Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.731
Filter
1.
Sci Total Environ ; 932: 172984, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38710392

ABSTRACT

The ubiquitous application of phthalate esters (PAEs) as plasticizers contributes to high levels of marine pollution, yet the contamination patterns of PAEs in various shellfish species remain unknown. The objective of this research is to provide the first information on the pollution characteristics of 16 PAEs in different shellfish species from the Pearl River Delta (PRD), South China, and associated health risks. Among the 16 analyzed PAEs, 13 were identified in the shellfish, with total PAE concentrations ranging from 23.07 to 3794.08 ng/g dw (mean = 514.35 ng/g dw). The PAE pollution levels in the five shellfish species were as follows: Ostreidae (mean = 1064.12 ng/g dw) > Mytilus edulis (mean = 509.88 ng/g dw) > Babylonia areolate (mean = 458.14 ng/g dw) > Mactra chinensis (mean = 378.90 ng/g dw) > Haliotis diversicolor (mean = 335.28 ng/g dw). Dimethyl phthalate (DMP, mean = 69.85 ng/g dw), diisobutyl phthalate (DIBP, mean = 41.39 ng/g dw), dibutyl phthalate (DBP, mean = 130.91 ng/g dw), and di(2-ethylhexyl) phthalate (DEHP, mean = 226.23 ng/g dw) were the most abundant congeners. Notably, DEHP constituted the most predominant fraction (43.98 %) of the 13 PAEs detected in all shellfish from the PRD. Principal component analysis indicated that industrial and domestic emissions served as main sources for the PAE pollution in shellfish from the PRD. It was estimated that the daily intake of PAEs via shellfish consumption among adults and children ranged from 0.004 to 1.27 µg/kgbw/day, without obvious non-cancer risks (< 0.034), but the cancer risks raised some alarm (2.0 × 10-9-1.4 × 10-5). These findings highlight the necessity of focusing on marine environmental pollutants and emphasize the importance of ongoing monitoring of PAE contamination in seafood.


Subject(s)
Phthalic Acids , Plasticizers , Shellfish , Water Pollutants, Chemical , Phthalic Acids/analysis , Plasticizers/analysis , Shellfish/analysis , China , Animals , Humans , Water Pollutants, Chemical/analysis , Risk Assessment , Environmental Monitoring , Esters/analysis , Food Contamination/analysis
2.
Chemosphere ; 359: 142366, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768782

ABSTRACT

A multi-target aptamer assay was developed as a phthalic acid ester (PAE) panel to screen selected PAEs in plastic leachate samples. The panel comprises 13 PAEs (PAE-13), namely dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, di-n-hexyl phthalate, diisobutyl phthalate, diisononyl phthalate, diisodecyl phthalate, mono-2-ethylhexyl phthalate, di-2-ethylhexyl phthalate, diphenyl phthalate, butyl benzyl phthalate, dicyclohexyl phthalate, and phthalic acid. Herein, we proposed an aptamer assay using a newly truncated aptamer (20-mer) and the 7-aminoactinomycin D fluorophore, which selectively binds to guanine in single-stranded DNA, resulting in increased fluorescence intensity. The assay is highly selective for PAE-13 clusters. The selectivity of the assay was evaluated using 13 different PAEs and mixtures depending on the side chain structure. The quantitative detection of PAEs was demonstrated by adopting mixed PAE-13 simulants and achieved a limit of detection of ∼1.4 pg/mL. The repeatability and reproducibility of the assay were also evaluated by presenting acceptable coefficients of variation (%CV less than 10% and 15%, respectively). The performance of the assay was demonstrated by analyzing the plastic leachate samples, and the positive correlation (correlation coefficient, r = 0.985) was confirmed by comparing them with the total sum of individual PAE peak areas obtained by gas chromatography mass spectrometry analysis.


Subject(s)
Aptamers, Nucleotide , Endocrine Disruptors , Esters , Phthalic Acids , Water Pollutants, Chemical , Phthalic Acids/analysis , Endocrine Disruptors/analysis , Water Pollutants, Chemical/analysis , Esters/analysis , Aptamers, Nucleotide/chemistry , Plastics/analysis , Plastics/chemistry , Reproducibility of Results
3.
Food Chem ; 453: 139560, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761721

ABSTRACT

Baijiu authenticity has been a frequent problem driven by economic interests in recent years, so it is important to discriminate against baijiu with different origins. Herein, we proposed a simple and efficient esters-targeted colorimetric sensor array mediated by hydroxylamine hydrochloride. Esters undergo a nucleophilic addition reaction with hydroxylamine hydrochloride to form hydroxamic acid, which rapidly forms a purplish red ferric hydroxamate under FeCl3·6H2O. Bromophenol blue and rhodamine B enrich the color effects. The array detected 12 esters with a detection limit on the order of 10-5 of most esters and 16 mixed esters with R2 > 0.999 and recoveries close to 100%. Otherwise, for discriminating 34 strong-aroma baijius (SABs), the array has an accuracy of 98% according to the origin, and 95% according to the grades, with a response time of 1 min. This study provides a new strategy for authenticity determination and quality control of baijiu.


