Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.257
Filter
1.
PLoS One ; 19(5): e0294839, 2024.
Article in English | MEDLINE | ID: mdl-38768148

ABSTRACT

Rare species are often considered inferior competitors due to occupancy of small ranges, specific habitats, and small local populations. However, the phylogenetic relatedness and rarity level (level 1-7 and common) of interacting species in plant-plant interactions are not often considered when predicting the response of rare plants in a biotic context. We used a common garden of 25 species of Tasmanian Eucalyptus, to differentiate non-additive patterns in the biomass of rare versus common species when grown in mixtures varying in phylogenetic relatedness and rarity. We demonstrate that rare species maintain progressively positive non-additive responses in biomass when interacting with phylogenetically intermediate, less rare and common species. This trend is not reflected in common species that out-performed in monocultures compared to mixtures. These results offer predictability as to how rare species' productivity will respond within various plant-plant interactions. However, species-specific interactions, such as those involving E. globulus, yielded a 97% increase in biomass compared to other species-specific interaction outcomes. These results are important because they suggest that plant rarity may also be shaped by biotic interactions, in addition to the known environmental and population factors normally used to describe rarity. Rare species may utilize potentially facilitative interactions with phylogenetically intermediate and common species to escape the effects of limiting similarity. Biotically mediated increases in rare plant biomass may have subsequent effects on the competitive ability and geographic occurrence of rare species, allowing rare species to persist at low abundance across plant communities. Through the consideration of species rarity and evolutionary history, we can more accurately predict plant-plant interaction dynamics to preserve unique ecosystem functions and fundamentally challenge what it means to be "rare".


Subject(s)
Biomass , Eucalyptus , Phylogeny , Eucalyptus/growth & development , Eucalyptus/genetics , Ecosystem , Biological Evolution , Species Specificity , Plants/classification
2.
BMC Plant Biol ; 24(1): 471, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811870

ABSTRACT

BACKGROUND: Nutritional disorders of phosphorus (P), due to deficiency or toxicity, reduce the development of Eucalyptus spp. seedlings. Phosphorus deficiency often results in stunted growth and reduced vigor, while phosphorus toxicity can lead to nutrient imbalances and decreased physiological function. These sensitivities highlight the need for precise management of P levels in cultivation practices. The use of the beneficial element silicon (Si) has shown promising results under nutritional stress; nevertheless, comprehensive studies on its effects on Eucalyptus spp. seedlings are still emerging. To further elucidate the role of Si under varying P conditions, an experiment was conducted with clonal seedlings of a hybrid Eucalyptus spp. (Eucalyptus grandis × Eucalyptus urophylla, A207) in a soilless cultivation system. Seedlings were propagated using the minicutting method in vermiculite-filled tubes, followed by treatment with a nutrient solution at three P concentrations: a deficient dose (0.1 mM), an adequate dose (1.0 mM) and an excessive dose (10 mM), with and without the addition of Si (2mM). This study assessed P and Si concentration, nutritional efficiency, oxidative metabolism, photosynthetic parameters, and dry matter production. RESULTS: Si supply increased phenolic compounds production and reduced electrolyte leakage in seedlings provided with 0.1 mM of P. On the other hand, Si favored quantum efficiency of photosystem II as well as chlorophyll a content in seedlings supplemented with 10 mM of P. In general, Si attenuates P nutritional disorder by reducing the oxidative stress, favoring the non-enzymatic antioxidant system and photosynthetic parameters in seedlings of Eucalyptus grandis × Eucalyptus urophylla. CONCLUSION: The results of this study indicate that Eucalyptus grandis × Eucalyptus urophylla seedlings are sensitive to P deficiency and toxicity and Si has shown a beneficial effect, attenuating P nutritional disorder by reducing the oxidative stress, favoring the non-enzymatic antioxidant system and photosynthetic parameters.


Subject(s)
Eucalyptus , Phosphorus , Photosynthesis , Seedlings , Silicon , Eucalyptus/drug effects , Eucalyptus/physiology , Seedlings/physiology , Seedlings/drug effects , Seedlings/growth & development , Silicon/pharmacology , Phosphorus/metabolism , Phosphorus/deficiency , Photosynthesis/drug effects , Antioxidants/metabolism , Chlorophyll/metabolism , Oxidative Stress/drug effects
3.
PeerJ ; 12: e17385, 2024.
Article in English | MEDLINE | ID: mdl-38818452

