Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 944
Filter
1.
J Hazard Mater ; 472: 134561, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38733784

ABSTRACT

Steroid estrogens (SEs) have garnered global attention because of their potential hazards to human health and aquatic organisms at low concentrations (ng/L). The ecosystems of plateau freshwater lakes are fragile, the water lag time is long, and pollutants easily accumulate, making them more vulnerable to the impact of SEs. However, the knowledge of the impact of SEs on the growth and decomposition of phytoplankton communities in plateau lakes and the eutrophication process is limited. This study investigated the effects and mechanisms of SEs exposure on dominant algal communities and the expression of typical algal functional genes in Erhai Lake using indoor simulations and molecular biological methods. The results showed that phytoplankton were sensitive to 17ß-estradiol (E2ß) pollution, with a concentration of 50, and 100 ng/L E2ß exposure promoting the growth of cyanophyta and chlorophyta in the short term; this poses an ecological risk of inducing algal blooms. E2ß of 1000 ng/L exposure led to cross-effects of estrogenic effects and toxicity, with most phytoplankton being inhibited. However, small filamentous cyanobacteria and diatoms exhibited greater tolerance; Melosira sp. even exhibited "low inhibition, high promotion" behavior. Exposure to E2ß reduced the Shannon-Wiener diversity index (H'), Pielou index (J), and the number of dominant algal species (S) in phytoplankton communities, leading to instability in community succession. E2ß of 50 ng/L enhanced the expression levels of relevant functional genes, such as ftsH, psaB, atpB, and prx, related to Microcystis aeruginosa. E2ß of 50 ng/L and 5 mg/L can promote the transcription of Microcystis toxins (MC) related genes (mcyA), leading to more MC production by algal cells.


Subject(s)
Estradiol , Eutrophication , Lakes , Phytoplankton , Water Pollutants, Chemical , Phytoplankton/drug effects , Phytoplankton/genetics , Estradiol/toxicity , Water Pollutants, Chemical/toxicity , Diatoms/drug effects , Diatoms/genetics , Diatoms/metabolism , Diatoms/growth & development , Cyanobacteria/genetics , Cyanobacteria/metabolism , Cyanobacteria/drug effects , Chlorophyta/drug effects , Chlorophyta/genetics , Chlorophyta/growth & development , Chlorophyta/metabolism
2.
Ecotoxicol Environ Saf ; 277: 116348, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38669872

ABSTRACT

Alkylphenols, such as nonylphenol and 4-tert-octylphenol (OP), are byproducts of the biodegradation of alkylphenol ethoxylates and present substantial ecological and health risks in aquatic environments and higher life forms. In this context, our study aimed to explore the effect of OP on reproductive endocrine function in both female and male zebrafish. Over a period of 21 days, the zebrafish were subjected to varying concentrations of OP (0, 0.02, 0.1, and 0.5 µg/L), based on the lowest effective concentration (EC10 = 0.48 µg/L) identified for zebrafish embryos. OP exposure led to a pronounced increase in hepatic vitellogenin (vtg) mRNA expression and 17ß-estradiol biosynthesis in both sexes. Conversely, OP exhibits anti-androgenic properties, significantly diminishes gonadal androgen receptor (ar) mRNA expression, and reduces endogenous androgen (testosterone and 11-ketotestosterone) levels in male zebrafish. Notably, cortisol and thyroid hormone (TH) levels demonstrated concentration-dependent elevations in zebrafish, influencing the regulation of gonadal steroid hormones (GSHs). These findings suggest that prolonged OP exposure may result in sustained reproductive dysfunction in adult zebrafish, which is largely attributable to the intricate reciprocal relationship between hormone levels and the associated gene expression. Our comprehensive biological response analysis of adult zebrafish offers vital insights into the reproductive toxicological effects of OP, thereby enriching future ecological studies on aquatic systems.


Subject(s)
Endocrine Disruptors , Estrogens , Phenols , Receptors, Androgen , Thyroid Hormones , Vitellogenins , Water Pollutants, Chemical , Zebrafish , Animals , Phenols/toxicity , Male , Water Pollutants, Chemical/toxicity , Female , Vitellogenins/metabolism , Endocrine Disruptors/toxicity , Thyroid Hormones/metabolism , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Estrogens/toxicity , Estradiol/toxicity , Androgen Antagonists/toxicity , Testosterone/metabolism , Testosterone/analogs & derivatives , Hydrocortisone
3.
Environ Pollut ; 347: 123723, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38452838