Subject(s)
Colorimetry , Esters , Colorimetry/instrumentation , Colorimetry/methods , Esters/chemistry , Esters/analysis , Alcoholic Beverages/analysis , Odorants/analysis
4.
J Oleo Sci ; 73(6): 875-885, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38797689

ABSTRACT

This study investigated the effect of cooking on the levels of 3-chloro-1, 2-propanediol esters (3-MCPDEs), 2-chloro-1, 3-propanediol esters (2-MCPDEs) and glycidyl esters (GEs) in deep-fried rice cracker, fried potato, croquette, fish fillet, chicken fillet and cooking oils (rice bran oil and palm oil). The levels of 2-/3-MCPDE in rice cracker fried with rice bran oil and the used oil remained about the same, while the levels of GEs in them fell with frying time. The levels of 2-/3-MCPDEs in fried potato, croquette, fried fish and chicken cutlet fried with rice bran oil and palm oil respectively fell with frying time, while the level of GEs in them remained about the same. The levels of 2-/3-MCPDEs and GEs in fried rice cooked with rice bran oil were under the method limit of quantification. These results provide insights the cooking has no influence with the levels of 2-/3-MCPDEs and GEs in cooked foods.


Subject(s)
Cooking , Esters , Hot Temperature , Palm Oil , Rice Bran Oil , alpha-Chlorohydrin , Cooking/methods , Esters/analysis , Palm Oil/chemistry , Rice Bran Oil/chemistry , alpha-Chlorohydrin/analysis , Fatty Acids/analysis , Plant Oils/chemistry , Food Analysis , Animals , Time Factors , Propylene Glycols/analysis , Epoxy Compounds/analysis , Dietary Fats/analysis , Chickens , Food, Processed
5.
Environ Pollut ; 351: 124085, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38697247

ABSTRACT

Organophosphate esters (OPEs) are extensively applied in various materials as flame retardants and plasticizers, and have high biological toxicity. OPEs are detected worldwide, even in distant polar regions and the Tibetan Plateau (TP). However, few studies have been performed to evaluate the distribution patterns and origins of OPEs in different climate systems on the TP. This study investigated the distribution characteristics, possible sources, and ecological risks of OPEs in soils from the different climate systems on the TP and its surroundings. The total concentrations of OPEs in soil varied from 468 to 17,451 pg g-1 dry weight, with greater concentrations in southeast Tibet (monsoon zone), followed by Qinghai (transition zone) and, finally, southern Xingjiang (westerly zone). OPE composition profiles also differed among the three areas with tri-n-butyl phosphate dominant in the westerly zone and tris(2-butoxyethyl) phosphate dominant in the Indian monsoon zone. Correlations between different compounds and altitude, soil organic carbon, or longitude varied in different climate zones, indicating that OPE distribution originates from both long-range atmospheric transport and local emissions. Ecological risk assessment showed that tris(2-chloroethyl) phosphate and tri-phenyl phosphate exhibited medium risks in soil at several sites in southeast Tibet. Considering the sensitivity and vulnerability of TP ecosystems to anthropogenic pollutants, the ecological risks potentially caused by OPEs in this region should be further assessed.


Subject(s)
Climate , Environmental Monitoring , Esters , Organophosphates , Soil Pollutants , Soil , Tibet , Soil Pollutants/analysis , Soil/chemistry , Organophosphates/analysis , Esters/analysis , Flame Retardants/analysis
6.
Environ Sci Pollut Res Int ; 31(24): 35206-35218, 2024 May.
Article in English | MEDLINE | ID: mdl-38720129

