Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.959
Filter
1.
Sci Rep ; 14(1): 12759, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834771

ABSTRACT

Exposure to N2O5 generated by plasma technology activates immunity in Arabidopsis through tryptophan metabolites. However, little is known about the effects of N2O5 exposure on other plant species. Sweet basil synthesizes many valuable secondary metabolites in its leaves. Therefore, metabolomic analyses were performed at three different exposure levels [9.7 (Ex1), 19.4 (Ex2) and 29.1 (Ex3) µmol] to assess the effects of N2O5 on basil leaves. As a result, cinnamaldehyde and phenolic acids increased with increasing doses. Certain flavonoids, columbianetin, and caryophyllene oxide increased with lower Ex1 exposure, cineole and methyl eugenol increased with moderate Ex2 exposure and L-glutathione GSH also increased with higher Ex3 exposure. Furthermore, gene expression analysis by quantitative RT-PCR showed that certain genes involved in the syntheses of secondary metabolites and jasmonic acid were significantly up-regulated early after N2O5 exposure. These results suggest that N2O5 exposure increases several valuable secondary metabolites in sweet basil leaves via plant defense responses in a controllable system.


Subject(s)
Ocimum basilicum , Plant Leaves , Secondary Metabolism , Ocimum basilicum/metabolism , Ocimum basilicum/genetics , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Secondary Metabolism/drug effects , Gene Expression Regulation, Plant , Metabolomics/methods , Flavonoids/metabolism , Eugenol/analogs & derivatives , Eugenol/metabolism , Oxylipins/metabolism
2.
Food Res Int ; 188: 114514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823885

ABSTRACT

Eugenol (EU), a natural bioactive compound found in various plants, offers numerous health benefits, but its application in the food and pharmaceutical industry is limited by its high volatility, instability, and low water solubility. Therefore, this study aimed to utilize the surface coating technique to develop zein-tween-80-fucoidan (Z-T-FD) composite nanoparticles for encapsulating eugenol using a nozzle simulation chip. The physicochemical characteristics of the composite nanoparticles were examined by varying the weight ratios of Z, T, and FD. Results showed that the Z-T-FD weight ratio of 5:1:15 exhibited excellent colloidal stability under a range of conditions, including pH (2-8), salt concentrations (10-500 mmol/L), heating (80 °C), and storage (30 days). Encapsulation of EU into Z-T-FD nanoparticles (0.5:5:1:15) resulted in an encapsulation efficiency of 49.29 ± 1.00%, loading capacity of 0.46 ± 0.05%, particle size of 205.01 ± 3.25 nm, PDI of 0.179 ± 0.006, and zeta-potential of 37.12 ± 1.87 mV. Spherical structures were formed through hydrophobic interaction and hydrogen bonding, as confirmed by Fourier transform infrared spectroscopy and molecular docking. Furthermore, the EU-Z-T-FD (0.5:5:1:15) nanoparticles displayed higher in vitro antioxidant properties (with DPPH and ABTS radical scavenging properties at 75.28 ± 0.16% and 39.13 ± 1.22%, respectively), in vitro bioaccessibility (64.78 ± 1.37%), and retention rates under thermal and storage conditions for EU compared to other formulations. These findings demonstrate that the Z-T-FD nanoparticle system can effectively encapsulate, protect, and deliver eugenol, making it a promising option for applications in the food and pharmaceutical industries.


Subject(s)
Eugenol , Nanoparticles , Polysaccharides , Polysorbates , Zein , Polysaccharides/chemistry , Zein/chemistry , Eugenol/chemistry , Nanoparticles/chemistry , Polysorbates/chemistry , Antioxidants/chemistry , Particle Size , Drug Compounding , Hydrogen-Ion Concentration
3.
AAPS PharmSciTech ; 25(5): 117, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806874

ABSTRACT

Eugenol (Eug) holds potential as a treatment for bacterial rhinosinusitis by nasal powder drug delivery. To stabilization and solidification of volatile Eug, herein, nasal inhalable γ-cyclodextrin metal-organic framework (γ-CD-MOF) was investigated as a carrier by gas-solid adsorption method. The results showed that the particle size of Eug loaded by γ-CD-MOF (Eug@γ-CD-MOF) distributed in the range of 10-150 µm well. In comparison to γ-CD and ß-CD-MOF, γ-CD-MOF has higher thermal stability to Eug. And the intermolecular interactions between Eug and the carriers were verified by characterizations and molecular docking. Based on the bionic human nasal cavity model, Eug@γ-CD-MOF had a high deposition distribution (90.07 ± 1.58%). Compared with free Eug, the retention time Eug@γ-CD-MOF in the nasal cavity was prolonged from 5 min to 60 min. In addition, the cell viability showed that Eug@γ-CD-MOF (Eug content range 3.125-200 µg/mL) was non-cytotoxic. And the encapsulation of γ-CD-MOF could not reduce the bacteriostatic effect of Eug. Therefore, the biocompatible γ-CD-MOF could be a potential and valuable carrier for nasal drug delivery to realize solidification and nasal therapeutic effects of volatile oils.