ABSTRACT

Background: Koalas, an Australian arboreal marsupial, depend on eucalypt tree leaves for their diet. They selectively consume only a few of the hundreds of available eucalypt species. Since the koala gut microbiome is essential for the digestion and detoxification of eucalypts, their individual differences in the gut microbiome may lead to variations in their eucalypt selection and eucalypt metabolic capacity. However, research focusing on the relationship between the gut microbiome and differences in food preferences is very limited. We aimed to determine whether individual and regional differences exist in the gut microbiome of koalas as well as the mechanism by which these differences influence eucalypt selection. Methods: Foraging data were collected from six koalas and a total of 62 feces were collected from 15 koalas of two zoos in Japan. The mitochondrial phylogenetic analysis was conducted to estimate the mitochondrial maternal origin of each koala. In addition, the 16S-based gut microbiome of 15 koalas was analyzed to determine the composition and diversity of each koala's gut microbiome. We used these data to investigate the relationship among mitochondrial maternal origin, gut microbiome and eucalypt diet selection. Results and Discussion: This research revealed that diversity and composition of the gut microbiome and that eucalypt diet selection of koalas differs among regions. We also revealed that the gut microbiome alpha diversity was correlated with foraging diversity in koalas. These individual and regional differences would result from vertical (maternal) transmission of the gut microbiome and represent an intraspecific variation in koala foraging strategies. Further, we demonstrated that certain gut bacteria were strongly correlated with both mitochondrial maternal origin and eucalypt foraging patterns. Bacteria found to be associated with mitochondrial maternal origin included bacteria involved in fiber digestion and degradation of secondary metabolites, such as the families Rikenellaceae and Synergistaceae. These bacteria may cause differences in metabolic capacity between individual and regional koalas and influence their eucalypt selection. Conclusion: We showed that the characteristics (composition and diversity) of the gut microbiome and eucalypt diet selection of koalas differ by individuals and regional origins as we expected. In addition, some gut bacteria that could influence eucalypt foraging of koalas showed the relationships with both mitochondrial maternal origin and eucalypt foraging pattern. These differences in the gut microbiome between regional origins may make a difference in eucalypt selection. Given the importance of the gut microbiome to koalas foraging on eucalypts and their strong symbiotic relationship, future studies should focus on the symbiotic relationship and coevolution between koalas and the gut microbiome to understand individual and regional differences in eucalypt diet selection by koalas.


Subject(s)
Eucalyptus , Gastrointestinal Microbiome , Phascolarctidae , Animals , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/genetics , Phascolarctidae/microbiology , Eucalyptus/microbiology , Female , Diet/veterinary , Feces/microbiology , Food Preferences , Phylogeny , Male , Japan , Maternal Inheritance/genetics
4.
Sci Rep ; 14(1): 10641, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724571

ABSTRACT

Although Eucalyptus is widely planted outside its native range for timber and pulp production, the effects of these exotic plantations on biodiversity relative to native semi-natural forests or plantations of native tree species remain incompletely understood. Here, we compare the diversity of saproxylic beetles (Coleoptera) and true bugs (Hemiptera) between non-native Eucalyptus benthamii Maiden and Cambage (Camden white gum) and native Pinus taeda L. (loblolly pine) stands on the upper Coastal Plain of South Carolina, U.S.A. We sampled insects emerging from logs of both species placed in both stand types after 1, 2, 6, and 12 months in the field. Beetle and true bug richness and diversity were both significantly lower from eucalypt than from pine wood. Moreover, the two communities were compositionally distinct. Whereas pine supported many species of host-specific phloeoxylophagous beetles, most species collected from eucalypts were mycophagous or predatory taxa capable of utilizing a wide range of hosts. Species richness did not differ between logs placed in eucalypt vs. pine stands but Shannon's diversity was significantly higher in the eucalypt stands, possibly due to greater sun exposure in the latter. Contrary to a previous study, we found no support for the idea that eucalypt litter reduces the diversity of saproxylic insects. Our findings add to the growing body of evidence that non-native plantations are less favorable to biodiversity than those consisting of native tree species.


Subject(s)
Biodiversity , Coleoptera , Eucalyptus , Plant Leaves , Animals , Coleoptera/physiology , Plant Leaves/chemistry , Wood , Forests , Hemiptera/physiology , Southeastern United States , South Carolina
5.
Environ Sci Pollut Res Int ; 31(24): 35789-35799, 2024 May.
Article in English | MEDLINE | ID: mdl-38744761