ABSTRACT

As alternative substances of PBDEs, organophosphate esters (OPEs), an emerging organic pollutant, were increasingly produced and used in many kinds of industries and consumer products. However, OPEs also have various adverse toxic effects. Information on the pollution levels and exposure to OPEs in related industries is still limited. This study presented data on OPE contamination in the soil, leaf, and river water samples from seven typical industrial parks in Southwest China. Total concentration of seven OPEs (Σ7OPE) including tri-n-butyl phosphate (TnBP), tris-(2-ethylhexyl) phosphate (TEHP), tris-(2-butoxyethyl) phosphate (TBEP), tris-(2-carboxyethyl) phosphine (TCEP), triphenyl phosphate (TPhP), tris-(1,3-dichloro-2-propyl) ester (TDCPP), and tris-(chlorisopropyl) phosphate (TCPP) in the soil samples (36.2 ~ 219.7 ng/g) and the surrounding river water samples (118.9 ~ 287.7 ng/L) were mostly lower than those in other studies, while the Σ7OPE level in the leaves (2053.3 ~ 8152.7 ng/g) was relatively high. There were significant differences in the concentration and distribution of OPEs in the surrounding environment of different industrial parks. TDCPP, TnBP, and TCPP could be used as the characteristic compound in soil samples from auto industrial park, river samples from shoe making industrial park, and leaf samples from logistics park, respectively. The parameter m (the content ratio of chlorinated OPEs to alkyl OPEs) was suggested to distinguish the types of industrial park preliminary. When m ≥ 1, it mainly refers to heavy industries sources such as automobiles, electronics, and machinery, etc. When m<1, it mainly for the light industrial sources such as textile industry, transportation services, and resources processing, etc. For logistics park, furniture park and Wuhou comprehensive industrial park, the volatilization of materials was the main sources of OPEs in the surrounding environment, while more effort was required to strengthen the pollution control and management of the waste water and soil in the pharmacy industrial park, shoe making industrial park and auto industrial park. Risk assessment showed that there was a negligible non-cancer and carcinogenic risk in the soil, while high attention should be paid to the non-cancer risk for children.


Subject(s)
Environmental Monitoring , Esters , Organophosphates , China , Risk Assessment , Organophosphates/analysis , Esters/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis
7.
Environ Res ; 252(Pt 3): 119059, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38701891

ABSTRACT

Recent studies revealed the un-negligible impact of airborne organophosphate esters (OPEs) on phosphorus (P)-limited ecosystems. Subtropical forests, the global prevalence P-limited ecosystems, contain canopy structures that can effectively sequester OPEs from the atmosphere. However, little is known about the behavior and fate of OPEs in subtropical forest ecosystem, and the impact on the P cycling in this ecosystem. OPE concentrations in the understory air (at two heights), foliage, and litterfall were investigated in a subtropical forest in southern China. The median ∑OPE concentrations were 3149 and 2489 pg/m3 in the upper and bottom air, respectively. Foliage exhibited higher ∑OPE concentrations (median = 386 ng/g dry weight (dw)) compared to litter (median = 267 ng/g dw). The air OPE concentrations were ordered by broadleaved forest > mixed forest > coniferous forest, which corresponds to the results of canopy coverage or leaf area index. The spatial variation of OPEs in foliage and litter was likely caused by the leaf surface functional traits. Higher OPE concentrations were found in the wet season for understory air while in the dry season for foliage and litter, which were attributed to the changes in emission sources and meteorological conditions, respectively. The inverse temporal variation suggests the un-equilibrium partitioning of OPEs between leaf and air. The OPE concentrations during the litter-incubation presented similar temporal trends with those in foliage and litter, indicating the strong interaction of OPEs between the litter layer and the near-soil air, and the efficient buffer of litter layer played in the OPEs partitioning between soil and air. The median OPEs-associated P deposition fluxes through litterfall were 270, 186, and 249 µg P/m2·yr in the broadleaved, mixed, and coniferous forests, respectively. Although the fluxes accounted for approximately 0.2% of the total atmospheric P deposition, their significance to this P-limited ecosystem may not be negligible.


Subject(s)
Air Pollutants , Environmental Monitoring , Forests , Plant Leaves , China , Plant Leaves/chemistry , Air Pollutants/analysis , Organophosphates/analysis , Esters/analysis , Seasons , Spatio-Temporal Analysis , Trees
8.
Environ Res ; 252(Pt 4): 119077, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714222

ABSTRACT

Household products, in response to regulations, increasingly incorporate phthalate (PAE) alternatives instead of traditional PAEs. However, limited information exists regarding the fate and exposure risk of these PAE alternatives and their monoesters in indoor environments. The contamination levels of PAE alternatives and their monoesters in indoor dust might vary across regions due to climate, population density, industrial activities, and interior decoration practices. By analyzing indoor dust samples from six geographical regions across China, this study aims to shed light on concentrations, profiles, and human exposure to 12 PAE alternatives and 9 their monoesters. Bis(2-ethylhexyl) benzene-1,4-dicarboxylate (DEHTP), tributyl 2-acetyloxypropane-1,2,3-tricarboxylate (ATBC), and tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate (TOTM) were the main PAE alternatives in dust across all regions. The total concentrations of 12 PAE alternatives ranged from 0.125 to 4160 µg/g in indoor dust. High molecular weight PAE alternatives had significantly correlated concentrations (p < 0.05) based on Spearman analysis, suggesting their co-use in heat-resistant plastic products. A collective of nine monoesters were identified in most samples, with total concentrations ranging from 0.048 to 29.6 µg/g. The median concentrations of PAE alternatives were highest in North China (66.8 µg/g), while those of monoesters were highest in Southwest China (6.93 µg/g). A significant correlation (p < 0.05) between the concentrations of DEHTP and its monoester suggested that degradation could be a potential source of monoesters. Although hazard quotients (HQs) have been calculated to suggest that the current exposure is unlikely to pose a significant health risk, the lack of toxicity threshold data and the existence of additional exposure pathways necessitate a further confirmation.