Subject(s)
Administration, Intranasal , Drug Carriers , Drug Delivery Systems , Eugenol , Metal-Organic Frameworks , Powders , Metal-Organic Frameworks/chemistry , Powders/chemistry , Humans , Eugenol/chemistry , Eugenol/administration & dosage , Eugenol/pharmacology , Administration, Intranasal/methods , Drug Delivery Systems/methods , Drug Carriers/chemistry , Particle Size , Cell Survival/drug effects , Molecular Docking Simulation/methods , gamma-Cyclodextrins/chemistry , Drug Stability , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cyclodextrins/chemistry , Nasal Cavity/metabolism
4.
Anal Chim Acta ; 1310: 342723, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38811138

ABSTRACT

BACKGROUND: Eugenol compounds (EUGs), which share chemical similarities with eugenol, belong to a group of phenolic compounds primarily found in clove oil. They are highly valued by fish dealers due to their exceptional anesthetic properties, playing a crucial role in reducing disease incidence and mortality during the transportation of live fish. Despite their widespread use, the safety of EUGs remains a contentious topic, raising concerns about the safety of aquatic products. This underscores the need for efficient and sensitive analytical methods for detecting EUGs. RESULTS: Nanomaterial-based ratiometric fluorescence immunoassay has gained increasing attention due to its integration of the immunoassay's excellent specificity and compatibility for high-throughput analysis, coupled with the exceptional sensitivity and anti-interference capabilities of ratiometric fluorescence assays. In this study, we developed a sensitive ratiometric fluorescence immunoassay for screening five EUGs. This method employs a broad-specificity monoclonal antibody (mAb) as a recognition reagent, selective for five EUGs. It leverages the horseradish peroxidase (HRP)-triggered formation of fluorescent 2,3-diaminophenazine (DAP) and the quenching of fluorescent gold clusters (Au NCs) for detection. The assay's detection limits for eugenol, isoeugenol, eugenol methyl eugenol, methyl isoeugenol, and acetyl isoeugenol in tilapia fish and shrimp were found to be 9.8/19.5 µg/kg, 0.11/0.22 µg/kg, 19/36 Tilapia ng/kg, 8/16 ng/kg, and 3.0/6.1 µg/kg, respectively. Furthermore, when testing spiked Tilapia fish and shrimp samples, recoveries ranging from 84.1 to 111.9 %, with the coefficients of variation staying below 7.1 % was achieved. SIGNIFICANCE: This work introduces an easy-to-use, broad-specificity, and highly sensitive method for the screening of five EUGs at a pg/mL level, which not only provides a high-throughput strategy for screening eugenol-type fish anesthetics in aquatic products, but also can serve as a benchmark for developing immunoassays for other small molecular pollutants, rendering potent technological support for guarding food safety and human health.


Subject(s)
Eugenol , Gold , Metal Nanoparticles , Eugenol/analysis , Eugenol/analogs & derivatives , Eugenol/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Animals , Immunoassay/methods , Limit of Detection
5.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2680-2688, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812168

ABSTRACT

Methyleugenol is one of the main active constituents in the volatile oil of the traditional Chinese medicine Asari Radix et Rhizoma. It possesses various pharmacological effects such as analgesic, anesthetic, and anti-inflammatory properties. In biosynthesis, the initial precursor phenylalanine is finally converted into methyleugenol through a series of intermediate compounds including coniferyl acid, courmaryl acid, caffeic acid, ferulic acid/ferulic-CoA, coniferyl aldehyde, conferyl alcohol, cnfiferyl acetate, and eugenol/isoeugenol, which are produced through catalysis of a large number of enzymes. Eugenol O-methyltransferase(EOMT) is one of the key enzymes in the biosynthesis pathway, capable of methylating eugenol on the para-site hydroxyl group of the benzene ring, thereby generating methyleugenol. Here, an(iso)eugenol O-methyltransferase(IEMT) gene was cloned for the first time from Asarum siebo-ldii, holding an open reading frame that consisted of 1 113 bp and encoded a protein containing 370 amino acid residues. Bioinformatics analysis results showed that this protein was equipped with the characteristic structural domains of methyltransferases such as S-adenosylmethionine(SAM) binding sites and dimerization domains. The prokaryotic expression recombinant plasmid pET28a(+)-AsIEMT was constructed, and the candidate protein was induced and purified. In vitro enzyme assays confirmed that AsIEMT had dual functions. The enzyme could catalyze the production either of methyleugenol from eugenol or of methylisoeugenol from isoeugenol, although the latter was more prevalent. When isoeugenol was used as the substrate, the kinetics parameters K_m and V_(max) of catalytic reaction were(0.90±0.06) mmol·L~(-1) and(1.32±0.04)nmol·s~(-1)·mg~(-1), respectively. This study expanded our understandings of critical enzyme genes involved in phenylpropanoid metabolic pathways, and would facilitate the elucidation of quality formation mechanisms of the TCM Asari Radix et Rhizoma.


