Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.591
Filter
1.
Bioresour Technol ; 401: 130733, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670287

ABSTRACT

This study investigated the mediating effect of Triethanolamine on Fe@C-Rhodobacter sphaeroides hybrid photosynthetic system to achieve efficient biohydrogen production. The biocompatible Fe@C generates excited electrons upon exposure to light, releasing ferrum for nitrogenase synthesis, and regulating the pH of the fermentation environment. Triethanolamine was introduced to optimize the electron transfer chain, thereby improving system stability, prolonging electron lifespan, and facilitating ferrum corrosion. This, in turn, stimulated the lactic acid synthetic metabolic pathway of Rhodobacter sphaeroides, resulting in increased reducing power in the biohybrid system. The ternary coupling system was analyzed through the regulation of concentration, initial pH, and light intensity. The system achieved the highest total H2 production of 5410.9 mL/L, 1.29 times higher than the control (2360.5 mL/L). This research provides a valuable strategy for constructing ferrum-carbon-based composite-cellular biohybrid systems for photo-fermentation H2 production.


Subject(s)
Ethanolamines , Hydrogen , Light , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolism , Hydrogen/metabolism , Ethanolamines/metabolism , Ethanolamines/chemistry , Iron/chemistry , Catalysis , Hydrogen-Ion Concentration , Carbon , Fermentation , Photosynthesis
2.
J Bacteriol ; 206(5): e0043523, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38661375

ABSTRACT

Acinetobacter baumannii is highly resistant to antimicrobial agents, and XDR strains have become widespread. A. baumannii has developed resistance to colistin, which is considered the last resort against XDR Gram-negative bacteria, mainly caused by lipooligosaccharide (LOS) phosphoethanolamine (pEtN) and/or galactosamine (GalN) modifications induced by mutations that activate the two-component system (TCS) pmrAB. Although PmrAB of A. baumannii has been recognized as a drug resistance factor, its function as TCS, including its regulatory genes and response factors, has not been fully elucidated. In this study, to clarify the function of PmrAB as TCS, we elucidated the regulatory genes (regulon) of PmrAB via transcriptome analysis using pmrAB-activated mutant strains. We discovered that PmrAB responds to low pH, Fe2+, Zn2+, and Al3+. A. baumannii selectively recognizes Fe2+ rather than Fe3+, and a novel region ExxxE, in addition to the ExxE motif sequence, is involved in the environmental response. Furthermore, PmrAB participates in the phosphoethanolamine modification of LOS on the bacterial surface in response to metal ions such as Al3+, contributing to the attenuation of Al3+ toxicity and development of resistance to colistin and polymyxin B in A. baumannii. This study demonstrates that PmrAB in A. baumannii not only regulates genes that play an important role in drug resistance but is also involved in responses to environmental stimuli such as metal ions and pH, and this stimulation induces LOS modification. This study reveals the importance of PmrAB in the environmental adaptation and antibacterial resistance emergence mechanisms of A. baumannii. IMPORTANCE: Antimicrobial resistance (AMR) is a pressing global issue in human health. Acinetobacter baumannii is notably high on the World Health Organization's list of bacteria for which new antimicrobial agents are urgently needed. Colistin is one of the last-resort drugs used against extensively drug-resistant (XDR) Gram-negative bacteria. However, A. baumannii has become increasingly resistant to colistin, primarily by modifying its lipooligosaccharide (LOS) via activating mutations in the two-component system (TCS) PmrAB. This study comprehensively elucidates the detailed mechanism of drug resistance of PmrAB in A. baumannii as well as its biological functions. Understanding the molecular biology of these molecules, which serve as drug resistance factors and are involved in environmental recognition mechanisms in bacteria, is crucial for developing fundamental solutions to the AMR problem.


Subject(s)
Acinetobacter baumannii , Bacterial Proteins , Ethanolamines , Gene Expression Regulation, Bacterial , Lipopolysaccharides , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/metabolism , Lipopolysaccharides/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ethanolamines/pharmacology , Ethanolamines/metabolism , Anti-Bacterial Agents/pharmacology , Metals/metabolism , Metals/pharmacology , Transcription Factors
3.
Sci Rep ; 14(1): 9459, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658668

ABSTRACT

Analysis of endocannabinoids (ECs) and N-acylethanolamines (NAEs) in hair is assumed to retrospectively assess long-term EC/NAE concentrations. To inform their use, this study investigated stability of EC/NAE hair concentrations in mothers, fathers, and their children across the perinatal period as well as associations between family members. In a prospective cohort study, EC (AEA, 1-AG/2-AG) and NAE (SEA, PEA, OEA) levels were quantified in hair samples taken four times in mothers (n = 336) and their partners (n = 225) from pregnancy to two years postpartum and in offspring (n = 319) from shortly after birth to two years postpartum. Across the perinatal period, maternal and paternal hair ECs/NAEs showed poor multiple-test consistency (16-36%) and variable relative stability, as well as inconsistent absolute stability for mothers. Regarding children, hair ECs/NAEs evidenced poor multiple-test consistency (4-19%), no absolute stability, and either no or variable relative stability. Hair ECs/NAEs showed small to medium significant associations across the perinatal period within couples and parent-child dyads. Findings suggest hair ECs/NAEs during the perinatal period possess variable stability in adults, albeit more stability in fathers than mothers in this time. This highlights the need to further investigate factors associated with changes in hair ECs/NAEs across time. The first two years of life may be a dynamic phase for the endocannabinoid system in children, potentially characterized by complex within-family correspondence that requires further systematic investigation.