Subject(s)
Air Pollution, Indoor , Dust , Phthalic Acids , Dust/analysis , China , Phthalic Acids/analysis , Humans , Air Pollution, Indoor/analysis , Environmental Exposure/analysis , Air Pollutants/analysis , Esters/analysis , Environmental Monitoring
9.
Environ Pollut ; 354: 124170, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38759748

ABSTRACT

A total of 138 samples including urban soil, surface dust, atmospheric dustfall, and commercial food were collected from the semi-arid industrial city of Lanzhou in Northwest China, and 22 phthalate esters (PAEs) were analyzed in these samples by gas chromatography-mass spectrometry for the pollution characteristics, potential sources, and combined exposure risks of PAEs. The results showed that the total concentration of 22 PAEs (Æ©22PAEs) presented surface dust (4.94 × 104 ng/g) â‰« dustfall (1.56 × 104 ng/g) â‰« food (2.14 × 103 ng/g) â‰« urban soil (533 ng/g). Di-n-butyl phthalate (DNBP), di-isobutyl phthalate, di(2-ethylhexyl) phthalate (DEHP), and di-isononyl phthalate/di-isodecyl phthalate were predominant in the environmental media and commercial food, being controlled by priority (52.1%-65.5%) and non-priority (62.1%) PAEs, respectively. Elevated Æ©22PAEs in the urban soil and surface dust was found in the west, middle, and east of Lanzhou. Principal component analysis indicated that PAEs the urban soil and surface dust were related with the emissions of products containing PAEs, atmosphere depositions, and traffic and industrial emissions. PAEs in the foods were associated with the growth and processing environment. The health risk assessment of United States Environmental Protection Agency based on the Chinese population exposure parameters indicated that the total exposure dose of 22 PAEs was from 0.111 to 0.226 mg/kg/day, which were above the reference dose (0.02 mg/kg/day) and tolerable daily intake (TDI, 0.05 mg/kg/day) for DEHP (0.0333-0.0631 mg/kg/day), and TDI (0.01 mg/kg/day) for DNBP (0.0213-0.0405 mg/kg/day), implying that the exposure of PAEs via multi-media should not be ignored; the total non-carcinogenic risk of six priority PAEs was below 1 for the three environmental media (1.21 × 10-5-2.90 × 10-3), while close to 1 for food (4.74 × 10-1-8.76 × 10-1), suggesting a potential non-carcinogenic risk of human exposure to PAEs in food; the total carcinogenic risk of BBP and DEHP was below 1 × 10-6 for the three environmental media (9.13 × 10-10-5.72 × 10-7), while above 1 × 10-4 for DEHP in food (1.02 × 10-4), suggesting a significantly carcinogenic risk of human exposure to DEHP in food. The current research results can provide certain supports for pollution and risk prevention of PAEs.


Subject(s)
Dust , Environmental Monitoring , Esters , Phthalic Acids , Soil Pollutants , Soil , Phthalic Acids/analysis , China , Dust/analysis , Soil/chemistry , Soil Pollutants/analysis , Esters/analysis , Cities , Humans , Air Pollutants/analysis , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Food Contamination/analysis , Food Contamination/statistics & numerical data
10.
J Hazard Mater ; 473: 134632, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38781852

ABSTRACT

Recent increases in organophosphate ester (OPE) application have led to their widespread presence, yet little is known about their temporal trends in food. This study collected milk samples from 13 countries across three continents during 2020-2023, finding detectable OPEs in all samples (range: 2.25-19.7; median: 7.06 ng/g ww). Although no statistical temporal differences were found for the total OPEs during the 4-year sampling campaign, it was interesting to observe significant variations in the decreasing trend for Cl-OPEs and concentration variations for aryl-OPEs and alkyl-OPEs (p < 0.05), indicating changing OPE use patterns. Packaged milk exhibited significant higher OPE levels than those found in directly collected raw unpackaged milk, and milk with longer shelf-life showed higher OPE levels, revealing packaging material as a contamination source. No significant geographical differences were observed in milk across countries (p > 0.05), but Shandong Province, a major OPE production site in China, showed relatively higher OPE concentrations. The Monte Carlo simulation of estimated daily intakes indicated no exposure risk from OPEs through milk consumption. The molecular docking method was used to assess human hormone binding affinity with OPEs, amongst which aryl-OPEs had the highest binding energies. The Toxicological-Priority-Index method which integrated chemical property, detection frequency, risk quotients, hazardous quotients and endocrine-disrupting effects was employed to prioritize OPEs. Aryl-OPEs showed the highest scores, deserving attention in the future.