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women of childbearing age, with an incidence of 5-10%. This study compared the traits of zebrafish with three diagnostic criteria for human PCOS, and the diagnostic criteria for zebrafish PCOS were proposed: decreased fecundity, elevated testosterone (T) or 11-ketotestosterone (11-KT) levels and increased cortical-alveolar oocyte (CO) ratio, enhancing the zebrafish PCOS model's accuracy. According to the mammalian PCOS classification, the type of zebrafsh PCOS is divided into four phenotypes (A, B, C and D), but the four phenotypes of zebrafish PCOS are not fully covered in the existing studies (A and D). In this study, we successfully induced phenotype B zebrafish PCOS model using the aromatase inhibitor, letrozole (LET). That is, wild-type female zebrafish were exposed to 1000 µg/L LET for 30 days. Reproductive tests showed decreased fecundity in female zebrafish exposed to LET (Control: 132.63, 146.00, 173.00; LET: 29.20, 90.00, 82.71). Hormone analysis showed that female zebrafish exposed to LET had significantly lower 17ß-estradiol/testosterone (E2/T) ratios, indicating elevated T levels. Meanwhile, levels of 11-KT in the ovaries exposed to LET were significantly up-regulated (Control: 0.0076 pg/µg; LET: 0.0138 pg/µg). Pathological sections of the ovary showed fewer CO in the LET-exposed group (Control: 16.27%; LET: 8.38%). In summary, the zebrafish PCOS model summarized and studied in this study provide a reliable and economical tool for the screening of therapeutic drugs, as well as for the etiology research and treatment strategies of PCOS.


Subject(s)
Polycystic Ovary Syndrome , Animals , Female , Humans , Letrozole/toxicity , Letrozole/therapeutic use , Polycystic Ovary Syndrome/chemically induced , Zebrafish , Hypothalamic-Pituitary-Gonadal Axis , Estradiol/toxicity , Testosterone , Mammals
4.
Chemosphere ; 341: 140015, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37657694

ABSTRACT

Some freshwater phytoplankton species have been suggested to produce estrogenic compounds in concentrations which could cause adverse effects to aquatic biota, while other studies showed no estrogenic effects after exposure to phytoplankton extracts or pointed out possible sources of the overestimation of the estrogenic activity. This study aimed to clarify these research inconsistencies by investigating estrogenicity of biomass extracts from both environmental freshwater blooms and laboratory cyanobacterial and algae cultures by in vitro reporter bioassay. Biomasses of 8 cyanobacterial and 3 algal species from 7 taxonomic orders were extracted and tested. Next to this, samples of environmental water blooms collected from 8 independent water bodies dominated by phytoplankton species previously assessed as laboratory cultures were tested. The results showed undetectable or low estrogenicity of both freshwater blooms and laboratory cultures with E2 equivalent concentration (EEQ) in a range from LOQ up to 4.5 ng EEQ/g of dry mass. Moreover, the co-exposure of biomass extracts with environmentally relevant concentration of model estrogen (steroid hormone 17ß-estradiol; E2), commonly occurring in surface waters, showed simple additive interaction. However, some of the biomass extracts elicited partially anti-estrogenic effects in co-exposure with higher E2 concentration. In conclusion, our study documents undetectable or relatively low estrogenic potential of biomass extracts from both environmental freshwater blooms and studied laboratory cultured cyanobacterial and algae species. Nevertheless, in case of very high-density water blooms, even this low estrogenicity (detected for two cyanobacterial species) could lead to EEQ content in biomass reaching effect-based trigger values indicating potential risk, if recalculated per water volume at field sites. However, these levels would not occur in water under realistic environmental scenarios and the potential estrogenic effects would be most probably minor compared to other toxic effects caused by massive freshwater blooms of such high densities.


Subject(s)
Cyanobacteria , Estrogens , Estrogens/toxicity , Estrogens/analysis , Water , Estradiol/toxicity , Phytoplankton , Estrone
5.
Lasers Med Sci ; 38(1): 177, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37544939

ABSTRACT

The main objective of this in vivo study was to investigate the effect of different low-level laser therapy (LLLT) doses on polycystic ovary syndrome (PCOS). In the present experimental study, a single dosage of estradiol valerate (EV) was administered to induce PCOS in female rats. After administration of the EV for induction of PCOS, rats were divided into 5 groups (n = 8/group): C group (animals that were not exposed to any form of procedure), PC group (no treatment following EV induction), L1 group (1 J/cm2 LLLT treatment following EV induction), L2 group (2 J/cm2 LLLT treatment following EV induction), L3 group (6 J/cm2 LLLT treatment following EV induction). The results indicated that no significant difference was found in the serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and progesterone (P4) between the C and L2 groups (p < 0.05). Although the serum levels of testosterone (T) were significantly higher in the C group compared with other groups (p < 0.05), the L2 group was determined to be the closest to the C group. Additionally, the LH, FSH, and T receptor level of the L2 group was closest to the C group. In conclusion, a 2 J/cm2 dosage of LLLT (L2 group) can be considered the most potentially effective treatment of PCOS in the rat. However, more studies are needed to determine the optimal dose of LLLT for the treatment of PCOS.