Subject(s)
Endocannabinoids , Ethanolamines , Fathers , Hair , Mothers , Humans , Endocannabinoids/metabolism , Endocannabinoids/analysis , Female , Hair/chemistry , Hair/metabolism , Male , Ethanolamines/metabolism , Ethanolamines/analysis , Adult , Pregnancy , Child, Preschool , Infant , Prospective Studies , Infant, Newborn , Child
4.
PeerJ ; 12: e17183, 2024.
Article in English | MEDLINE | ID: mdl-38560476

ABSTRACT

Background: PEBP (phosphatidyl ethanolamine-binding protein) is widely found in eukaryotes including plants, animals and microorganisms. In plants, the PEBP family plays vital roles in regulating flowering time and morphogenesis and is highly associated to agronomic traits and yields of crops, which has been identified and characterized in many plant species but not well studied in Tartary buckwheat (Fagopyrum tataricum Gaertn.), an important coarse food grain with medicinal value. Methods: Genome-wide analysis of FtPEBP gene family members in Tartary buckwheat was performed using bioinformatic tools. Subcellular localization analysis was performed by confocal microscopy. The expression levels of these genes in leaf and inflorescence samples were analyzed using qRT-PCR. Results: Fourteen Fagopyrum tataricum PEBP (FtPEBP) genes were identified and divided into three sub-clades according to their phylogenetic relationships. Subcellular localization analysis of the FtPEBP proteins in tobacco leaves indicated that FT- and TFL-GFP fusion proteins were localized in both the nucleus and cytoplasm. Gene structure analysis showed that most FtPEBP genes contain four exons and three introns. FtPEBP genes are unevenly distributed in Tartary buckwheat chromosomes. Three tandem repeats were found among FtFT5/FtFT6, FtMFT1/FtMFT2 and FtTFL4/FtTFL5. Five orthologous gene pairs were detected between F. tataricum and F. esculentum. Seven light-responsive, nine hormone-related and four stress-responsive elements were detected in FtPEBPs promoters. We used real-time PCR to investigate the expression levels of FtPEBPs among two flowering-type cultivars at floral transition time. We found FtFT1/FtFT3 were highly expressed in leaf and young inflorescence of early-flowering type, whereas they were expressed at very low levels in late-flowering type cultivars. Thus, we deduced that FtFT1/FtFT3 may be positive regulators for flowering and yield of Tartary buckwheat. These results lay an important foundation for further studies on the functions of FtPEBP genes which may be utilized for yield improvement.


Subject(s)
Fagopyrum , Phylogeny , Fagopyrum/genetics , Plant Proteins/genetics , Genome, Plant , Ethanolamines/metabolism
5.
mBio ; 15(3): e0002524, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38380942

ABSTRACT

Nitrogen is an essential element for all living organisms, including Escherichia coli. Potential nitrogen sources are abundant in the intestine, but knowledge of those used specifically by E. coli to colonize remains limited. Here, we sought to determine the specific nitrogen sources used by E. coli to colonize the streptomycin-treated mouse intestine. We began by investigating whether nitrogen is limiting in the intestine. The NtrBC two-component system upregulates approximately 100 genes in response to nitrogen limitation. We showed that NtrBC is crucial for E. coli colonization, although most genes of the NtrBC regulon are not induced, which indicates that nitrogen is not limiting in the intestine. RNA-seq identified upregulated genes in colonized E. coli involved in transport and catabolism of seven amino acids, dipeptides and tripeptides, purines, pyrimidines, urea, and ethanolamine. Competitive colonization experiments revealed that L-serine, N-acetylneuraminic acid, N-acetylglucosamine, and di- and tripeptides serve as nitrogen sources for E. coli in the intestine. Furthermore, the colonization defect of a L-serine deaminase mutant was rescued by excess nitrogen in the drinking water but not by an excess of carbon and energy, demonstrating that L-serine serves primarily as a nitrogen source. Similar rescue experiments showed that N-acetylneuraminic acid serves as both a carbon and nitrogen source. To a minor extent, aspartate and ammonia also serve as nitrogen sources. Overall, these findings demonstrate that E. coli utilizes multiple nitrogen sources for successful colonization of the mouse intestine, the most important of which is L-serine. IMPORTANCE: While much is known about the carbon and energy sources that are used by E. coli to colonize the mammalian intestine, very little is known about the sources of nitrogen. Interrogation of colonized E. coli by RNA-seq revealed that nitrogen is not limiting, indicating an abundance of nitrogen sources in the intestine. Pathways for assimilation of nitrogen from several amino acids, dipeptides and tripeptides, purines, pyrimidines, urea, and ethanolamine were induced in mice. Competitive colonization assays confirmed that mutants lacking catabolic pathways for L-serine, N-acetylneuraminic acid, N-acetylglucosamine, and di- and tripeptides had colonization defects. Rescue experiments in mice showed that L-serine serves primarily as a nitrogen source, whereas N-acetylneuraminic acid provides both carbon and nitrogen. Of the many nitrogen assimilation mutants tested, the largest colonization defect was for an L-serine deaminase mutant, which demonstrates L-serine is the most important nitrogen source for colonized E. coli.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Mice , Animals , Escherichia coli/genetics , Acetylglucosamine/metabolism , Nitrogen/metabolism , L-Serine Dehydratase/metabolism , Intestines , Escherichia coli Proteins/metabolism , Purines , Carbon/metabolism , Pyrimidines/metabolism , Amino Acids/metabolism , Dipeptides/metabolism , Ethanolamines/metabolism , Serine/metabolism , Urea/metabolism , Sialic Acids/metabolism , Mammals/metabolism
6.
J Nutr Biochem ; 128: 109605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38401691

