical data of 107 inoperable advanced or locally advanced ESCC patients were retrospectively analysed between May 2019 and August 2023, the receiver operating characteristic curves (ROCs) of PIV, SII, NLR, and PLR in patients prior to immunotherapy were plotted, and their optimal cutoff values were determined. The risk factors were determined by univariate and multivariate analyses in groups based on the optimal cut-off values. RESULTS: Peripheral blood PIV, SII and PLR before immunotherapy had predictive value for the optimal efficacy of immunotherapy in patients with inoperable advanced or locally advanced ESCC; patients with PIV ≥415.885, SII ≥834.295 and NLR ≥3.740 had a low objective response rate (ORR), disease control rate (DCR), a short progression-free survival (PFS) and overall survival (OS) after immunotherapy (p < 0.05). Patient tumour stage, distant lymph node metastasis, lung metastasis, liver metastasis, PIV, SII, and NLR were risk factors affecting PFS and OS (p < 0.05). Tumour stage and SII were independent risk factors affecting PFS and OS (p < 0.05). CONCLUSION: In patients with inoperable advanced or locally advanced ESCC, peripheral blood PIV, SII, and NLR have predictive value for immunotherapy outcome, SII is an independent risk factor affecting the survival prognosis, and SII ≥834.295 suggests a poor prognosis from immunotherapy.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Immunotherapy , Neutrophils , Humans , Male , Female , Middle Aged , Esophageal Neoplasms/therapy , Esophageal Neoplasms/blood , Esophageal Neoplasms/pathology , Retrospective Studies , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/blood , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/pathology , Aged , Prognosis , Immunotherapy/methods , ROC Curve , Predictive Value of Tests , Adult , Lymphocytes , Blood Platelets , Neoplasm Staging , Lymphocyte Count , Platelet Count , Inflammation/blood , Risk Factors
14.
Adv Healthc Mater ; 13(11): e2303623, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38142309

ABSTRACT

PD-1/PD-L1 blockade immunotherapy has gained approval for the treatment of a diverse range of tumors; however, its efficacy is constrained by the insufficient infiltration of T lymphocytes into the tumor microenvironment, resulting in suboptimal patient responses. Here, a pioneering immunotherapy ferritin nanodrug delivery system denoted as ITFn-Pt(IV) is introduced. This system orchestrates a synergistic fusion of PD-L1 blockade, chemotherapy, and T-cell activation, aiming to augment the efficacy of tumor immunotherapy. Leveraging genetic engineering approach and temperature-regulated channel-based drug loading techniques, the architecture of this intelligent responsive system is refined. It is adept at facilitating the precise release of T-cell activating peptide Tα1 in the tumor milieu, leading to an elevation in T-cell proliferation and activation. The integration of PD-L1 nanobody KN035 ensures targeted engagement with tumor cells and mediates the intracellular delivery of the encapsulated Pt(IV) drugs, culminating in immunogenic cell death and the subsequent dendritic cell maturation. Employing esophageal squamous cell carcinoma (ESCC) as tumor model, the potent antitumor efficacy of ITFn-Pt(IV) is elucidated, underscored by augmented T-cell infiltration devoid of systemic adverse effects. These findings accentuate the potential of ITFn-Pt(IV) for ESCC treatment and its applicability to other malignancies resistant to established PD-1/PD-L1 blockade therapies.


Subject(s)
B7-H1 Antigen , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , T-Lymphocytes , Animals , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/immunology , Humans , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Mice , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/therapy , Cell Line, Tumor , Lymphocyte Activation/drug effects , Ferritins/chemistry , Tumor Microenvironment/drug effects , Immunotherapy/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Nanoparticles/chemistry , Drug Delivery Systems/methods
15.
Biomed Res Int ; 2022: 8636527, 2022.
Article in English | MEDLINE | ID: mdl-35463992