Subject(s)
Food Contamination , Milk , Milk/chemistry , Animals , Humans , Food Contamination/analysis , Esters/analysis , Organophosphates/analysis , Molecular Docking Simulation
11.
Chemosphere ; 360: 142406, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782132

ABSTRACT

Organophosphate esters (OPEs) are extensively used as additives in various products, including electronic equipment, which becomes e-waste when obsolete. Nevertheless, no study has evaluated OPEs exposure levels and the related health risks among e-waste workers in Hong Kong. Therefore, 201 first-spot morning urine samples were collected from 101 e-waste workers and 100 office workers to compare eight urinary OPE metabolites (mOPEs) levels in these groups. The concentrations of six mOPEs were similar in e-waste workers and office workers, except for significantly higher levels of diphenyl phosphate (DPHP) in e-waste workers and bis(1-chloro-2propyl) phosphate (BCIPP) in office workers. Spearman correlation analysis showed that most non-chlorinated mOPEs were correlated with each other in e-waste workers (i.e., nine out of ten pairs, including di-p-cresyl phosphate (DpCP) and di-o-cresyl phosphate (DoCP), DpCP and bis(2-butoxyethyl) phosphate (BBOEP), DpCP and DPHP, DpCP and dibutyl phosphate (DBP), DoCP and BBOEP, DoCP and DPHP, DoCP and DBP, BBOEP and DPHP, DPHP and DBP), indicating that handling e-waste could be the exposure source of specific OPEs. The median values of estimated daily intake (EDI) and hazard quotient (HQ) suggested that the health risks from OPEs exposures were under the recommended thresholds. However, linear regression models, Quantile g-computation, and Bayesian kernel machine regression found that urinary mOPEs elevated 8-hydroxy-2-deoxyguanosine (8-OhdG) levels individually or as a mixture, in which DPHP contributed prominently. In conclusion, although e-waste might not elevate the internal OPEs levels among the participating Hong Kong e-waste workers, attention should be paid to the potential DNA damage stimulated by OPEs under the currently recommended thresholds.


Subject(s)
DNA Damage , Electronic Waste , Occupational Exposure , Organophosphates , Humans , Hong Kong , Organophosphates/urine , Organophosphates/analysis , Risk Assessment , Occupational Exposure/analysis , Adult , Male , Middle Aged , Esters/analysis , Female , Young Adult
12.
Sci Rep ; 14(1): 7944, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575598

ABSTRACT

In recent years, the presence and migration of PAEs in packaging materials and consumer products has become a serious concern. Based on this concern, the aim of our study is to determine the possible migration potential and speed of PAEs in benthic fish stored in vacuum packaging, as well as to monitor the storage time and type as well as polyethylene (PE) polymer detection.As a result of the analysis performed by µ-Raman spectroscopy, 1 microplastic (MP) of 6 µm in size was determined on the 30th day of storage in whiting fish muscle and the polymer type was found to be Polyethylene (PE) (low density polyethylene: LDPE). Depending on the storage time of the packaging used in the vacuum packaging process, it has been determined that its chemical composition is affected by temperature and different types of polymers are formed. 10 types of PAEs were identified in the packaging material and stored flesh fish: DIBP, DBP, DPENP, DHEXP, BBP, DEHP, DCHP, DNOP, DINP and DDP. While the most dominant PAEs in the packaging material were determined as DEHP, the most dominant PAEs in fish meat were recorded as BBP and the lowest as DMP. The findings provide a motivating model for monitoring the presence and migration of PAEs in foods, while filling an important gap in maintaining a safe food chain.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Animals , Diethylhexyl Phthalate/analysis , Plastics , Vacuum , Phthalic Acids/chemistry , Polyethylene/analysis , Polymers , Dibutyl Phthalate , Esters/analysis , China
13.
Riv Psichiatr ; 59(2): 52-59, 2024.
Article in English | MEDLINE | ID: mdl-38651773