ABSTRACT

The endocannabinoid system (ECS) is dysregulated during obesity and metabolic disorders. Weight loss favours the re-establishment of ECS homeostatic conditions, but also the fatty acid composition of the diet can modulate endocannabinoid profiles. However, the combined impact of nutrient quality and energy restriction on the ECS remains unclear. In this 12 weeks randomized controlled trial, men and women (40-70 years) with obesity (BMI: 31.3 ± 3.5 kg/ m2) followed either a low nutrient quality 25% energy-restricted (ER) diet (n=39) high in saturated fats and fructose, or a high nutrient quality ER diet (n=34) amongst others enriched in n-3 polyunsaturated fatty acids (PUFAs) or kept their habitual diet (controls). Profiles of plasma- and adipose N-acylethanolamines and mono-acyl glycerol esters were quantified using LC-MS/MS. Gene expression of ECS-related enzymes and receptors was determined in adipose tissue. Measurements were performed under fasting conditions before and after 12 weeks. Our results showed that plasma level of the DHA-derived compound docosahexaenoylethanolamide (DHEA) was decreased in the low nutrient quality ER diet (P<0.001) compared with the high nutrient quality ER diet, whereas anandamide (AEA) and arachidonoylglycerol (2-AG) levels were unaltered. However, adipose tissue gene expression of the 2-AG synthesizing enzyme diacylglycerol lipase alpha (DAGL-α) was increased following the low nutrient quality ER diet (P<.009) and differed upon intervention with both other diets. Concluding, nutrient quality of the diet affects N-acylethanolamine profiles and gene expression of ECS-related enzymes and receptors even under conditions of high energy restriction in abdominally obese humans. ClinicalTrials.gov NCT02194504.


Subject(s)
Adipose Tissue , Caloric Restriction , Endocannabinoids , Lipoprotein Lipase , Obesity, Abdominal , Humans , Endocannabinoids/metabolism , Endocannabinoids/blood , Middle Aged , Male , Female , Adult , Aged , Adipose Tissue/metabolism , Obesity, Abdominal/diet therapy , Obesity, Abdominal/metabolism , Obesity, Abdominal/blood , Lipoprotein Lipase/metabolism , Ethanolamines/metabolism , Nutrients/metabolism
7.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338728

ABSTRACT

Plant FLOWERING LOCUS T-Like (FTL) genes often redundantly duplicate on chromosomes and functionally diverge to modulate reproductive traits. Rice harbors thirteen FTL genes, the functions of which are still not clear, except for the Hd3a and RFT genes. Here, we identified the molecular detail of OsFTL12 in rice reproductive stage. OsFTL12 encoding protein contained PEBP domain and localized into the nucleus, which transcripts specifically expressed in the shoot and leaf blade with high abundance. Further GUS-staining results show the OsFTL12 promoter activity highly expressed in the leaf and stem. OsFTL12 knock-out concurrently exhibited early flowering phenotype under the short- and long-day conditions as compared with wild-type and over-expression plants, which independently regulates flowering without an involved Hd1/Hd3a and Ehd1/RFT pathway. Further, an AT-hook protein OsATH1 was identified to act as upstream regulator of OsFTL12, as the knock-out OsATH1 elevated the OsFTL12 expression by modifying Histone H3 acetylation abundance. According to the dissection of OsFTL12 molecular functions, our study expanded the roles intellectual function of OsFTL12 in the mediating of a rice heading date.