ABSTRACT

This study was aimed at exploring the mechanism of serine threonine protein kinase 11 (STK11)/Adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway after immunotherapy for esophageal squamous cell carcinoma (ESCC), providing basic information for the clinical treatment of ESCC. In this study, tissue specimens from 100 patients with ESCC who underwent surgical treatment in Taizhou People's Hospital (group A) and 20 patients with recurrent or metastatic ESCC who received second-line immunotherapy (group B) were collected. The real-time fluorescent quantitative polymerase chain reaction (PCR) (RT-qPCR) technology was used to detect the expression levels of STK11, interferon-γ (IFN-γ), interleukin 6 (IL-6), and vascular endothelial growth factor (VEGF) in the tissues. The immunohistochemical staining was used to detect the positive expression levels (PELs) of STK11 and AMPKα in the tissues, and immunofluorescence staining was used to detect the PELs Teff cells (CD3 and CD8), Treg cells (CD4 and FOXP3), and neutrophils (CD68 and CD163). RT-qPCR results showed that the expression levels of STK11 and IFN-γ in group A were obviously lower, and those of IL-6 and VEGF were much higher in contrast to group B (P < 0.05). The results of immunohistochemical staining showed that the number of STK11- and AMPKα-positive staining cells in group A was dramatically less than that in group B (P <0.05). The results of immunofluorescence staining revealed that the number of positive staining cells for Teff cells, Treg cells, and neutrophils in group A was also less dramatically than that in group B (P <0.05). In summary, immunotherapy can play a therapeutic effect on ESCC by regulating STK11/AMPK pathway and immune cell infiltration.


Subject(s)
AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , AMP-Activated Protein Kinase Kinases/genetics , AMP-Activated Protein Kinase Kinases/immunology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/immunology , Cell Line, Tumor , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Esophageal Neoplasms/surgery , Esophageal Neoplasms/therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/surgery , Esophageal Squamous Cell Carcinoma/therapy , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy/methods , Interleukin-6/immunology , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Vascular Endothelial Growth Factor A/immunology
16.
J Immunother Cancer ; 10(4)2022 04.
Article in English | MEDLINE | ID: mdl-35428705

ABSTRACT

BACKGROUND: Type 1 conventional dendritic cells (cDC1s) are characterized by their ability to induce potent CD8+ T cell responses. In efforts to generate novel vaccination strategies, notably against cancer, human cDC1s emerge as an ideal target to deliver antigens. cDC1s uniquely express XCR1, a seven transmembrane G protein-coupled receptor. Due to its restricted expression and endocytic nature, XCR1 represents an attractive receptor to mediate antigen-delivery to human cDC1s. METHODS: To explore tumor antigen delivery to human cDC1s, we used an engineered version of XCR1-binding lymphotactin (XCL1), XCL1(CC3). Site-specific sortase-mediated transpeptidation was performed to conjugate XCL1(CC3) to an analog of the HLA-A*02:01 epitope of the cancer testis antigen New York Esophageal Squamous Cell Carcinoma-1 (NY-ESO-1). While poor epitope solubility prevented isolation of stable XCL1-antigen conjugates, incorporation of a single polyethylene glycol (PEG) chain upstream of the epitope-containing peptide enabled generation of soluble XCL1(CC3)-antigen fusion constructs. Binding and chemotactic characteristics of the XCL1-antigen conjugate, as well as its ability to induce antigen-specific CD8+ T cell activation by cDC1s, was assessed. RESULTS: PEGylated XCL1(CC3)-antigen conjugates retained binding to XCR1, and induced cDC1 chemoattraction in vitro. The model epitope was efficiently cross-presented by human cDC1s to activate NY-ESO-1-specific CD8+ T cells. Importantly, vaccine activity was increased by targeting XCR1 at the surface of cDC1s. CONCLUSION: Our results present a novel strategy for the generation of targeted vaccines fused to insoluble antigens. Moreover, our data emphasize the potential of targeting XCR1 at the surface of primary human cDC1s to induce potent CD8+ T cell responses.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Dendritic Cells , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Lymphokines , Membrane Proteins , Sialoglycoproteins , Antigens, Neoplasm/administration & dosage , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Cross-Priming , Dendritic Cells/immunology , Epitopes/immunology , Esophageal Neoplasms/immunology , Esophageal Neoplasms/therapy , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/therapy , Humans , Lymphokines/administration & dosage , Lymphokines/immunology , Male , Membrane Proteins/administration & dosage , Membrane Proteins/immunology , Sialoglycoproteins/administration & dosage , Sialoglycoproteins/immunology
17.
Anticancer Res ; 42(3): 1499-1507, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35220245