Subject(s)
Low-Level Light Therapy , Polycystic Ovary Syndrome , Animals , Female , Rats , Estradiol/toxicity , Follicle Stimulating Hormone , Luteinizing Hormone , Polycystic Ovary Syndrome/radiotherapy , Testosterone
6.
Toxicol Lett ; 378: 31-38, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36863540

ABSTRACT

It was previously identified that there may be an active metabolite of bisphenol A (BPA), 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP). An in vitro system was developed to detect MBP toxicity to the Michigan Cancer Foundation-7 (MCF-7) cells that had been repeatedly exposed to a low dose of the metabolite. MBP profoundly activated estrogen receptor (ER)-dependent transcription as a ligand, with an EC50 of 2.8 nM. Women are continuously exposed to numerous estrogenic environmental chemicals; but their susceptibility to these chemicals may be significantly altered after menopause. Long-term estrogen-deprived (LTED) cells, which display ligand-independent ER activation, are a postmenopausal breast cancer model derived from MCF-7 cells. In this study, we investigated the estrogenic effects of MBP on LTED cells in a repeated exposure in vitro model. The results suggest that i) nanomolar levels of MBP reciprocally disrupt the balanced expression of ERα and ERß proteins, leading to the dominant expression of ERß, ii) MBP stimulates ERs-mediated transcription without acting as an ERß ligand, and iii) MBP utilizes mitogen-activated protein kinase and phosphatidylinositol-3 kinase signaling to evoke its estrogenic action. Moreover, the repeated exposure strategy was effective for detecting low-dose estrogenic-like effects caused by MBP in LTED cells.


Subject(s)
Breast Neoplasms , Receptors, Estrogen , Humans , Female , Receptors, Estrogen/genetics , Estradiol/toxicity , MCF-7 Cells , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Ligands , Estrogens , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism
7.
J Hazard Mater ; 446: 130700, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36592560

ABSTRACT

Marine plastic pollution has garnered substantial attention, but the potential endocrine disrupting effects of plastic leachates in marine organisms remain unclear. In this study, the larvae of marine medaka (Oryzias melastigma) were exposed to the leachates from virgin and aged plastics soaked in simulated seawater and fish digest for 3 days. The concentrations of vitellogenin (VTG), estradiol (E2), and 11-ketotestosterone (11-KT), as well as the transcripts of endocrine-related genes were measured in the larvae. The results revealed that endogenous E2 was more sensitive to plastic leachates than VTG and 11-KT, which was significantly affected by 26.7 % of all plastic leachates. Among all genes, estrogen receptor α was impacted mostly, being up-regulated by 53.3 % of leachates from aged plastics. The comparative results demonstrated that the leachates from plastics with different statuses caused a greater difference than those from plastics in different simulated media, and the leachates from aged plastics resulted in higher endocrine disrupting effects than those from virgin plastics. In addition, seven leached additives (plasticizers and flame retardants) could explain 25.6 % of the hormonal effects using redundancy analysis, indicating that other additives in the plastic leachates can also play important roles in regulating the endocrine system of O. melastigma larvae.


Subject(s)
Oryzias , Water Pollutants, Chemical , Animals , Plastics/toxicity , Oryzias/genetics , Larva , Estradiol/toxicity , Estradiol/analysis , Endocrine System , Vitellogenins/genetics , Water Pollutants, Chemical/analysis
8.
Toxicology ; 484: 153394, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36521576

ABSTRACT

Perinatal and neonatal exposure to bisphenol A (BPA) has been linked to enhancement of prostate carcinogenesis in rats induced by combined treatment with estradiol and testosterone, but human data are lacking. This study aimed to determine the effects of perinatal BPA exposure on induction of prostate cancer in rats by sequential treatment with N-methyl-N-nitrosamine (MNU) and continuous low dose administration of testosterone. Pregnant Sprague Dawley rats were exposed to BPA administered by subcutaneous Alzet minipumps at doses of 2.5 or 25 µg/kg body weight/day from gestational day 9 until postnatal day 28 when pups were weaned providing exposure of offspring in utero and via the mother's milk. At 10-12 weeks of age, one male offspring per litter was treated with an intraperitoneal injection of MNU after hormonal stimulation of prostatic cell proliferation followed two weeks later by subcutaneous insertion of Silastic implants containing testosterone until the termination of the study 57-58 weeks after MNU injection. The perinatal BPA exposure did not significantly affect the incidence of prostate carcinomas which was slightly lower in exposed rats (33-23 %) than in control animals (40 %). Carcinomas in all accessory sex glands combined were also insignificantly less frequent in exposed (46-48 %) than in control rats (60 %). The incidence of malignant tumors at any site in the body was significantly lower in exposed rats (81-65 %) than in controls (93 %). In conclusion, perinatal BPA exposure did not significantly modify prostate cancer induction by MNU plus testosterone in rats, unlike the enhancement of prostate carcinogenesis induced by treatments involving estradiol administration. Which of the two models of prostate carcinogenesis is more relevant for the human situation is unclear at present.