Subject(s)
Flowers , Oryza , Flowers/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Photoperiod , Ethanolamines/metabolism , Gene Expression Regulation, Plant
8.
Acta Parasitol ; 69(1): 426-438, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38172465

ABSTRACT

PURPOSE: Entamoeba histolytica is one of the death-causing parasites in the world. Study on its lipid composition revealed that it is predominated by phosphatidylcholine and phosphatidylethanolamine. Further study revealed that its phosphorylated metabolites might be produced by the Kennedy pathway. Here, we would like to report on the characterizations of enzymes from this pathway that would provide information for the design of novel inhibitors against these enzymes in future. METHODOLOGY: E. histolytica HM-1:IMSS genomic DNA was isolated and two putative choline/ethanolamine kinase genes (EhCK1 and EhCK2) were cloned and expressed from Escherichia coli BL21 strain. Enzymatic characterizations were further carried out on the purified enzymes. RESULTS: EhCK1 and EhCK2 were identified from E. histolytica genome. The deduced amino acid sequences were more identical to its homologues in human (35-48%) than other organisms. The proteins were clustered as ethanolamine kinase in the constructed phylogeny tree. Sequence analysis showed that they possessed all the conserved motifs in choline kinase family: ATP-binding loop, Brenner's phosphotransferase motif, and choline kinase motif. Here, the open reading frames were cloned, expressed, and purified to apparent homogeneity. EhCK1 showed activity with choline but not ethanolamine. The biochemical characterization showed that it had a Vmax of 1.9 ± 0.1 µmol/min/mg. Its Km for choline and ATP was 203 ± 26 µM and 3.1 ± 0.4 mM, respectively. In contrast, EhCK2 enzymatic activity was only detected when Mn2+ was used as the co-factor instead of Mg2+ like other choline/ethanolamine kinases. Highly sensitive and specific antibody against EhCK1 was developed and used to confirm the endogenous EhCK1 expression using immunoblotting. CONCLUSIONS: With the understanding of EhC/EK importance in phospholipid metabolism and their unique characteristic, EhC/EK could be a potential target for future anti-amoebiasis study.


Subject(s)
Choline Kinase , Entamoeba histolytica , Phylogeny , Entamoeba histolytica/genetics , Entamoeba histolytica/enzymology , Choline Kinase/genetics , Choline Kinase/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Cloning, Molecular , Amino Acid Sequence , Escherichia coli/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Ethanolamines/metabolism , Choline/metabolism
9.
J Chem Neuroanat ; 134: 102361, 2023 12.
Article in English | MEDLINE | ID: mdl-37935251

ABSTRACT

N-docosahexaenoylethanolamine, or synaptamide, is an endogenous metabolite of docosahexaenoic acid that is known for synaptogenic and neurogenic effects. In our previous studies we have shown that synaptamide attenuates neuropathic pain, facilitates remyelination, and reduces neuroinflammation after the chronic constriction injury (CCI) of the sciatic nerve in rats. In the current study, we show that daily synaptamide administration (4 mg/kg/day) within 14 days post-surgery: (1) decreases micro- and astroglia activity in the dorsal and ventral horns of the lumbar spinal cord; (2) modulates pro-inflammatory (IL1ß, IL6) and anti-inflammatory (IL4, IL10) cytokine level in the serum and spinal cord; (3) leads to a rise in synaptamide and anandamide concentration in the spinal cord; (4) enhances IL10, CD206 and N-acylethanolamine-hydrolyzing acid amidase synthesis in macrophage cell culture following LPS-induced inflammation. Thus, the ability of synaptamide to modulate glial and cytokine activity indicates its potential for implementation in the treatment peripheral nerve injury.


Subject(s)
Interleukin-10 , Neuralgia , Rats , Animals , Interleukin-10/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Ethanolamines/pharmacology , Ethanolamines/metabolism , Spinal Cord/metabolism
10.
Sci Rep ; 13(1): 12113, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495686

ABSTRACT

Psoriasis is an inflammatory skin disease that is characterized by keratinocyte hyperproliferation, abnormal epidermal differentiation and dysregulated lipid metabolism. Some lipid mediators of the N-acylethanolamines (NAEs) and monoacylglycerols (MAGs) can bind to cannabinoid (CB) receptors and are referred to as part of the endocannabinoidome. Their implication in psoriasis remains unknown. The aim of the present study was to characterize the endocannabinoid system and evaluate the effects of n-3-derived NAEs, namely N-eicosapentaenoyl-ethanolamine (EPEA), in psoriatic keratinocytes using a psoriatic skin model produced by tissue engineering, following the self-assembly method. Psoriatic skin substitutes had lower FAAH2 expression and higher MAGL, ABHD6 and ABHD12 expression compared with healthy skin substitutes. Treatments with alpha-linolenic acid (ALA) increased the levels of EPEA and 1/2-docosapentaenoyl-glycerol, showing that levels of n-3 polyunsaturated fatty acids modulate related NAE and MAG levels. Treatments of the psoriatic substitutes with 10 µM of EPEA for 7 days resulted in decreased epidermal thickness and number of Ki67 positive keratinocytes, both indicating decreased proliferation of psoriatic keratinocytes. EPEA effects on keratinocyte proliferation were inhibited by the CB1 receptor antagonist rimonabant. Exogenous EPEA also diminished some inflammatory features of psoriasis. In summary, n-3-derived NAEs can reduce the psoriatic phenotype of a reconstructed psoriatic skin model.