ABSTRACT

BACKGROUND: Trimodal therapy is frequently used for patients with locally advanced, resectable oesophageal cancer. However, it does not provide a satisfactory prognosis. The neutrophil-to-lymphocyte ratio (NLR) is an important indicator of patients' inflammatory and immune statuses. We investigated the prognostic role of NLR values obtained at different treatment stages in patients with oesophageal squamous cell carcinoma. PATIENTS AND METHODS: We evaluated the correlation between NLR values or their change and prognosis at each treatment point (before chemoradiotherapy; before surgery; and at 14 days, and 1 and 2 months postoperatively) in 163 patients with oesophageal squamous cell carcinoma who underwent oesophagectomy after neoadjuvant chemoradiotherapy from April 2003 to August 2018. The outcomes studied were overall (OS) and relapse-free (RFS) survival. RESULTS: The NLR at 1 month postoperatively showed the strongest correlation with prognosis, with an optimal cut-off value of 4.5 (area under the curve=0.7878; 95% confidence interval=0.70-0.85; p<0.0001). Univariate and multivariate analyses showed that NLR ≥4.5 was a significant factor for both RFS (hazard ratio=4.44, 95% confidence interval=2.69-7.34) and OS (hazard ratio=3.88, 95% confidence interval=2.38-6.32). Furthermore, NLR significantly stratified patients for the RFS and OS regardless of the pathological response (complete/non-complete response) and postoperative complications (Clavien-Dindo grade

Subject(s)
Chemoradiotherapy, Adjuvant , Esophageal Neoplasms/surgery , Esophageal Squamous Cell Carcinoma/surgery , Esophagectomy , Lymphocytes/immunology , Neoadjuvant Therapy , Neoplasm Recurrence, Local , Neutrophils/immunology , Aged , Chemoradiotherapy, Adjuvant/adverse effects , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Esophagectomy/adverse effects , Female , Humans , Lymphocyte Count , Male , Middle Aged , Neoadjuvant Therapy/adverse effects , Predictive Value of Tests , Progression-Free Survival , Retrospective Studies , Risk Assessment , Risk Factors , Time Factors
18.
Eur J Immunol ; 52(2): 338-351, 2022 02.
Article in English | MEDLINE | ID: mdl-34755333

ABSTRACT

PSMA3, a member of the proteasome subunit, has been shown to play a major player in protein degradation. Reportedly, PSMA3 functions as a negative regulator in various cancers including colon, pancreatic and gastric cancers. However, the contributions of PSMA3 to the progression of esophageal squamous cell carcinoma (ESCC) and the underlying mechanism remain unclear. Therefore, in this study, we investigated whether PSMA3 is involved in ESCC progression and the potential underlying mechanism. The results revealed that PSMA3 was highly expressed in the ESCC tumor tissues and functioned as a negative indicator according to the data from The Cancer Genome Atlas (TCGA)/Gene Expression Omnibus (GEO) datasets and clinical patients' samples. Pathway enrichment analysis showed that PSMA3 was closely correlated with ESCC cancer stemness and the inflammatory response; however, this correlation was absent after knockdown of PSMA3 in vitro. We further demonstrated that PSMA3 suppressed CD8+ T-cells infiltration depending on the C-C motif chemokine ligand 3 (CCL3)/C-C motif chemokine receptor 5 (CCR5) axis. Collectively, these results demonstrate the role of PSMA3 in ESCC cancer stemness and the negative regulation of CD8 T-cells infiltration mediated by PSMA3. The results of this study may provide a potential target for the immuno-oncology effect of PSMA3 in ESCC therapy.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Enzymologic/immunology , Gene Expression Regulation, Neoplastic/immunology , Neoplasm Proteins , Cell Line, Tumor , Databases, Nucleic Acid , Esophageal Neoplasms/enzymology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Esophageal Squamous Cell Carcinoma/enzymology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/immunology , Humans , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Proteasome Endopeptidase Complex/biosynthesis , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/immunology
19.
Nat Commun ; 12(1): 7335, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34921160