ABSTRACT

Thermo-mechanical pulping produces well-individualized fibers compared to wood particles and less fragile fibers compared to Kraft pulping, besides presenting higher volume, higher yield, and lower production cost, which can be an exciting alternative for the fiber-cement industries. This study evaluated the impact of soak and dry-aging cycles on the performance of extruded composites reinforced with non-bleached eucalyptus fibers. The cement matrix comprised cement (70%) and limestone (30%). Composites were reinforced with 1 to 5% of eucalyptus fiber by cement mass and tested on the 28th day of cure at 99% relative humidity and after 400 accelerated aging cycles. The water absorption and apparent porosity gradually increased with the reinforcement level. Composites with 4 and 5% fibers showed the highest toughness (0.21 and 0.23 kJ/m2, respectively). The aging by 400 soak-dry cycles reduced the composites' water absorption and apparent porosity. The modulus of elasticity (MOE), rupture (MOR), and toughness increased, except for toughness for composites reinforced with 1 and 5% fibers, explained by the cementitious matrix's continuous hydration, fiber mineralization, and natural carbonation. In general, eucalyptus thermo-mechanical fibers were suitable for producing cementitious composites. Cementitious composites with 3% fibers presented a higher MOR, MOE, low water absorption, and apparent porosity after 400 accelerated aging cycles. In addition, the composites with 4% fibers also presented remarkable improvements in these properties. The aging cycles did not result in composites with less resistance, a positive fact for their application as tiles and materials for external use in civil construction.


Subject(s)
Construction Materials , Eucalyptus , Eucalyptus/chemistry , Porosity , Materials Testing
6.
J Environ Manage ; 358: 120796, 2024 May.
Article in English | MEDLINE | ID: mdl-38636423

ABSTRACT

The conversion of native vegetation to agricultural areas leads to a natural process of carbon loss but these systems can stabilize in terms of carbon dynamics depending on the management and conversion time, presenting potential to both store and stabilize this carbon in the soil, resulting in lower soil respiration rates. In this context, this study aimed to investigate the effect of converting native Cerrado forest areas to agricultural systems with a forest planted with Eucalyptus camaldulensis and silvopastoral systems on the dynamics of CO2 emission and carbon stock at different soil depths. The experimental sites are located in the Midwest of Brazil, in the coordinates 20°22'31″ S and 51°24'12″ W. Were evaluated soil CO2 emission (FCO2), soil organic carbon, the degree of humification of soil organic matter (HLIFS), soil temperature, soil moisture, and soil chemical and physical attributes. The soil of the area is classified as an Oxisol (Haplic Acrustox). Soil samples were collected at depths of 0.00-0.10, 0.10-0.20, 0.20-0.30, and 0.30-0.40 m. The lowest FCO2 values were found in the silvopastoral system (1.05 µmol m-2 s-1), followed by the native forest (1.65 µmol m-2 s-1) and the eucalyptus system (1.96 µmol m-2 s-1), indicating a 36% reduction in FCO2 compared to the conversion of the native forest to the silvopastoral system and an increase of 19% when converting the native forest to the eucalyptus system. The soil chemical attributes (N, K+, Ca2+, H++Al3+, CEC, and organic carbon) showed a decrease along the profile. The shallowest depths (0.00-0.10 and 0.10-0.20 m) presented no differences between systems but the subsequent depths (0.20-0.30 and 0.30-0.40 m) had a difference (95% confidence interval), relative to N, Ca2+, H++Al3, CEC, and organic carbon stock (OCS), and the soil under silvopastoral system showed a higher concentration of these attributes than the native forest. The multivariate analysis showed that the eucalyptus and silvopastoral systems did not differ from the forest in the shallowest soil layer but differed from each other. This behavior changed from the second assessed depth (0.10-0.20 m), in which the silvopastoral system stands out, differing both from the eucalyptus system and from the native forest, and this behavior is maintained at the following depths (0.20-0.30 and 0.30-0.40 m). OCS, H++Al3, CEC, and nitrogen are strongly related to land use change for silvopastoral system. Regarding the behavior/relationship of attributes as a function of depth, the silvopastoral system contributed to soil carbon accumulation and stability over consecutive years.


Subject(s)
Agriculture , Carbon Dioxide , Carbon , Forests , Soil , Soil/chemistry , Carbon/analysis , Carbon Dioxide/analysis , Brazil , Eucalyptus
7.
Sci Total Environ ; 930: 172365, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38641118