Subject(s)
Ethanolamine , Psoriasis , Humans , Ethanolamine/metabolism , Skin/metabolism , Keratinocytes/metabolism , Psoriasis/drug therapy , Psoriasis/metabolism , Cell Proliferation , Ethanolamines/pharmacology , Ethanolamines/metabolism , Monoacylglycerol Lipases/metabolism
11.
PLoS Pathog ; 19(7): e1011112, 2023 07.
Article in English | MEDLINE | ID: mdl-37506172

ABSTRACT

Glycerophospholipids including phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are vital components of biological membranes. Trypanosomatid parasites of the genus Leishmania can acquire PE and PC via de novo synthesis and the uptake/remodeling of host lipids. In this study, we investigated the ethanolaminephosphate cytidylyltransferase (EPCT) in Leishmania major, which is the causative agent for cutaneous leishmaniasis. EPCT is a key enzyme in the ethanolamine branch of the Kennedy pathway which is responsible for the de novo synthesis of PE. Our results demonstrate that L. major EPCT is a cytosolic protein capable of catalyzing the formation of CDP-ethanolamine from ethanolamine-phosphate and cytidine triphosphate. Genetic manipulation experiments indicate that EPCT is essential in both the promastigote and amastigote stages of L. major as the chromosomal null mutants cannot survive without the episomal expression of EPCT. This differs from our previous findings on the choline branch of the Kennedy pathway (responsible for PC synthesis) which is required only in promastigotes but not amastigotes. While episomal EPCT expression does not affect promastigote proliferation under normal conditions, it leads to reduced production of ethanolamine plasmalogen or plasmenylethanolamine, the dominant PE subtype in Leishmania. In addition, parasites with episomal EPCT exhibit heightened sensitivity to acidic pH and starvation stress, and significant reduction in virulence. In summary, our investigation demonstrates that proper regulation of EPCT expression is crucial for PE synthesis, stress response, and survival of Leishmania parasites throughout their life cycle.


Subject(s)
Leishmania major , Leishmania major/genetics , Ethanolamines/metabolism , Ethanolamine/metabolism , Phosphatidylcholines/genetics , Phosphatidylcholines/metabolism , Homeostasis
12.
Blood Adv ; 7(24): 7407-7417, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37487020

ABSTRACT

Culture conditions in which hematopoietic stem cells (HSCs) can be expanded for clinical benefit are highly sought after. To elucidate regulatory mechanisms governing the maintenance and propagation of human HSCs ex vivo, we screened libraries of annotated small molecules in human cord blood cells using an optimized assay for detection of functional HSCs during culture. We found that the antifungal agent ciclopirox ethanolamine (CPX) selectively supported immature CD34+CD90+ cells during culture and enhanced their long-term in vivo repopulation capacity. Purified HSCs treated with CPX showed a reduced cell division rate and an enrichment of HSC-specific gene expression patterns. Mechanistically, we found that the HSC stimulating effect of CPX was directly mediated by chelation of the intracellular iron pool, which in turn affected iron-dependent proteins and enzymes mediating cellular metabolism and respiration. Our findings unveil a significant impact of iron homeostasis in regulation of human HSCs, with important implications for both basic HSC biology and clinical hematology.


Subject(s)
Hematopoietic Stem Cells , Iron , Humans , Ciclopirox/pharmacology , Ciclopirox/metabolism , Iron/metabolism , Hematopoietic Stem Cells/metabolism , Antigens, CD34/metabolism , Ethanolamines/metabolism , Ethanolamines/pharmacology
13.
Biol Reprod ; 109(2): 192-203, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37294625

ABSTRACT

In human spermatozoa, the electrochemical potentials across the mitochondrial and plasma membranes are related to sperm functionality and fertility, but the exact role of each potential has yet to be clarified. Impairing sperm mitochondrial function has been considered as an approach to creating male or unisex contraceptives, but it has yet to be shown whether this approach would ultimately block the ability of sperm to reach or fertilize an egg. To investigate whether the mitochondrial and plasma membrane potentials are necessary for sperm fertility, human sperm were treated with two small-molecule mitochondrial uncouplers (niclosamide ethanolamine and BAM15) that depolarize membranes by inducing passive proton flow, and evaluated the effects on a variety of sperm physiological processes. BAM15 specifically uncoupled human sperm mitochondria while niclosamide ethanolamine induced proton current in the plasma membrane in addition to depolarizing the mitochondria. In addition, both compounds significantly decreased sperm progressive motility with niclosamide ethanolamine having a more robust effect. However, these uncouplers did not reduce sperm adenosine triphosphate (ATP) content or impair other physiological processes, suggesting that human sperm can rely on glycolysis for ATP production if mitochondria are impaired. Thus, systemically delivered contraceptives that target sperm mitochondria to reduce their ATP production would likely need to be paired with sperm-specific glycolysis inhibitors. However, since niclosamide ethanolamine impairs sperm motility through an ATP-independent mechanism, and niclosamide is FDA approved and not absorbed through mucosal membranes, it could be a useful ingredient in on-demand, vaginally applied contraceptives.