Subject(s)
Carcinoma , Prostatic Neoplasms , Pregnancy , Humans , Rats , Male , Animals , Infant, Newborn , Testosterone , Rats, Sprague-Dawley , Methylnitrosourea/toxicity , Prostatic Neoplasms/chemically induced , Prostatic Neoplasms/pathology , Benzhydryl Compounds/toxicity , Estradiol/toxicity , Carcinogenesis
9.
Chemosphere ; 313: 137201, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36379430

ABSTRACT

Glyphosate, the active ingredient in several broad-spectrum herbicide formulations, has been validated and widely used throughout the world. Recent reports have questioned its safety, showing that glyphosate may act as an endocrine disruptor by promoting estrogenic activity. However, the molecular mechanism involved in this phenomenon remains unclear. Therefore, here we aimed to elucidate the mechanism by which glyphosate induces estrogenic activity using estrogen-sensitive breast cancer cell line models. Our results show that glyphosate mimics the cell effects of 17ß-estradiol (E2), promoting estrogen receptor α (ERα) phosphorylation, its degradation, and transcriptional activity at high concentrations. The molecular mechanism seems involved in the ERα ligand-binding domain (LBD). Molecular simulations suggest a plausible interaction between glyphosate and the LBD through a coordinated complex involving divalent cations such as Zn (II). In addition, glyphosate exposure alters the level of Cyclin-dependent kinase 7 that contribute to ERα phosphorylation. Finally, glyphosate increases cell proliferation rate and levels of cell cycle regulators, accompanied by an increase in anchorage-independent growth capacity. These findings suggest that glyphosate at high concentrations, induces estrogen-like effects through an ERα ligand binding site-dependent mechanism, leading to cellular responses resulting from a complex interplay of genomic and non-genomic events.


Subject(s)
Breast Neoplasms , Estrogen Receptor alpha , Female , Humans , Cell Line, Tumor , Estradiol/toxicity , Estradiol/metabolism , Estrogen Receptor alpha/metabolism , Estrogens , Estrone , Ligands , MCF-7 Cells , Glyphosate
10.
J Environ Sci (China) ; 117: 10-20, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35725062

ABSTRACT

2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ), an emerging water disinfection by-product, is widely detected in water resources. However, its potential effects on the reproductive system are largely unknown. Here, we investigated the long-term effects of 2,6-DCBQ on gonadal development by exposing zebrafish from 15 to 180 days postfertilization (dpf). Following exposure to 2,6-DCBQ (20 and 100 µg/L), female-specific effects including delayed puberty onset, retarded ovarian growth and breakdown of the zona radiata were observed, resulting in subfertility in adult females. Adverse effects in folliculogenesis disappeared two months after cessation of 2,6-DCBQ administration. In contrast, no adverse impacts were noted in male testes. The effects on females were associated with significant reduction in 17ß-estradiol (E2) level, suggesting a role for 2,6-DCBQ in anti-estrogenic activity. E2 level change in blood was further supported by dysregulated expression of genes (cyp19a1a, fshb, kiss3, esr2b, vtg1, and vtg3) related to the hypothalamic-pituitary-gonad-liver (HPGL) axis. The present study demonstrates for the first time that 2,6-DCBQ induces reproductive impairments in female zebrafish through disrupting 17ß-estradiol level.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Benzoquinones , Endocrine Disruptors/metabolism , Endocrine Disruptors/toxicity , Estradiol/toxicity , Estrogen Receptor Modulators/metabolism , Female , Male , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
11.
Environ Sci Pollut Res Int ; 29(36): 54273-54281, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35301625