ABSTRACT

Mining tailings containing large amounts of Pb and Cd cause severe regional ecosystem pollution. Soil microorganisms play a regulatory role in the restoration of degraded ecosystems. The remediation of heavy metal-contaminated tailings with amendments and economically valuable Eucalyptus camaldulensis is a research hotspot due to its cost-effectiveness and sustainability. However, the succession and co-occurrence patterns of these microbial communities in this context remain unclear. Tailing samples of five kinds of Cd and Pb were collected in E. camaldulensis restoration models. Physicochemical properties, the proportions of different Cd and Pb forms, microbial community structure, and the co-occurrence network of rhizosphere tailings during different restoration process (organic bacterial manure, organic manure, inorganic fertilizer, bacterial agent) were considered. Organic and organic bacterial manures significantly increased pH, cation exchange capacity, and the proportion of residual Pb. Still, there was a significant decrease in the proportion of reducible Pb. The changes in microbial communities were related to physicochemical properties and the types of amendments. Organic and organic bacterium manures decreased the relative abundance of oligotrophic groups and increased the relative abundance of syntrophic groups. Inorganic fertilizers and bacterial agents decreased the relative abundance of saprophytic fungi. B. subtilis would play a better role in the environment improved by organic manure, increasing the relative abundance of beneficial microorganism and reducing the relative abundance of pathogenic microorganism. pH, cation exchange capacity, and the proportion of different forms of Pb were the main factors affecting the bacterial and fungi variation. All four amendments transformed the main critical groups of the microbial network structure from acidophilus and pathogenic microorganisms to beneficial microorganisms. Heavy metal-resistant microorganisms, stress-resistant microorganisms, beneficial microorganisms that promote nutrient cycling, and copiotrophic groups have become critical to building stable rhizosphere microbial communities. The topological properties and stability of the rhizosphere co-occurrence network were also enhanced. Adding organic and organic bacterium manures combined with E. camaldulensis to repair Cd and Pb tailings improved (1) pH and cation exchange capacity, (2) reduced the biological toxicity of Pb, (3) enhanced the stability of microbial networks, and (4) improved ecological network relationships. These positive changes are conducive to the restoration of the ecological functions of tailings.


Subject(s)
Cadmium , Eucalyptus , Lead , Mining , Rhizosphere , Soil Microbiology , Soil Pollutants , Lead/analysis , Soil Pollutants/analysis , Cadmium/analysis , Microbiota , Fertilizers , Bacteria , Environmental Restoration and Remediation/methods , Biodegradation, Environmental
8.
PeerJ ; 12: e17022, 2024.
Article in English | MEDLINE | ID: mdl-38563017

ABSTRACT

Eucalyptus camaldulensis is a multifunctional tree and is globally used for the reclamation of problematic lands. Eucalyptus camaldulensis is prone to attack by a number of pathogens, but the most important threat is the Fusarium wilt (Fusarium oxysporum). Keeping in view the importance of E. camaldulensis and to manage this disease, five plant activators, i.e., salicylic acid (C7H6O3), benzoic acid (C7H6O2), citric acid (C6H8O7), dipotassium phosphate (K2HPO4), monopotassium phosphate (KH2PO4) and nutritional mixture namely Compound (NPK) and nutriotop (Fe, Zn, Cu, B, Mn) were evaluated in the Fusarium infested field under RCBD in the Research Area, Department of Forestry and Range Management, University of Agriculture, Faisalabad (UAF). Among plant activators, salicylic acid and a combination of compound + nutriotop exhibited the lowest disease incidence and enhanced fresh and dry weight of leaves compared to other treatments and control. Results of the environmental study indicated maximum disease incidence between 35-40 °C (max. T), 6-25 °C (mini. T), 70-80% relative humidity and 1.5-2.5 km/h wind speed while pan evaporation expressed weak correlation with disease development. It was concluded that Fusarium wilt of Eucalyptus camaldulensis could be managed through activation of the basal defense system of the host plant with provision of salicylic acid and balanced nutrition by considering environmental factors. Recent exploration is expected to be helpful for future research efforts on epidemiology and ecologically sound intervention of Fusarium wilt of Eucalyptus camaldulensis.


Subject(s)
Eucalyptus , Fusarium , Salicylic Acid , Plant Leaves , Phosphates
9.
Pestic Biochem Physiol ; 200: 105834, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582576

ABSTRACT

Acetylcholinesterase (AChE) inhibitors cause insect death by preventing the hydrolysis of the neurotransmitter acetylcholine, which overstimulates the nervous system. In this study, isorhapontin, isolated from E. globulus leaves, was evaluated as a natural insecticide with AChE inhibition at 12.5 µM. Using kinetic analyses, we found that isorhapontin acted as a competitive inhibitor that binds to the active site of AChE. The inhibition constant (Ki) was 6.1 µM. Furthermore, isorhapontin and resveratrol, which have basic skeletons, were predicted to bind to the active site of AChE via molecular docking. A comparison of the hydrogen bonding between the two stilbenes revealed characteristic differences in their interactions with amino acids. In isorhapontin, Trp83, Gly149, Tyr162, Tyr324, and Tyr370 interacted with the sugar moiety. These results suggest that with further development, isorhapontin can be used as an insecticide alternative.