Subject(s)
Adenosine Triphosphate , Sperm Motility , Humans , Male , Adenosine Triphosphate/metabolism , Sperm Motility/physiology , Niclosamide/pharmacology , Protons , Semen/metabolism , Mitochondria/metabolism , Spermatozoa/metabolism , Ethanolamine/metabolism , Ethanolamine/pharmacology , Ethanolamines/metabolism , Ethanolamines/pharmacology , Contraceptive Agents/pharmacology
14.
J Lipid Res ; 64(8): 100405, 2023 08.
Article in English | MEDLINE | ID: mdl-37352974

ABSTRACT

Alpha/beta hydrolase domain-containing protein 4 (ABHD4) catalyzes the deacylation of N-acyl phosphatidyl-ethanolamine (NAPE) and lyso-NAPE to produce glycerophospho-N-acyl ethanolamine (GP-NAE). Through a variety of metabolic enzymes, NAPE, lyso-NAPE, and GP-NAE are ultimately converted into NAE, a group of bioactive lipids that control many physiological processes including inflammation, cognition, food intake, and lipolysis (i.e., oleoylethanolamide or OEA). In a diet-induced obese mouse model, adipose tissue Abhd4 gene expression positively correlated with adiposity. However, it is unknown whether Abhd4 is a causal or a reactive gene to obesity. To fill this knowledge gap, we generated an Abhd4 knockout (KO) 3T3-L1 pre-adipocyte. During adipogenic stimulation, Abhd4 KO pre-adipocytes had increased adipogenesis and lipid accumulation, suggesting Abhd4 is responding to (a reactive gene), not contributing to (not a causal gene), adiposity, and may serve as a mechanism for protecting against obesity. However, we did not observe any differences in adiposity and metabolic outcomes between whole-body Abhd4 KO or adipocyte-specific Abhd4 KO mice and their littermate control mice (both male and female) on chow or a high-fat diet. This might be because we found that deletion of Abhd4 did not affect NAE such as OEA production, even though Abhd4 was highly expressed in adipose tissue and correlated with fasting adipose OEA levels and lipolysis. These data suggest that ABHD4 regulates adipocyte differentiation in vitro but does not affect adipose tissue lipid metabolism in mice despite nutrient overload, possibly due to compensation from other NAPE and NAE metabolic enzymes.


Subject(s)
Adipose Tissue , Lipid Metabolism , Animals , Female , Male , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipose Tissue/metabolism , Diet, High-Fat/adverse effects , Ethanolamines/metabolism , Lipolysis , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Obesity/metabolism
15.
Parasitol Res ; 122(7): 1651-1661, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37202563

ABSTRACT

The de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica is largely dependent on the CDP-choline and CDP-ethanolamine pathways. Although the first enzymes of these pathways, EhCK1 and EhCK2, have been previously characterized, their enzymatic activity was found to be low and undetectable, respectively. This study aimed to identify the unusual characteristics of these enzymes in this deadly parasite. The discovery that EhCKs prefer Mn2+ over the typical Mg2+ as a metal ion cofactor is intriguing for CK/EK family of enzymes. In the presence of Mn2+, the activity of EhCK1 increased by approximately 108-fold compared to that in Mg2+. Specifically, in Mg2+, EhCK1 exhibited a Vmax and K0.5 of 3.5 ± 0.1 U/mg and 13.9 ± 0.2 mM, respectively. However, in Mn2+, it displayed a Vmax of 149.1 ± 2.5 U/mg and a K0.5 of 9.5 ± 0.1 mM. Moreover, when Mg2+ was present at a constant concentration of 12 mM, the K0.5 value for Mn2+ was ~ 2.4-fold lower than that in Mn2+ alone, without affecting its Vmax. Although the enzyme efficiency of EhCK1 was significantly improved by about 25-fold in Mn2+, it is worth noting that its Km for choline and ATP were higher than in equimolar of Mg2+ in a previous study. In contrast, EhCK2 showed specific activity towards ethanolamine in Mn2+, exhibiting Michaelis-Menten kinetic with ethanolamine (Km = 312 ± 27 µM) and cooperativity with ATP (K0.5 = 2.1 ± 0.2 mM). Additionally, we investigated the effect of metal ions on the substrate recognition of human choline and ethanolamine kinase isoforms. Human choline kinase α2 was found to absolutely require Mg2+, while choline kinase ß differentially recognized choline and ethanolamine in Mg2+ and Mn2+, respectively. Finally, mutagenesis studies revealed that EhCK1 Tyr129 was critical for Mn2+ binding, while Lys233 was essential for substrate catalysis but not metal ion binding. Overall, these findings provide insight into the unique characteristics of the EhCKs and highlight the potential for new approaches to treating amoebiasis. Amoebiasis is a challenging disease for clinicians to diagnose and treat, as many patients are asymptomatic. However, by studying the enzymes involved in the CDP-choline and CDP-ethanolamine pathways, which are crucial for de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica, there is great potential to discover new therapeutic approaches to combat this disease.