ABSTRACT

Endometrial hyperplasia (EH) is a complex condition that commonly affects women after menopause. Since the current available treatments for EH are mainly invasive, there is a need for developing new treatment modalities. Chrysin (Ch) is a dihydroxyflavone with numerous promising therapeutic potentials. In this study, Ch's protective effects on estradiol (E2)-induced EH were studied in rats. Animals were allocated randomly to five groups and were treated for 4 weeks as follows: Group 1, control: received the vehicle; group 2, Ch: received Ch 25 mg/kg; group 3, estradiol (E2): received E2 (3 mg/kg) 3 × weekly subcutaneously and the vehicle. Group 4, E2 + Ch 10 mg/kg and group 5, E2 + Ch 25 mg/kg: Ch was given once daily at 10 mg/kg or 25 mg/kg, respectively. In addition, E2 was administered 3 × weekly (3 mg/kg) in groups 4 and 5. Ch inhibited the E2-induced increase in uterine weights and histopathological changes. Ch lowered the cyclin D1 expression. Ch raised the caspase-3 content and Bax mRNA expression. Furthermore, it corrected the raised Bcl2 mRNA expression due to E2. Ch inhibited MDA accumulation and GSH depletion. It also prevents E2-induced SOD and GPx exhaustion. It also ameliorated the rise in NFκB, TNF-α, and IL-6 expression. These effects were correlated with an enhanced PPARα activity ratio relative to the E2 group. This suggests that Ch attenuates EH in this model by exerting anti-proliferative, anti-oxidant, and anti-inflammatory effects partially through increasing PPARα activity.


Subject(s)
Endometrial Hyperplasia , Estradiol , Flavonoids , Animals , Antioxidants/pharmacology , Endometrial Hyperplasia/chemically induced , Endometrial Hyperplasia/metabolism , Endometrial Hyperplasia/pathology , Estradiol/toxicity , Female , Flavonoids/pharmacology , PPAR alpha/drug effects , RNA, Messenger , Rats
12.
J Ovarian Res ; 15(1): 4, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991678

ABSTRACT

Polycystic ovary syndrome (PCOS) is an inflammatory endocrine-metabolic disorder related to reproductive system characterized by polycystic ovarian morphology, androgen excess, and chronic anovulation. Current treatments haven't been very successful in PCOS treatment and the problem still remains as a challenge. Therefore, new approaches should be applied to overcome the disease. Previous studies demonstrated immunomodulatory effects of R10 fraction of garlic in the treatment of inflammatory conditions such as cancer. Considering previous studies suggesting immunomodulatory therapy for PCOS, therapeutic effects of R10 fraction was evaluated in a mouse model of PCOS. To do so, PCOS was developed by intramuscular injection of estradiol valerate. Treatment with R10 fraction, isolated from garlic, was performed and the alterations in hormonal levels (estradiol, progesterone, and testosterone), T cell polarization markers (IFN-γ, IL-4, and IL-17), and expression of fertility-related genes (Gpx3 and Ptx3) were evaluated. The results showed that hormonal levels were elevated in PCOS model comparing to normal animals but were markedly modulated after treatment with R10 fraction. Moreover, a severe disturbance in T cell polarization with a significant reduction of fertility-related genes expression were detected in PCOS-induced ovaries. Treatment with R10 fraction also represented modulatory effects on T cell polarization by increasing IL-4 and decreasing IL-17 and IFN-γ levels. Accordingly, fertility-related genes were also modulated following treatment with R10 fraction in PCOS. Our study elucidated that R10 fraction of garlic possess immunomodulatory effects alleviating PCOS symptoms. This approach could be adjusted to give rise the optimum therapeutic results and considered as a candidate therapeutic approach for PCOS.


Subject(s)
Garlic/chemistry , Immunomodulating Agents/therapeutic use , Plant Extracts/therapeutic use , Polycystic Ovary Syndrome/drug therapy , Animals , Cytokines/metabolism , Disease Models, Animal , Estradiol/toxicity , Female , Fertilization/drug effects , Fertilization/genetics , Gonadal Steroid Hormones/blood , Immunomodulating Agents/chemistry , Mice , Ovary/drug effects , Ovary/metabolism , Ovulation/drug effects , Ovulation/genetics , Plant Extracts/chemistry , Polycystic Ovary Syndrome/chemically induced , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
13.
Sci Total Environ ; 814: 152671, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34968595

ABSTRACT

Teleost fish skin-scales are essential for protection and homeostasis and the largest tissue in direct contact with the environment, but their potential as early indicators of pollutant exposure are hampered by limited knowledge about this model. This study evaluated multi-level impacts of in vivo exposure of European sea bass to fluoxetine (FLX, a selective serotonin-reuptake inhibitor and an emerging pollutant) and 17ß-estradiol (E2, a natural hormone and representative of diverse estrogenic endocrine-disrupting pollutants). Exposed fish had significantly increased circulating levels of FLX and its active metabolite nor-FLX that, in contrast to E2, did not have estrogenic effects on most fish plasma and scale indicators. Quantitative proteomics using SWATH-MS identified 985 proteins in the scale total proteome. 213 proteins were significantly modified 5 days after exposure to E2 or FLX and 31 were common to both treatments and responded in the same way. Common biological processes significantly affected by both treatments were protein turnover and cytoskeleton reorganization. E2 specifically up-regulated proteins related to protein production and degradation and down-regulated the cytoskeleton/extracellular matrix and innate immune proteins. FLX caused both up- and down-regulation of protein synthesis and energy metabolism. Multiple estrogen and serotonin receptor and transporter transcripts were altered in sea bass scales after E2 and/or FLX exposure, revealing complex disruptive effects in estrogen/serotonin responsiveness, which may account for the partially overlapping effects of E2 and FLX on the proteome. A large number (103) of FLX-specifically regulated proteins indicated numerous actions independent of estrogen signalling. This study provides the first quantitative proteome of the fish skin-scale barrier, elucidates routes of action and biochemical and molecular signatures of E2 or FLX-exposure and identifies potential physiological consequences and candidate biomarkers of pollutant exposure, for monitoring and risk assessment.