Subject(s)
Eucalyptus , Insecticides , Stilbenes , Acetylcholinesterase/metabolism , Insecticides/pharmacology , Molecular Docking Simulation , Eucalyptus/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Plant Leaves/metabolism
10.
Genome Res ; 34(4): 606-619, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38589251

ABSTRACT

Genomes have a highly organized architecture (nonrandom organization of functional and nonfunctional genetic elements within chromosomes) that is essential for many biological functions, particularly gene expression and reproduction. Despite the need to conserve genome architecture, a high level of structural variation has been observed within species. As species separate and diverge, genome architecture also diverges, becoming increasingly poorly conserved as divergence time increases. However, within plant genomes, the processes of genome architecture divergence are not well described. Here we use long-read sequencing and de novo assembly of 33 phylogenetically diverse, wild and naturally evolving Eucalyptus species, covering 1-50 million years of diverging genome evolution to measure genome architectural conservation and describe architectural divergence. The investigation of these genomes revealed that following lineage divergence, genome architecture is highly fragmented by rearrangements. As genomes continue to diverge, the accumulation of mutations and the subsequent divergence beyond recognition of rearrangements become the primary driver of genome divergence. The loss of syntenic regions also contribute to genome divergence but at a slower pace than that of rearrangements. We hypothesize that duplications and translocations are potentially the greatest contributors to Eucalyptus genome divergence.


Subject(s)
Eucalyptus , Evolution, Molecular , Genome, Plant , Eucalyptus/genetics , Synteny , Gene Rearrangement , Phylogeny , Chromosomes, Plant/genetics , Genetic Variation
11.
Environ Monit Assess ; 196(5): 423, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38570374

ABSTRACT

Mobile herbicides have a high potential for groundwater contamination. An alternative to decrease the mobility of herbicides is to apply materials with high sorbent capacity to the soil, such as biochars. The objective of this research was to evaluate the effect of eucalyptus, rice hull, and native bamboo biochar amendments on sorption and desorption of hexazinone, metribuzin, and quinclorac in a tropical soil. The sorption-desorption was evaluated using the batch equilibrium method at five concentrations of hexazinone, metribuzin, and quinclorac. Soil was amended with eucalyptus, rice hull, and native bamboo biochar at a rate of 0 (control-unamended) and 1% (w w-1), corresponding to 0 and 12 t ha-1, respectively. The amount of sorbed herbicides in the unamended soil followed the decreasing order: quinclorac (65.9%) > metribuzin (21.4%) > hexazinone (16.0%). Native bamboo biochar provided the highest sorption compared to rice hull and eucalyptus biochar-amended soils for the three herbicides. The amount of desorbed herbicides in the unamended soil followed the decreasing order: metribuzin (18.35%) > hexazinone (15.9%) > quinclorac (15.1%). Addition of native bamboo biochar provided the lowest desorption among the biochar amendments for the three herbicides. In conclusion, the biochars differently affect the sorption and desorption of hexazinone, metribuzin, and quinclorac mobile herbicides in a tropical soil. The addition of eucalyptus, rice hull, and native bamboo biochars is a good alternative to increase the sorption of hexazinone, metribuzin, and quinclorac, thus, reducing mobility and availability of these herbicides to nontarget organisms in soil.


Subject(s)
Eucalyptus , Herbicides , Oryza , Quinolines , Sasa , Soil Pollutants , Triazines , Charcoal , Soil , Adsorption , Environmental Monitoring , Herbicides/analysis , Soil Pollutants/analysis
12.
New Phytol ; 242(5): 1932-1943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641865

ABSTRACT

Large trees in plantations generally produce more wood per unit of resource use than small trees. Two processes may account for this pattern: greater photosynthetic resource use efficiency or greater partitioning of carbon to wood production. We estimated gross primary production (GPP) at the individual scale by combining transpiration with photosynthetic water-use efficiency of Eucalyptus trees. Aboveground production fluxes were estimated using allometric equations and modeled respiration; total belowground carbon fluxes (TBCF) were estimated by subtracting aboveground fluxes from GPP. Partitioning was estimated by dividing component fluxes by GPP. Dominant trees produced almost three times as much wood as suppressed trees. They used 25 ± 10% (mean ± SD) of their photosynthates for wood production, whereas suppressed trees only used 12 ± 2%. By contrast, dominant trees used 27 ± 19% of their photosynthate belowground, whereas suppressed trees used 58 ± 5%. Intermediate trees lay between these extremes. Photosynthetic water-use efficiency of dominant trees was c. 13% greater than the efficiency of suppressed trees. Suppressed trees used more than twice as much of their photosynthate belowground and less than half as much aboveground compared with dominant trees. Differences in carbon partitioning were much greater than differences in GPP or photosynthetic water-use efficiency.