Subject(s)
Amebiasis , Entamoeba histolytica , Humans , Choline/metabolism , Choline Kinase/metabolism , Phosphatidylethanolamines/metabolism , Entamoeba histolytica/genetics , Entamoeba histolytica/metabolism , Ethanolamines/metabolism , Ethanolamine , Cytidine Diphosphate Choline/metabolism , Phosphatidylcholines , Protein Isoforms , Adenosine Triphosphate , Kinetics
16.
Nat Commun ; 14(1): 2529, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37137909

ABSTRACT

Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are two primary components of the eukaryotic membrane and play essential roles in the maintenance of membrane integrity, lipid droplet biogenesis, autophagosome formation, and lipoprotein formation and secretion. Choline/ethanolamine phosphotransferase 1 (CEPT1) catalyzes the last step of the biosynthesis of PC and PE in the Kennedy pathway by transferring the substituted phosphate group from CDP-choline/ethanolamine to diacylglycerol. Here, we present the cryo-EM structures of human CEPT1 and its complex with CDP-choline at resolutions of 3.7 Å and 3.8 Å, respectively. CEPT1 is a dimer with 10 transmembrane segments (TMs) in each protomer. TMs 1-6 constitute a conserved catalytic domain with an interior hydrophobic chamber accommodating a PC-like density. Structural observations and biochemical characterizations suggest that the hydrophobic chamber coordinates the acyl tails during the catalytic process. The PC-like density disappears in the structure of the complex with CDP-choline, suggesting a potential substrate-triggered product release mechanism.


Subject(s)
Choline , Ethanolamines , Humans , Ethanolamines/metabolism , Choline/metabolism , Phosphatidylcholines , Cytidine Diphosphate Choline , Phosphotransferases , Catalysis
17.
J Lipid Res ; 64(3): 100337, 2023 03.
Article in English | MEDLINE | ID: mdl-36716821

ABSTRACT

Liver function indicators are often impaired in patients with type 2 diabetes mellitus (T2DM), who present higher concentrations of aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase than individuals without diabetes. However, the mechanism of liver injury in patients with T2DM has not been clearly elucidated. In this study, we performed a lipidomics analysis on the liver of T2DM mice, and we found that phosphatidylethanolamine (PE) levels were low in T2DM, along with an increase in diglyceride, which may be due to a decrease in the levels of phosphoethanolamine cytidylyltransferase (Pcyt2), thus likely affecting the de novo synthesis of PE. The phosphatidylserine decarboxylase pathway did not change significantly in the T2DM model, although both pathways are critical sources of PE. Supplementation with CDP-ethanolamine (CDP-etn) to increase the production of PE from the CDP-etn pathway reversed high glucose and FFA (HG&FFA)-induced mitochondrial damage including increased apoptosis, decreased ATP synthesis, decreased mitochondrial membrane potential, and increased reactive oxygen species, whereas supplementation with lysophosphatidylethanolamine, which can increase PE production in the phosphatidylserine decarboxylase pathway, did not. Additionally, we found that overexpression of PCYT2 significantly ameliorated ATP synthesis and abnormal mitochondrial morphology induced by HG&FFA. Finally, the BAX/Bcl-2/caspase3 apoptosis pathway was activated in hepatocytes of the T2DM model, which could also be reversed by CDP-etn supplements and PCYT2 overexpression. In summary, in the liver of T2DM mice, Pcyt2 reduction may lead to a decrease in the levels of PE, whereas CDP-etn supplementation and PCYT2 overexpression ameliorate partial mitochondrial function and apoptosis in HG&FFA-stimulated L02 cells.


Subject(s)
Diabetes Mellitus, Type 2 , Phosphatidylethanolamines , Mice , Animals , Phosphatidylethanolamines/metabolism , Diabetes Mellitus, Type 2/metabolism , RNA Nucleotidyltransferases/metabolism , Ethanolamines/pharmacology , Ethanolamines/metabolism , Hepatocytes/metabolism , Mitochondria/metabolism , Apoptosis , Adenosine Triphosphate/metabolism
18.
Int J Mol Sci ; 23(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36293287

ABSTRACT

Phosphatidyl ethanolamine-binding proteins (PEBPs) are involved in regulating flowering time and various developmental processes. Functions and expression patterns in cultivated peanuts (Arachis hypogaea L.) remain unknown. In this study, 33 PEBP genes in cultivated peanuts were identified and divided into four subgroups: FT, TFL, MFT and FT-like. Gene structure analysis showed that orthologs from A and B genomes in cultivated peanuts had highly similar structures, but some orthologous genes have subgenomic dominance. Gene collinearity and phylogenetic analysis explain that some PEBP genes play key roles in evolution. Cis-element analysis revealed that PEBP genes are mainly regulated by hormones, light signals and stress-related pathways. Multiple PEPB genes had different expression patterns between early and late-flowering genotypes. Further detection of its response to temperature and photoperiod revealed that PEBPs ArahyM2THPA, ArahyEM6VH3, Arahy4GAQ4U, ArahyIZ8FG5, ArahyG6F3P2, ArahyLUT2QN, ArahyDYRS20 and ArahyBBG51B were the key genes controlling the flowering response to different flowering time genotypes, photoperiods and temperature. This study laid the foundation for the functional study of the PEBP gene in cultivated peanuts and the adaptation of peanuts to different environments.