Subject(s)
Asarum , Eugenol , Methyltransferases , Methyltransferases/genetics , Methyltransferases/chemistry , Methyltransferases/metabolism , Eugenol/analogs & derivatives , Eugenol/metabolism , Eugenol/chemistry , Asarum/genetics , Asarum/chemistry , Asarum/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Phylogeny , Amino Acid Sequence , Cloning, Molecular
6.
Sci Rep ; 14(1): 10958, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740853

ABSTRACT

Adoption of plant-derived compounds for the management of oral cancer is encouraged by the scientific community due to emerging chemoresistance and conventional treatments adverse effects. Considering that very few studies investigated eugenol clinical relevance for gingival carcinoma, we ought to explore its selectivity and performance according to aggressiveness level. For this purpose, non-oncogenic human oral epithelial cells (GMSM-K) were used together with the Tongue (SCC-9) and Gingival (Ca9-22) squamous cell carcinoma lines to assess key tumorigenesis processes. Overall, eugenol inhibited cell proliferation and colony formation while inducing cytotoxicity in cancer cells as compared to normal counterparts. The recorded effect was greater in gingival carcinoma and appears to be mediated through apoptosis induction and promotion of p21/p27/cyclin D1 modulation and subsequent Ca9-22 cell cycle arrest at the G0/G1 phase, in a p53-independent manner. At these levels, distinct genetic profiles were uncovered for both cell lines by QPCR array. Moreover, it seems that our active component limited Ca9-22 and SCC-9 cell migration respectively through MMP1/3 downregulation and stimulation of inactive MMPs complex formation. Finally, Ca9-22 behaviour appears to be mainly modulated by the P38/STAT5/NFkB pathways. In summary, we can disclose that eugenol is cancer selective and that its mediated anti-cancer mechanisms vary according to the cell line with gingival squamous cell carcinoma being more sensitive to this phytotherapy agent.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Cell Proliferation , Eugenol , Gingival Neoplasms , Humans , Eugenol/pharmacology , Eugenol/therapeutic use , Gingival Neoplasms/drug therapy , Gingival Neoplasms/pathology , Gingival Neoplasms/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Movement/drug effects , Cell Cycle Checkpoints/drug effects , Chemotherapy, Adjuvant/methods
7.
Nutrients ; 16(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732509

ABSTRACT

Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Eugenol , Mitosis , Reactive Oxygen Species , Animals , Adipogenesis/drug effects , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Mitosis/drug effects , Eugenol/pharmacology , Eugenol/analogs & derivatives , Reactive Oxygen Species/metabolism , Cell Differentiation/drug effects , PPAR gamma/metabolism , Cell Proliferation/drug effects , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Lipid Metabolism/drug effects , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Antioxidants/pharmacology
8.
Sci Rep ; 14(1): 12424, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816435

ABSTRACT

Plant essential oils contain many secondary metabolites, some of which can effectively inhibit the growth of pathogenic microorganisms, so it is a very promising antibacterial agent. In this study, a qualitative and quantitative method based on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed for the simultaneous determination of three bioactive substances, cinnamaldehyde (CNM), thymol (THY), and eugenol (EUG), in the essential oils of plants. Necessary tests for linearity, limit of quantification, recovery, carryover contamination and precision of the method were carried out. Then, the antibacterial activity of 3 bioactive compounds against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was evaluated by minimal inhibitory concentration and the synergistic antimicrobial effect. The results indicated that CNM, THY and EUG had good antibacterial activity. According to the results of fractional inhibitory concentration index (FICI), it is considered that CNM + THY and CNM + THY + EUG has obvious synergistic inhibitory effect on E. coli, and CNM + THY and CNM + EUG has obvious synergistic inhibitory effect on S. aureus. Finally, we analyzed the effect of the bioactive compounds on trace elements in bacteria and found significant changes in magnesium, calcium, copper and iron.