Subject(s)
Bass , Environmental Pollutants , Animals , Estradiol/toxicity , Fluoxetine/toxicity , Proteomics
14.
J Environ Manage ; 301: 113708, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34619591

ABSTRACT

Estrone (E1), 17α-estradiol (17α-E2), 17ß-estradiol (17ß-E2), and estriol (E3) are persistent in livestock manure and present serious pollution concerns because they can trigger endocrine disruption at part-per-trillion levels. This study conducted a global analysis of estrogen occurrence in manure using all literature data over the past 20 years. Besides, predicted environmental concentration (PEC) in soil and water was estimated using fate models, and risk/harm quotient (RQ/HQ) methods were applied to screen risks on children as well as on sensitive aquatic and soil species. The estradiol equivalent values ranged from 6.6 to 4.78 × 104 ng/g and 12.4 to 9.46 × 104 ng/L in the solid and liquid fraction. The estrogenic potency ranking in both fractions were 17ß-E2> E1>17α-E2>E3. RQs of measured environmental concentration in the liquid fraction pose medium (E3) to high risk (E1, 17α-E2 & 17ß-E2) to fish but are lower than risks posed by xenoestrogens. However, the RQ of PECs on both soil organisms and aquatic species were insignificant (RQ < 0.01), and HQs of contaminated water and soil ingestion were within acceptable limits. Nevertheless, meticulous toxicity studies are still required to confirm (or deny) the findings because endocrine disruption potency from mixtures of these classes of compounds cannot be ignored.


Subject(s)
Manure , Water Pollutants, Chemical , Animals , Child , Environmental Monitoring , Estradiol/toxicity , Estrogens/analysis , Estrogens/toxicity , Estrone/analysis , Humans , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
15.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34361004

ABSTRACT

This article reviews evidence suggesting that a common mechanism of initiation leads to the development of many prevalent types of cancer. Endogenous estrogens, in the form of catechol estrogen-3,4-quinones, play a central role in this pathway of cancer initiation. The catechol estrogen-3,4-quinones react with specific purine bases in DNA to form depurinating estrogen-DNA adducts that generate apurinic sites. The apurinic sites can then lead to cancer-causing mutations. The process of cancer initiation has been demonstrated using results from test tube reactions, cultured mammalian cells, and human subjects. Increased amounts of estrogen-DNA adducts are found not only in people with several different types of cancer but also in women at high risk for breast cancer, indicating that the formation of adducts is on the pathway to cancer initiation. Two compounds, resveratrol, and N-acetylcysteine, are particularly good at preventing the formation of estrogen-DNA adducts in humans and are, thus, potential cancer-prevention compounds.


Subject(s)
Acetylcysteine/pharmacology , Carcinogenesis/drug effects , Estradiol/pharmacology , Estrone/pharmacology , Quinones/pharmacology , Resveratrol/pharmacology , Animals , Antioxidants/pharmacology , Carcinogenesis/genetics , DNA Adducts , Estradiol/toxicity , Estrogens/pharmacology , Estrogens/toxicity , Estrone/toxicity , Humans , Quinones/toxicity
16.
Int J Mol Sci ; 22(13)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34281275

ABSTRACT

Human estrogens prescribed for hormone replacement therapy (HRT) are known to be potent carcinogens. To find safer estrogens, several chlorinated estrogens were synthesized and their carcinogenic potential were determined. A pellet containing either 2-chloro-17ß-estradiol (2-ClE2) or 4-chloro-17ß-estradiol (4-ClE2) was implanted subcutaneously for 52 weeks into August Copenhagen Irish (ACI) rats, a preferred animal model for human breast cancer. 17ß-Estradiol (E2) frequently induced mammary tumors while both 2-ClE2 and 4-ClE2 did not. Their 17α-ethinyl forms, thought to be orally active estrogens, were also synthesized. Neither 2-chloro-17α-ethinylestradiol (2-ClEE2) nor 4-chloro-17α-ethinylestradiol (4-ClEE2) induced tumors. The less carcinogenic effects were supported by histological examination of mammary glands of ACI rats treated with the chlorinated estrogens. A chlorine atom positioned at the 2- or 4-position of E2 may prevent the metabolic activation, resulting in reducing the carcinogenicity. 2-ClE2 and 4-ClE2 administered subcutaneously and 2-ClEE2 and 4-ClEE2 given orally to ovariectomized rats all showed uterotrophic potency, albeit slightly weaker than that of E2. Our results indicate that less carcinogenic chlorinated estrogens retaining estrogenic potential could be safer alternatives to the carcinogenic estrogens now in use for HRT.