Subject(s)
Carbon , Eucalyptus , Photosynthesis , Trees , Water , Wood , Eucalyptus/physiology , Eucalyptus/metabolism , Carbon/metabolism , Trees/physiology , Trees/metabolism , Water/metabolism , Wood/physiology , Plant Transpiration/physiology , Models, Biological
13.
Int J Biol Macromol ; 266(Pt 1): 131141, 2024 May.
Article in English | MEDLINE | ID: mdl-38537855

ABSTRACT

Wood fiber as a natural and renewable material has low cost and plenty of functional groups, which owns the ability to adsorb dyes. In order to improve the application performance of wood fiber in dye-pollution wastewater, Eucalyptus wood fiber loaded nanoscale zero-valent iron (EWF-nZVI) was developed to give EWF magnetism and the ability to degrade dyes. EWF-nZVI was characterized via FTIR, XRD, zeta potential, VSM, SEM-EDS and XPS. Results showed that EWF-nZVI owned a strong magnetism of 96.51 emu/g. The dye removal process of EWF-nZVI was more in line with the pseudo-second-order kinetics model. In addition, the Langmuir isotherm model fitting results showed that the maximum removal capacities of Congo red and Rhodamine B by EWF-nZVI were 714.29 mg/g and 68.49 mg/g at 328 K, respectively. After five adsorption-desorption cycles, the regeneration efficiencies of Congo red and Rhodamine B were 74 % and 42 % in turn. The dye removal mechanisms of EWF-nZVI included redox degradation (Congo red and Rhodamine B) and electrostatic adsorption (Congo red). In summary, EWF-nZVI is a promising biomass-based material with high dye removal capacities. This work is beneficial to promote the large-scale application of wood fiber in water treatment.


Subject(s)
Coloring Agents , Eucalyptus , Iron , Wastewater , Water Pollutants, Chemical , Water Purification , Wood , Eucalyptus/chemistry , Wastewater/chemistry , Wood/chemistry , Coloring Agents/chemistry , Coloring Agents/isolation & purification , Iron/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Water Purification/methods , Kinetics , Metal Nanoparticles/chemistry , Hydrogen-Ion Concentration , Congo Red/chemistry , Congo Red/isolation & purification , Rhodamines/chemistry
14.
Int J Biol Macromol ; 266(Pt 2): 131001, 2024 May.
Article in English | MEDLINE | ID: mdl-38547951

ABSTRACT

The main objective of this work is to develop biodegradable active films through the combination of the extracts with different solvents sourced from Eucalyptus citriodora leaves, with films made of chitosan (Cs) and polyvinylpyrrolidone (PVP). Chromatographic profiling investigations were carried out to examine the antibacterial characteristics of E. citriodora extracts before their direct incorporation into the polymer films. At this point, the potent antimicrobial properties of the phenol compounds and bioactive components demonstrated an antibacterial activity that was particularly noticeable at a hexane resolution. Different morphological characteristics were seen on films made from these solvent extracts, such as Cs/PVP-AE, Cs/PVP-EAE, and Cs/PVP-HE, when scanning electron microscopy was used. Numerous other outcomes of all the interactions between the extract particles and the film were shown by the pores defined by the Cs/PVP film's porous nature. The addition of the extracts, either alone or in combination, greatly enhanced the Cs/NC/PVP films' mechanical characteristics. It has also been shown that adding plant extracts greatly increased the antibacterial activity of these films. These findings reveal that Cs/PVP films loaded with extract may be utilized as more environmentally acceptable substitutes for possible food packaging application by increasing shelf life of food products.


Subject(s)
Anti-Bacterial Agents , Chitosan , Eucalyptus , Plant Extracts , Povidone , Chitosan/chemistry , Eucalyptus/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Povidone/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Food Packaging , Microbial Sensitivity Tests
15.
Toxicol Sci ; 199(2): 332-348, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38544285

ABSTRACT

Exposure to wildfire smoke is associated with both acute and chronic cardiopulmonary illnesses, which are of special concern for wildland firefighters who experience repeated exposure to wood smoke. It is necessary to better understand the underlying pathophysiology by which wood smoke exposure increases pulmonary disease burdens in this population. We hypothesize that wood smoke exposure produces pulmonary dysfunction, lung inflammation, and gene expression profiles associated with future pulmonary complications. Male Long-Evans rats were intermittently exposed to smoldering eucalyptus wood smoke at 2 concentrations, low (11.0 ± 1.89 mg/m3) and high (23.7 ± 0.077 mg/m3), over a 2-week period. Whole-body plethysmography was measured intermittently throughout. Lung tissue and lavage fluid were collected 24 h after the final exposure for transcriptomics and metabolomics. Increasing smoke exposure upregulated neutrophils and select cytokines in the bronchoalveolar lavage fluid. In total, 3446 genes were differentially expressed in the lungs of rats in the high smoke exposure and only 1 gene in the low smoke exposure (Cd151). Genes altered in the high smoke group reflected changes to the Eukaryotic Initiation Factor 2 stress and oxidative stress responses, which mirrored metabolomics analyses. xMWAS-integrated analysis revealed that smoke exposure significantly altered pathways associated with oxidative stress, lung morphogenesis, and tumor proliferation pathways. These results indicate that intermittent, 2-week exposure to eucalyptus wood smoke leads to transcriptomic and metabolic changes in the lung that may predict future lung disease development. Collectively, these findings provide insight into cellular signaling pathways that may contribute to the chronic pulmonary conditions observed in wildland firefighters.