Subject(s)
Acrolein , Anti-Bacterial Agents , Escherichia coli , Eugenol , Microbial Sensitivity Tests , Oils, Volatile , Staphylococcus aureus , Tandem Mass Spectrometry , Thymol , Eugenol/pharmacology , Acrolein/analogs & derivatives , Acrolein/pharmacology , Thymol/pharmacology , Thymol/analysis , Anti-Bacterial Agents/pharmacology , Tandem Mass Spectrometry/methods , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Liquid Chromatography-Mass Spectrometry
9.
Chem Biol Interact ; 396: 111039, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38719171

ABSTRACT

In this work, two neolignans - dehydrodieugenol (1) and dehydrodieugenol B (2) - were isolated from leaves of Ocotea cymbarum (H. B. K.) Ness. (Lauraceae). When tested against two human breast cancer cell lines (MCF7 and MDA-MB-231), compound 1 was inactive (IC50 > 500 µM) whereas compound 2 displayed IC50 values of 169 and 174 µM, respectively. To evaluate, for the first time in the literature, the synergic cytotoxic effects of compounds 1 and 2 with ion Cu2+, both cell lines were incubated with equimolar solutions of these neolignans and Cu(ClO4)2·6H2O. Obtained results revealed no differences in cytotoxicity upon the co-administration of compound 2 and Cu2+. However, the combination of compound 1 and Cu2+ increases the cytotoxicity against MCF7 and MDA-MB-231 cells, with IC50 values of 165 and 204 µM, respectively. The activity of compound 1 and Cu2+ in MCF7 spheroids regarding the causes/effects considering the tumoral microenvironment were accessed using fluorescence staining and imaging by fluorescence microscopy. This analysis enabled the observation of a higher red filter fluorescence intensity in the quiescence zone and the necrotic core, indicating a greater presence of dead cells, suggesting that the combination permeates the spheroid. Finally, using ICP-MS analysis, the intracellular copper disbalance caused by mixing compound 1 and Cu2+ was determined quantitatively. The findings showcased a 50-fold surge in the concentration of Cu2+ compared with untreated cells (p > 0.0001) - 18.7 ng of Cu2+/mg of proteins and 0.37 ng of Cu2+/mg of protein, respectively. Conversely, the concentration of Cu2+ in cells treated with compound 1 was similar to values of the negative control group (0.29 ng of Cu2+/mg of protein). This alteration allowed us to infer that compound 1 combined with Cu2+ induces cell death through copper homeostasis dysregulation.


Subject(s)
Breast Neoplasms , Copper , Humans , Copper/chemistry , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Cell Death/drug effects , Eugenol/analogs & derivatives , Eugenol/pharmacology , Eugenol/chemistry , Plant Leaves/chemistry , MCF-7 Cells , Lignans/pharmacology , Lignans/chemistry
10.
Int J Food Microbiol ; 418: 110733, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38754173

ABSTRACT

This research aimed to evaluate the effects of the addition of active essential oil components (linalool and/or eugenol) to a pickle-based marinade on controlling spoilage and extending the shelf life of fresh beef stored under vacuum packaging at 4 °C. Linalool and eugenol were used either separately at a concentration of 0.2 % (w/w) or together (1:1 ratio) to preserve marinated beef under vacuum packaging for 15 days. Samples were assessed for pH, color, texture, oxidative degradation, and microbiological parameters. All marinades exhibited significantly lower TBARS values than the control sample. The addition of linalool or eugenol to the marinate showed a significant antibacterial effect on total aerobic mesophilic bacteria (TAMB), lactic acid bacteria (LAB), Pseudomonas spp., and total coliform, and the reductions in microbial counts are as follows: TAMB: 1.563 log CFU/g and 1.46 log CFU/g; Pseudomonas spp.: 1.303 log CFU/g and 1.08 log CFU/g; LAB: 0.323 log CFU/g and 0.357 log CFU/g. Marinated beef with linalool and/or eugenol was found to be effective against the growth of yeast and mold. The use of eugenol presented the most effective inhibition activity against yeast and mold by reducing the number of yeast and molds to an uncountable level on the 12th and 15th days of storage. Physicochemical analysis also showed that the addition of active essential oils to marinade did not cause any undesirable effects on the color and texture properties of beef samples. Therefore, the findings revealed that eugenol and linalool could be suitable alternatives for beef marination.