ABSTRACT

INTRODUCTION: Prenatal alcohol exposure causes a variety of impairments to the fetus called Fetal Alcohol Spectrum Disorders (FASD). Since it is very difficult to identify women that consume alcohol during pregnancy, different methods have been studied to evaluate alcohol exposure. Ethyl Glucuronide (EtG) and Fatty Acid Ethyl Esters (FAEEs) are commonly used to measure alcohol consumption in individuals at-risk for alcohol abuse, including pregnant women. MATERIALS AND METHODS: We conducted a study of two cohorts of 1.5 year-old infants (of mothers without a history of alcohol abuse) with or without meconium samples positive to both EtG and FAEEs and we evaluated their cognitive-behavioral development by the Griffiths Mental Developmental Scale (GMDS) method. Our protocol included 8 infants with meconium positive to alcohol metabolites (EtG and FAEEs) and 7 with meconium negative to alcohol metabolites. RESULTS: None of the 8 alcohol metabolites positive meconium infants exhibited distinctive facial features and growth retardation of severe FASD, showing that other factors may contribute to the FASD onset but elevations in EtG and FAEEs in the meconium were significantly associated with disrupted neurodevelopment and adaptive functions within the first year and a half of life. Indeed, we found out that infants with meconium positive for both EtG and FAEEs, although without displaying any FASD morphological features, had a delay in the fine regulation of their own locomotory capabilities. CONCLUSIONS: Further analyses and larger studies are needed to estimate the right link between prenatal alcohol exposure and the different range of disorders connected but this study provides an additional step in the field of FASD in order to suggest early treatments for at-risk newborns and infants.


Subject(s)
Biomarkers , Fetal Alcohol Spectrum Disorders , Glucuronates , Meconium , Humans , Meconium/chemistry , Meconium/metabolism , Pilot Projects , Female , Fetal Alcohol Spectrum Disorders/metabolism , Biomarkers/metabolism , Glucuronates/analysis , Infant , Male , Pregnancy , Prenatal Exposure Delayed Effects , Fatty Acids/metabolism , Fatty Acids/analysis , Alcohol Drinking/adverse effects , Infant, Newborn , Locomotion , Esters/analysis , Child Development
14.
Sci Total Environ ; 927: 172212, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38580121

ABSTRACT

Organophosphate esters (OPEs) have garnered significant attention in recent years. In view of the enormous ecosystem services value and severe degradation of coral reefs in the South China Sea, this study investigated the occurrence, distribution, and bioaccumulation of 11 OPEs in five coral regions: Daya Bay (DY), Weizhou Island (WZ), Sanya Luhuitou (LHT), Xisha (XS) Islands, and Nansha (NS) Islands. Although OPEs were detected at a high rate, their concentration in South China Sea seawater (1.56 ± 0.89 ng L-1) remained relatively low compared to global levels. All OPEs were identified in coral tissues, with Luhuitou (575 ± 242 ng g-1 dw) showing the highest pollution levels, attributed to intense human activities. Coral mucus, acting as a defense against environmental stresses, accumulated higher ∑11OPEs (414 ± 461 ng g-1 dw) than coral tissues (412 ± 197 ng g-1 dw) (nonparametric test, p < 0.05), and their compositional characteristics varied greatly. In the case of harsh aquatic environments, corals increase mucus secretion and then accumulate organic pollutants. Tissue-mucus partitioning varied among coral species. Most OPEs were found to be bioaccumulative (BAFs >5000 L kg-1) in a few coral tissue samples besides Triphenyl phosphate (TPHP). Mucus' role in the bioaccumulation of OPEs in coral shouldn't be ignored.


Subject(s)
Anthozoa , Environmental Monitoring , Esters , Organophosphates , Water Pollutants, Chemical , Animals , China , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Organophosphates/analysis , Organophosphates/metabolism , Esters/analysis , Bioaccumulation , Seawater/chemistry , Coral Reefs
15.
Chemosphere ; 357: 142041, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636919

ABSTRACT

Phthalate esters (PAEs) are widely prevalent in agricultural soil and pose potential risks to crop growth and food safety. However, the current understanding of factors influencing the behavior and fate of PAEs is limited. This study conducted a large-scale investigation (106 sites in 18 counties with 44 crop types) of 16 types of PAEs on a tropical island. Special attention was given to the impacts of land use type, soil environmental conditions, agricultural activity intensity, and urbanization level. The health risks to adults and children from soil PAEs via multiple routes of exposure were also evaluated. The results showed that the mean concentration of PAEs was 451.87 ± 284.08 µg kg-1 in the agricultural soil. Elevated agricultural and urbanization activities contributed to more pronounced contamination by PAEs in the northern and southern regions. Land use type strongly affected the concentration and composition of PAEs in agricultural soils, and the soil PAE concentration decreased in the order of vegetable fields, orchards, paddy fields, and woodlands. In paddy fields, di-isobutyl phthalate and di-n-butyl phthalate made more substantial contributions to the process through which the overlying water inhibited volatilization. Soil microplastic abundance, pesticide usage, crop yield, gross domestic product, and distance to the nearest city were calculated to be the major factors influencing the concentration and distribution of PAEs. Soil pH, organic matter content, microplastic abundance and the fertilizer application rate can affect the adsorption of PAEs by changing the soil environment. A greater risk was detected in the northern region and paddy fields due to the higher soil PAE concentrations and the dietary structure of the population. This study reveals important pathways influencing the sources and fate of PAE pollution in agricultural soils, providing fundamental data for controlling PAE contamination.