Subject(s)
Eucalyptus , Lung , Rats, Long-Evans , Smoke , Animals , Male , Smoke/adverse effects , Lung/drug effects , Lung/metabolism , Wood , Rats , Bronchoalveolar Lavage Fluid/chemistry , Metabolome/drug effects , Transcriptome/drug effects , Inhalation Exposure/adverse effects , Cytokines/metabolism , Cytokines/genetics
16.
Int J Mol Sci ; 25(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474187

ABSTRACT

Pheromone-binding proteins (PBPs) are specific odorant-binding proteins that can specifically recognize insect pheromones. Through transcriptional analysis of the antennae of adult Endoclita signifer, EsigPBP3 was discovered and identified, and EsigPBP3 was found to be highly expressed in the antennae of male moths. Based on the binding characteristics and ability of EsigPBP3, we can find the key ligands and binding site to consider as a target to control the key wood bore E. signifier. In this study, the fluorescence competitive binding assays (FCBA) showed that EsigPBP3 had a high binding affinity for seven key eucalyptus volatiles. Molecular docking analysis revealed that EsigPBP3 had the strongest binding affinity for the sexual pheromone component, (3E,7E)-4,7,11-trimethyl-1,3,7,10-dodecatetraene. Furthermore, same as the result of FCBA, the EsigPBP3 exhibited high binding affinities to key eucalyptus volatiles, eucalyptol, α-terpinene, (E)-beta-ocimene, (-)-ß-pinene, and (-)-α-pinene, and PHE35, MET7, VAL10, PHE38, ILE52, and PHE118 are key sites. In summary, EsigPBP3 exhibits high binding affinity to male pheromones and key volatile compounds and the crucial binding sites PHE35, MET7, VAL10, PHE38, ILE52, and PHE118 can act as targets in the recognition of E. signifier pheromones.


Subject(s)
Eucalyptus , Moths , Receptors, Odorant , Male , Animals , Pheromones/metabolism , Carrier Proteins/metabolism , Eucalyptus/metabolism , Molecular Docking Simulation , Moths/metabolism , Receptors, Odorant/metabolism , Insect Proteins/metabolism
17.
Braz J Biol ; 84: e281361, 2024.
Article in English | MEDLINE | ID: mdl-38451631

ABSTRACT

The present study sought to evaluate the antimicrobial and anti-adherent potential of Eucalyptus radiata essential oil against food-borne strains of Escherichia coli. The study was performed using the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). In addition, the disk diffusion technique was used to evaluate the association of Eucalyptus radiata essential oil with synthetic antimicrobials. The Minimum Inhibitory Adherence Concentration (MIC) was also performed. The results revealed that E. radiata showed antimicrobial activity against the E. coli strains tested, with MIC values ranging from 500 µg/mL to 1000 µg/mL and MBC values ranging from 500 µg/mL to 1,024 µg/mL. As for the associations, it was observed that E. radiata oil exhibited a synergistic effect for some antibiotics, especially Ceftriaxone, with greater interference from the essential oil. Furthermore, it was effective in inhibiting the adherence of bacterial strains of E. coli, showing a more significant antibiofilm effect than the antibacterial agent 0.12% chlorhexidine digluconate. In summary, the essential oil of E. radiata showed antimicrobial potential against strains of E. coli of food origin, and can therefore, through in-depth studies, be used alone or in association with synthetic antimicrobials to combat infections caused by this pathogen.