Subject(s)
Carcinogens/toxicity , Estradiol/analogs & derivatives , Estrogen Replacement Therapy/adverse effects , Mammary Neoplasms, Experimental/prevention & control , Animals , Carcinogenicity Tests , Carcinogens/chemical synthesis , DNA Damage , Estradiol/chemical synthesis , Estradiol/toxicity , Ethinyl Estradiol/analogs & derivatives , Ethinyl Estradiol/chemical synthesis , Ethinyl Estradiol/toxicity , Female , Humans , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/pathology , Rats , Rats, Inbred ACI , Uterus/drug effects , Uterus/pathology
17.
Int J Mol Sci ; 22(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201250

ABSTRACT

Breast cancer (BC) is a leading cause of cancer deaths in women in less developed countries and the second leading cause of cancer death in women in the U.S. In this study, we report the inhibition of E2-mediated mammary tumorigenesis by Cuminum cyminum (cumin) administered via the diet as cumin powder, as well as dried ethanolic extract. Groups of female ACI rats were given either an AIN-93M diet or a diet supplemented with cumin powder (5% and 7.5%, w/w) or dried ethanolic cumin extract (1%, w/w), and then challenged with subcutaneous E2 silastic implants (1.2 cm; 9 mg). The first appearance of a palpable mammary tumor was significantly delayed by both the cumin powder and extract. At the end of the study, the tumor incidence was 96% in the control group, whereas only 55% and 45% animals had palpable tumors in the cumin powder and extract groups, respectively. Significant reductions in tumor volume (660 ± 122 vs. 138 ± 49 and 75 ± 46 mm3) and tumor multiplicity (4.21 ± 0.43 vs. 1.16 ± 0.26 and 0.9 ± 0.29 tumors/animal) were also observed by the cumin powder and cumin extract groups, respectively. The cumin powder diet intervention dose- and time-dependently offset E2-related pituitary growth, and reduced the levels of circulating prolactin and the levels of PCNA in the mammary tissues. Mechanistically, the cumin powder diet resulted in a significant reversal of E2-associated modulation in ERα, CYP1A1 and CYP1B1. Further, the cumin powder diet reversed the expression levels of miRNAs (miR-182, miR-375, miR-127 and miR-206) that were highly modulated by E2 treatment. We analyzed the composition of the extract by GC/MS and established cymene and cuminaldehyde as major components, and further detected no signs of gross or systemic toxicity. Thus, cumin bioactives can significantly delay and prevent E2-mediated mammary tumorigenesis in a safe and effective manner, and warrant continued efforts to develop these clinically translatable spice bioactives as chemopreventives and therapeutics against BC.


Subject(s)
Cuminum/chemistry , Estradiol/toxicity , Estrogens/toxicity , Gene Expression Regulation, Neoplastic/drug effects , Mammary Neoplasms, Experimental/prevention & control , Plant Extracts/pharmacology , Animals , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Female , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/pathology , MicroRNAs/genetics , Rats , Rats, Inbred ACI
18.
Med Oncol ; 38(6): 71, 2021 May 18.
Article in English | MEDLINE | ID: mdl-34008039

ABSTRACT

Endometrial cancer (EMC) is one of the complicated gynecological cancers, affecting more than three million women worldwide. Anticancer strategies such as chemotherapy, radiation, and surgery are found to be ineffective and are associated with patient incompliances. The aim of the present study is to repurpose non-oncological drug, i.e., Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, in the treatment of endometrial cancer. The study groups consist of 50 female Swiss albino mice, out of which 40 had endometrial cancer induced with N-ethyl-N-nitrosourea (ENU) and estradiol hexadrobenzoate (EHB). The other groups received saline, EHB, paclitaxel, and different test doses of pioglitazones. Different preliminary parameters such as weekly body weight, mean survival time, percentage increase in life span, and uterine tissue weight were analyzed along with histopathological analysis. We observed a significant change in weekly body weight, improvement in percentage life span, and partial restoration of uterine tissue weight to normal compared to a standard drug, paclitaxel. In the present preliminary evaluation, we have identified that pioglitazone exhibited a significant dose-dependent anticancer activity against ENU- and EHB-induced endometrial cancer, compared to the standard paclitaxel.