Subject(s)
Agriculture , Environmental Monitoring , Phthalic Acids , Soil Pollutants , Soil , Soil Pollutants/analysis , Phthalic Acids/analysis , Soil/chemistry , Risk Assessment , Esters/analysis , Humans , Islands
16.
J Hazard Mater ; 471: 134423, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678719

ABSTRACT

Phthalate esters (PAEs) are a class of plasticizers that are readily released from plastic products, posing a potential exposure risk to human body. At present, much attention is paid on PAE concentrations in indoor dust with the understanding of PAEs toxicity. This study collected 8187 data on 10 PAEs concentrations in indoor dusts from 26 countries and comprehensively reviewed the worldwide distribution, influencing factors, and health risks of PAEs. Di-(2-ethylhexyl) phthalate (DEHP) is the predominant PAE with a median concentration of 316 µg·g-1 in indoor dust. Polyvinyl chloride wallpaper and flooring and personal care products are the main sources of PAEs indoor dust. The dust concentrations of DEHP show a downward trend over the past two decades, while high dust concentrations of DiNP are found from 2011 to 2016. The median dust contents of 8 PAEs in public places are higher than those in households. Moreover, the concentrations of 9 PAEs in indoor dusts from high-income countries are higher than those from upper-middle-income countries. DEHP in 69.8% and 77.8% of the dust samples may pose a potential carcinogenic risk for adults and children, respectively. Besides, DEHP in 16.9% of the dust samples may pose a non-carcinogenic risk to children. Nevertheless, a negligible risk was found for other PAEs in indoor dust worldwide. This review contributes to an in-depth understanding of the global distribution, sources and health risks of PAEs in indoor dust.


Subject(s)
Air Pollution, Indoor , Dust , Esters , Phthalic Acids , Plasticizers , Dust/analysis , Air Pollution, Indoor/analysis , Phthalic Acids/analysis , Phthalic Acids/toxicity , Humans , Esters/analysis , Plasticizers/analysis , Plasticizers/toxicity , Risk Assessment , Environmental Exposure/analysis , Air Pollutants/analysis
17.
Sci Total Environ ; 931: 172833, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38688369

ABSTRACT

Phthalates acid esters (PAEs) have accumulated in soil and crops like wheat as a result of the widespread usage of plastic films. It is yet unclear, nevertheless, how these dynamic variations in PAE accumulation in wheat tissues relate to rhizosphere bacteria in the field. In this work, a field root-bag experiment was conducted to examine the changes of PAEs accumulation in the rhizosphere soil and wheat tissues under film residue conditions at four different growth stages of wheat, and to clarify the roles played by the microbial community in the alterations. Results showed that the plastic film residues significantly increased the concentrations of PAEs in soils, wheat roots, straw and grains. The maximum ΣPAEs concentration in soils and different wheat tissues appeared at the maturity, with the ΣPAEs concentration of 1.57 mg kg-1, 4.77 mg kg-1, 5.21 mg kg-1, 1.81 mg kg-1 for rhizosphere soils, wheat roots, straw and grains, respectively. The plastic film residues significantly changed the functions and components of the bacterial community, increased the stochastic processes of the bacterial community assembly, and reduced the complexity and stability of the bacterial network. In addition, the present study identified some bacteria associated with plastic film residues and PAEs degradation in key-stone taxa, and their relative abundances were positive related to the ΣPAEs concentration in soils. The PAEs content and key-stone taxa in rhizosphere soil play a crucial role in the formation of rhizosphere soil bacterial communities. This field study provides valuable information for better understanding the role of microorganisms in the complex system consisting of film residue, soil and crops.