Subject(s)
Eucalyptus , Meat Products , Oils, Volatile , Escherichia coli , Oils, Volatile/pharmacology , Anti-Bacterial Agents/pharmacology
18.
Plant Physiol Biochem ; 208: 108446, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422579

ABSTRACT

Adaptive responses to abiotic stresses such as soil acidity in Eucalyptus-the most widely planted broad-leaf forest genus globally-are poorly understood. This is particularly evident in physiological and anatomical disorders that inhibit plant development and wood quality. We aimed to explore how the supply of Ca and Mg through liming (lime), combined with Cu and Zn fertilization (CZF), influences physiological and anatomical responses during Eucalyptus grandis seedlings growth in tropical acid soil. Therefore, related parameters of leaf area and leaf anatomy, stomatal size, leaf gas exchange, antioxidant system, nutrient partitioning, and biomass allocation responses were monitored. Liming alone in Eucalyptus increased specific leaf area, stomatal density on the abaxial leaf surface, and Ca and Mg content. Also, Eucalyptus exposed only to CZF increased Cu and Zn content. Lime and CZF increased leaf blade and adaxial epidermal thickness, and improved the structural organization of the spongy mesophyll, promoting increased net CO2 assimilation, and stomatal conductance. Fertilization with Ca, Mg, Cu, and Zn positively affects plant nutrition, light utilization, photosynthetic rate, and antioxidant performance, improving growth. Our results indicate that lime and CZF induce adaptive responses in the physiological and anatomical adjustments of Eucalyptus plantation, thereby promoting biomass accumulation.


Subject(s)
Calcium Compounds , Eucalyptus , Oxides , Seedlings , Seedlings/metabolism , Eucalyptus/metabolism , Antioxidants/metabolism , Plant Leaves/metabolism , Photosynthesis/physiology , Soil , Zinc/metabolism
19.
BMC Plant Biol ; 24(1): 96, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331783

ABSTRACT

Eucalyptus was one of the most cultivated hardwood species worldwide, with rapid growth, good wood properties and a wide range of adaptability. Eucalyptus stem undergoes primary growth (longitudinal growth) followed by secondary growth (radial growth), which produces biomass that is an important source of energy worldwide. In order to better understand the genetic regulation of secondary growth in Eucalyptus grandis, Transcriptome analyses in stem segments along a developmental gradient from the third internode to the eleventh internode of E. grandis that spanned primary to secondary growth were carried out. 5,149 genes that were differentially expressed during stem development were identified. Combining the trend analysis by the Mfuzz method and the module-trait correlation analysis by the Weighted Gene Co-expression Network Analysis method, a total of 70 differentially expressed genes (DEGs) selected from 868 DEGs with high connectivity were found to be closely correlated with secondary growth. Results revealed that the differential expression of these DEGs suggests that they may involve in the primary growth or secondary growth. AP1, YAB2 TFs and EXP genes are highly expressed in the IN3, whereas NAC, MYB TFs are likely to be important for secondary growth. These results will expand our understanding of the complex molecular and cellular events of secondary growth and provide a foundation for future studies on wood formation in Eucalyptus.


Subject(s)
Eucalyptus , Transcriptome , Eucalyptus/genetics , Eucalyptus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Wood/metabolism , Gene Expression Regulation, Plant
20.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338664

ABSTRACT

Irrigation and fertilization are essential management practices for increasing forest productivity. They also impact the soil ecosystem and the microbial population. In order to examine the soil bacterial community composition and structure in response to irrigation and fertilization in a Eucalyptus plantations, a total of 20 soil samples collected from Eucalyptus plantations were analyzed using high-throughput sequencing. Experimental treatments consisting of control (CK, no irrigation or fertilization), fertilization only (F), irrigation only (W), and irrigation and fertilization (WF). The results showed a positive correlation between soil enzyme activities (urease, cellulase, and chitinase) and fertilization treatments. These enzyme activities were also significantly correlated with the diversity of soil bacterial communities in Eucalyptus plantations.. Bacteria diversity was considerably increased under irrigation and fertilization (W, F, and WF) treatments when compared with the CK treatment. Additionally, the soil bacterial richness was increased in the Eucalyptus plantations soil under irrigation (W and WF) treatments. The Acidobacteria (38.92-47.9%), Proteobacteria (20.50-28.30%), and Chloroflexi (13.88-15.55%) were the predominant phyla found in the Eucalyptus plantations soil. Specifically, compared to the CK treatment, the relative abundance of Proteobacteria was considerably higher under the W, F, and WF treatments, while the relative abundance of Acidobacteria was considerably lower. The contents of total phosphorus, accessible potassium, and organic carbon in the soil were all positively associated with fertilization and irrigation treatments. Under the WF treatment, the abundance of bacteria associated with nitrogen and carbon metabolisms, enzyme activity, and soil nutrient contents showed an increase, indicating the positive impact of irrigation and fertilization on Eucalyptus plantations production. Collectively, these findings provide the scientific and managerial bases for improving the productivity of Eucalyptus plantations.


Subject(s)
Eucalyptus , Soil , Soil/chemistry , Ecosystem , Bacteria , Proteobacteria , Acidobacteria , Carbon , Fertilization , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...