Subject(s)
Antineoplastic Agents/therapeutic use , Endometrial Neoplasms/drug therapy , Pioglitazone/therapeutic use , Animals , Body Weight/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Repositioning , Endometrial Neoplasms/chemically induced , Endometrial Neoplasms/mortality , Estradiol/analogs & derivatives , Estradiol/toxicity , Ethylnitrosourea/toxicity , Female , Mice , Paclitaxel/therapeutic use , Survival Rate , Uterus/drug effects , Uterus/pathology
19.
Environ Toxicol Chem ; 40(8): 2297-2305, 2021 08.
Article in English | MEDLINE | ID: mdl-33978263

ABSTRACT

The aim of the present study was to evaluate the effects of exposure to Chilean pulp mill effluent extracts on developing postfertilized medaka embryos before and after sex definition relative to sex steroids (testosterone and 17beta-estradiol) and a wood phytoestrogen (beta-sitosterol). Our study included 2 waterborne semichronic exposure experiments, using a 24-h post fertilization (hpf) unknown-sex FLFII (female leucophore free) group and a second 72-hpf FLFII phenotypic sex-identified group (male autofluorescence leucophore) strain of medaka embryos. Chronic exposure of both FLFII strain embryo groups showed similar delay in time to hatch and decreased hatchability. Teratogenic responses such as vertebral malformation (fusion, incomplete formation, and lack of vertebral formation process) and pericardial edema were observed in both experiments, with a high percentage related to FLFII fluorescent leucophore-identified males. In addition, high mortality associated with severe malformations was observed in male and female embryos exposed to testosterone. Our research has demonstrated that exposure to Chilean mill effluent extracts caused severe male medaka embryotoxicity (in postfertilized embryos) before and after sex definition and, irrespective of the experimental group and effluent treatment, suggests partial removal following secondary treatment. Furthermore, differences in the severity and type of teratogenic effects with previous experiments (d-rR medaka strain), are associated with the unique phenotypes of this medaka mutant strain. Environ Toxicol Chem 2021;40:2297-2305. © 2021 SETAC.


Subject(s)
Oryzias , Animals , Embryo, Nonmammalian , Estradiol/toxicity , Female , Male , Oryzias/physiology , Plant Extracts/pharmacology , Testosterone/pharmacology
20.
Ecotoxicol Environ Saf ; 216: 112210, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33866271

ABSTRACT

Bisphenol A (BPA) is a ubiquitous industrial chemical found in everyday plastic products and materials. Due to scientific findings on the reproductive, developmental, and cellular defects caused by BPA and heightened public awareness, manufacturers have begun to use new chemicals in place of BPA in "BPA-free" products. These alternatives are chemical analogs of BPA and include dozens of new compounds that have undergone relatively little testing and oversight, including: bisphenol S (BPS), bisphenol AF (BPAF), and the recently developed tetramethyl bisphenol F (TMBPF; the monomer of valPure V70). Here, we used adult female rat adipose-derived stem cells (rASCs) and human mesenchymal stem cells (hMSCs) to compare the toxicities and potencies of these BPA alternatives in vitro. Rat and human stem cells were exposed to BPA (1-10 µM), 17ß-estradiol (E2; 10 µM), BPS (1-100 µM), BPAF (3×10-4-30 µM), TMBPF (0.01-50 µM), or control media alone (with 0.01% ethanol) for varying time intervals from 10 min to 24 h. We found significantly decreased cell viability and massive apoptosis in rat and human stem cells treated with each BPA analog, as early as 10 min of exposure, and at low, physiologically relevant doses. BPAF showed extreme cytotoxicity in a dose-dependent manner (LC50 =0.014 µM (rASCs) and 0.009 µM (hMSCs)), whereas TMBPF showed a bimodal response, with low and high concentrations being the most toxic (LC50 =0.88 µM (rASCs) and 0.06 µM (hMSCs)). Activated caspase-6 levels increased in nearly all cells treated with the BPA analogs indicating the majority of cell death was due to caspase-6-mediated apoptosis. These results in both rat and human stem cells underscore the toxicity and potency of these BPA analogs, and establish a rank order of potency of: BPAF>TMBPF>BPA>BPS. Further, these and other recent findings indicate that these newer BPA analogs may be 'regrettable substitutions,' being worse than the original parent compound and lacking proper testing and regulation. This work brings to light the need for further toxicological characterization, better regulation, greater public awareness, and the development of safer, more sustainable chemicals and non-plastic products.


Subject(s)
Environmental Pollutants/toxicity , Phenols/toxicity , Toxicity Tests , Animals , Apoptosis/physiology , Benzhydryl Compounds/toxicity , Cell Survival , Estradiol/toxicity , Female , Humans , Rats , Stem Cells , Sulfones/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...