ABSTRACT

The tumor microenvironment is a highly complex ecosystem of diverse cell types, which shape cancer biology and impact the responsiveness to therapy. Here, we analyze the microenvironment of esophageal squamous cell carcinoma (ESCC) using single-cell transcriptome sequencing in 62,161 cells from blood, adjacent nonmalignant and matched tumor samples from 11 ESCC patients. We uncover heterogeneity in most cell types of the ESCC stroma, particularly in the fibroblast and immune cell compartments. We identify a tumor-specific subset of CST1+ myofibroblasts with prognostic values and potential biological significance. CST1+ myofibroblasts are also highly tumor-specific in other cancer types. Additionally, a subset of antigen-presenting fibroblasts is revealed and validated. Analyses of myeloid and T lymphoid lineages highlight the immunosuppressive nature of the ESCC microenvironment, and identify cancer-specific expression of immune checkpoint inhibitors. This work establishes a rich resource of stromal cell types of the ESCC microenvironment for further understanding of ESCC biology.


Subject(s)
Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Profiling , Single-Cell Analysis , Tumor Microenvironment/genetics , Antigen Presentation , Biomarkers, Tumor/metabolism , Dendritic Cells/metabolism , Esophageal Neoplasms/immunology , Esophageal Squamous Cell Carcinoma/immunology , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens Class II/metabolism , Humans , Myeloid Cells/metabolism , Myofibroblasts/pathology , Prognosis , Salivary Cystatins/metabolism , Survival Analysis , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology
20.
Int J Mol Sci ; 22(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34768915

ABSTRACT

Ursolic acid (UA), a pentacyclic triterpenoid extracted from various plants, inhibits cell growth, metastasis, and tumorigenesis in various cancers. Chemotherapy resistance and the side effects of paclitaxel (PTX), a traditional chemotherapy reagent, have limited the curative effect of PTX in esophageal cancer. In this study, we investigate whether UA promotes the anti-tumor effect of PTX and explore the underlying mechanism of their combined effect in esophageal squamous cell carcinoma (ESCC). Combination treatment with UA and PTX inhibited cell proliferation and cell growth more effectively than either treatment alone by inducing more significant apoptosis, as indicated by increased sub-G1 phase distribution and protein levels of cleaved-PARP and cleaved caspase-9. Similar to the cell growth suppressive effect, the combination of UA and PTX significantly inhibited cell migration by targeting uPA, MMP-9, and E-cadherin in ESCC cells. In addition, combination treatment with UA and PTX significantly activated p-GSK-3ß and suppressed the activation of Akt and FOXM1 in ESCC cells. Those effects were enhanced by the Akt inhibitor LY2940002 and inverted by the Akt agonist SC79. In an in vivo evaluation of a murine xenograft model of esophageal cancer, combination treatment with UA and PTX suppressed tumor growth significantly better than UA or PTX treatment alone. Thus, UA effectively potentiates the anti-tumor efficacy of PTX by targeting the Akt/FOXM1 cascade since combination treatment shows significantly more anti-tumor potential than PTX alone both in vitro and in vivo. Combination treatment with UA and PTX could be a new strategy for curing esophageal cancer patients.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Esophageal Neoplasms/drug therapy , Esophageal Squamous Cell Carcinoma/drug therapy , Paclitaxel/pharmacology , Triterpenes/pharmacology , Animals , Apoptosis/drug effects , Cadherins/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Synergism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/immunology , Forkhead Box Protein M1/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Matrix Metalloproteinase 9/metabolism , Mice , Neoplasm Invasiveness/pathology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Ursolic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...