Subject(s)
Phthalic Acids , Rhizosphere , Soil Microbiology , Soil Pollutants , Triticum , Triticum/microbiology , Soil Pollutants/analysis , Soil Pollutants/metabolism , Phthalic Acids/metabolism , Plastics/metabolism , Esters/analysis , Esters/metabolism , Bacteria/metabolism , Soil/chemistry , Microbiota , Plant Roots/microbiology , Plant Roots/metabolism
18.
Sci Total Environ ; 929: 172762, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670350

ABSTRACT

Organophosphate esters (OPEs) are a class of emerging and ubiquitous contaminants that are attracting increasing attention, and their large-scale use as flame retardants and plasticizers has led to their pervasive presence in the environment, although their broader impacts remain unknown. In this study, 11 OPEs were measured in the atmosphere of Southeast Asia and Southwest China during 2016. The ∑11OPEs were higher in this region (78.0-1670 pg/m3, mean 458 pg/m3) than in many remote areas, lower than in developed regions, and comparable to levels in many developing country cities. Generally, the ∑11OPEs were higher in urban (105-1670 pg/m3, mean 538 pg/m3) than in suburban (78.0-1350 pg/m3, mean 388 pg/m3). Seasonal variations of OPEs in the air were more pronounced in Cambodia and Laos, especially for Triphenyl Phosphate (TPHP). Seasonal variations of ∑11OPEs in most regions correspond to changes in temperature and rainfall. Biomass burning may be also a factor in facilitating OPE emissions from biomass materials or soil into the atmosphere of Southeast Asia. The random forest analysis showed that among these, rainfall had the greatest effect on the seasonal variation of atmospheric OPE concentrations, followed by biomass burning and temperature. The inter-regional variation of ∑11OPEs in Southeast Asia was related to population and economic development in each region. Airflow trajectories indicated that the OPEs in this region were mainly from local sources. The health risk assessment revealed that the inhalation exposure risks of OPEs to the residents in the study areas were very low during the sampling period, but may be increasing.


Subject(s)
Air Pollutants , Environmental Monitoring , Esters , Organophosphates , China , Air Pollutants/analysis , Organophosphates/analysis , Esters/analysis , Flame Retardants/analysis , Seasons , India , Atmosphere/chemistry , Air Pollution/statistics & numerical data
19.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38565314

ABSTRACT

AIMS: Ethyl hexanoate, one of the key flavor compounds in strong-flavor Baijiu. To improve the content of ethyl hexanoate in strong-flavor Baijiu, a functional strain with high yield of ethyl hexanoate was screened and its ester-producing performance was studied. METHODS AND RESULTS: Upon identification, the strain was classified as Candida sp. and designated as ZY002. Under optimal fermentation conditions, the content of ethyl hexanoate synthesized by ZY002 can be as high as 170.56 mg L-1. A fermentation test was carried out using the ZY002 strain bioaugmented Daqu to verify the role of the strain applied to Baijiu brewing. It was found that strain ZY002 could not only improve the moisture and alcohol contents of fermented grains but also diminish the presence of reducing sugar and crude starch. Furthermore, it notably amplified the abundance of flavor compounds. CONCLUSION: In this study, Candida sp. ZY002 with a high yield of ethyl hexanoate provided high-quality strain resources for the actual industrial production of Baijiu.


Subject(s)
Candida , Caproates , Esters , Fermentation , Fermented Foods , Caproates/metabolism , Esters/metabolism , Esters/analysis , Fermented Foods/microbiology , Fermented Foods/analysis , Candida/metabolism , Flavoring Agents/metabolism , Food Microbiology , Alcoholic Beverages/microbiology , Alcoholic Beverages/analysis
20.
Chemosphere ; 356: 141874, 2024 May.
Article in English | MEDLINE | ID: mdl-38575079

ABSTRACT

Organophosphate esters (OPEs) have received considerable attention in environmental research due to their extensive production, wide-ranging applications, prevalent presence, potential for bioaccumulation, and associated ecological and health concerns. Low efficiency of OPE removal results in the effluents of wastewater treatment plants emerging as a significant contributor to OPE contamination. Their notable solubility and mobility give OPEs the potential to be transported to coastal ecosystems via river discharge and atmospheric deposition. Previous research has indicated that OPEs have been widely detected in the atmosphere and water bodies. Atmospheric deposition across air-water exchange is the main input route for OPEs into the environment and ecosystems. The main processes that contribute to air-water exchange is air-water diffusion, dry deposition, wet deposition, and the air-water volatilization process. The present minireview links together the source, occurrence, and exchange of OPEs in water and air, integrates the occurrence and profile data, and summarizes their air-water exchange in the environment.


Subject(s)
Environmental Monitoring , Esters , Organophosphates , Water Pollutants, Chemical , Esters/analysis , Organophosphates/analysis , Water Pollutants, Chemical/analysis , Air Pollutants/analysis , Air/analysis , Water/chemistry , Wastewater/chemistry , Atmosphere/chemistry , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...