Subject(s)
Arachis , Gene Expression Regulation, Plant , Arachis/genetics , Arachis/metabolism , Phylogeny , Flowers/metabolism , Plant Proteins/metabolism , Genomics , Hormones/metabolism , Ethanolamines/metabolism
19.
Infect Immun ; 90(10): e0013622, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36125307

ABSTRACT

The opportunistic human pathogen Pseudomonas aeruginosa PAO1 has an extensive metabolism, enabling it to utilize a wide range of structurally diverse compounds to meet its nutritional and energy needs. Interestingly, the utilization of some of the more unusual compounds often associated with a eukaryotic-host environment is regulated via enhancer-binding proteins (EBPs) in P. aeruginosa. Whether the utilization of such compounds and the EBPs involved contribute to the pathogenesis of P. aeruginosa remains to be fully understood. To narrow this gap, we investigated the roles of the EBPs EatR (regulator of ethanolamine catabolism), DdaR (regulator of methylarginine catabolism), and MifR (regulator of α-ketoglutarate or α-KG transport) in the virulence of P. aeruginosa PAO1 in a pneumonia-induced septic mouse model. Deletion of genes encoding EatR and DdaR had no significant effect on the mortality of P. aeruginosa PAO1-infected mice compared to wide-type (WT) PAO1-infected mice. In contrast, infected mice with ΔmifR mutant exhibited a significant reduction (~50%) in the mortality rate compared with WT PAO1 (P < 0.05). Infected mice with ΔmifR PAO1 had lower lung injury scores, fewer inflammatory cells, decreased proinflammatory cytokines, and decreased apoptosis and cell death compared to mice infected with WT PAO1 (P < 0.05). Furthermore, molecular analysis revealed decreased NLRP3 inflammasome activation in infected mice with ΔmifR PAO1 compared to WT PAO1 (P < 0.05). These results suggested that the utilization of α-KG was a contributing factor in P. aeruginosa-mediated pneumonia and sepsis and that MifR-associated regulation may be a potential therapeutic target for P. aeruginosa infectious disease.


Subject(s)
Pneumonia , Pseudomonas Infections , Humans , Mice , Animals , Pseudomonas aeruginosa/genetics , Virulence , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/pharmacology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Bacterial Proteins/metabolism , Disease Models, Animal , DNA-Binding Proteins/metabolism , Cytokines/metabolism , Ethanolamines/metabolism
20.
Arch Biochem Biophys ; 729: 109376, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36007576

ABSTRACT

Selenoprotein I (selenoi) is a unique selenocysteine (Sec)-containing protein widely expressed throughout the body. Selenoi belongs to two different protein families: the selenoproteins that are characterized by a redox reactive Sec residue and the lipid phosphotransferases that contain the highly conserved cytidine diphosphate (CDP)-alcohol phosphotransferase motif. Selenoi catalyzes the third reaction of the CDP-ethanolamine branch of the Kennedy pathway within the endoplasmic reticulum membrane. This is not a redox reaction and does not directly involve the Sec residue, making selenoi quite distinct among selenoproteins. Selenoi is also unique among lipid phosphotransferases as the only family member containing a Sec residue near its C-terminus that serves an unknown function. The reaction catalyzed by selenoi involves the transfer of the ethanolamine phosphate group from CDP-ethanolamine to one of two lipid donors, 1,2-diacylglycerol (DAG) or 1-alkyl-2-acylglycerol (AAG), to produce PE or plasmanyl PE, respectively. Plasmanyl PE is subsequently converted to plasmenyl PE by plasmanylethanolamine desaturase. Both PE and plasmenyl PE are critical phospholipids in the central nervous system (CNS), as demonstrated through clinical studies involving SELENOI mutations as well as studies in cell lines and mice. Deletion of SELENOI in mice is embryonic lethal, while loss-of-function mutations in the human SELENOI gene have been found in rare cases leading to a form of hereditary spastic paraplegia (HSP). HSP is an upper motor disease characterized by spasticity of the lower limbs, which is often manifested with other symptoms such as impaired vision/hearing, ataxia, cognitive/intellectual impairment, and seizures. This article will summarize the current understanding of selenoi as a metabolic enzyme and discuss its role in the CNS physiology and pathophysiology.


Subject(s)
Phospholipids , Selenocysteine , Animals , Central Nervous System/metabolism , Cytidine Diphosphate/analogs & derivatives , Cytidine Diphosphate/metabolism , Ethanolamines/metabolism , Humans , Mice , Phospholipids/metabolism , Phosphotransferases , Selenoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...