Subject(s)
Eugenol , Food Packaging , Food Preservation , Oils, Volatile , Red Meat , Oils, Volatile/pharmacology , Food Packaging/methods , Cattle , Vacuum , Eugenol/pharmacology , Food Preservation/methods , Animals , Red Meat/microbiology , Food Microbiology , Acyclic Monoterpenes/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Colony Count, Microbial , Food Storage , Monoterpenes/pharmacology
11.
J Agric Food Chem ; 72(22): 12459-12468, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38771934

ABSTRACT

A series of 19 novel eugenol derivatives containing a 1,2,3-triazole moiety was synthesized via a two-step process, with the key step being a copper(I)-catalyzed azide-alkyne cycloaddition reaction. The compounds were assessed for their antifungal activities against Colletotrichum gloeosporioides, the causative agent of papaya anthracnose. Triazoles 2k, 2m, 2l, and 2n, at 100 ppm, were the most effective, reducing mycelial growth by 88.3, 85.5, 82.4, and 81.4%, respectively. Molecular docking calculations allowed us to elucidate the binding mode of these derivatives in the catalytic pocket of C. gloeosporioides CYP51. The best-docked compounds bind closely to the heme cofactor and within the channel access of the lanosterol (LAN) substrate, with crucial interactions involving residues Tyr102, Ile355, Met485, and Phe486. From such studies, the antifungal activity is likely attributed to the prevention of substrate LAN entry by the 1,2,3-triazole derivatives. The triazoles derived from natural eugenol represent a novel lead in the search for environmentally safe agents for controlling C. gloeosporioides.


Subject(s)
Carica , Colletotrichum , Eugenol , Fungicides, Industrial , Molecular Docking Simulation , Plant Diseases , Triazoles , Colletotrichum/drug effects , Eugenol/pharmacology , Eugenol/chemistry , Carica/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Plant Diseases/microbiology , Plant Diseases/prevention & control , Structure-Activity Relationship , Drug Design , Fungal Proteins/chemistry , Molecular Structure
12.
Mol Nutr Food Res ; 68(8): e2300831, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38602198

ABSTRACT

SCOPE: The excretion of dietary odorants into urine and milk is evaluated and the impact of possible influencing factors determined. Furthermore, the metabolic relevance of conjugates for the excretion into milk is investigated. METHODS AND RESULTS: Lactating mothers (n = 20) are given a standardized curry dish and donated one milk and urine sample each before and 1, 2, 3, 4.5, 6, and 8 h after the intervention. The concentrations of nine target odorants in these samples are determined. A significant transition is observed for linalool into milk, as well as for linalool, cuminaldehyde, cinnamaldehyde, and eugenol into urine. Maximum concentrations are reached within 1 h after the intervention in the case of milk and within 2-3 h in the case of urine. In addition, the impact of glucuronidase treatment on odorant concentrations is evaluated in a sample subset of twelve mothers. Linalool, eugenol, and vanillin concentrations increased 3-77-fold in milk samples after treatment with ß-glucuronidase. CONCLUSION: The transfer profiles of odorants into milk and urine differ qualitatively, quantitatively, and in temporal aspects. More substances are transferred into urine and the transfer needs a longer period compared with milk. Phase II metabolites are transferred into urine and milk.


Subject(s)
Acrolein/analogs & derivatives , Acyclic Monoterpenes , Benzaldehydes , Eugenol , Milk, Human , Odorants , Humans , Milk, Human/chemistry , Female , Odorants/analysis , Eugenol/urine , Eugenol/metabolism , Eugenol/analogs & derivatives , Adult , Benzaldehydes/urine , Acyclic Monoterpenes/urine , Glucuronidase/metabolism , Lactation , Acrolein/urine , Acrolein/metabolism , Monoterpenes/urine
13.
AAPS PharmSciTech ; 25(4): 72, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575745

ABSTRACT

Atopic dermatitis is a skin condition characterized by lichenification (thickening and increased skin marking), eczematous lesions, dry skin, itching, and pruritus. Eugenol is an aromatic polyphenolic compound that has attracted the attention of researchers due to its anti-inflammatory, anti-oxidant, and anti-cancer properties. The primary goal of the present study was to develop and evaluate eugenol-loaded transethosomes for the treatment of AD. Eugenol-loaded transethosomes were formulated using the ethanol injection method and subsequently subjected to particle size analysis, zeta potential, entrapment efficiency, deformability index, and HRTEM analysis. Transethosomal gel was prepared by direct-dispersion method by using Carbopol 940®. Results showed transethosomes to be lipid bilayer structures with acceptable size, and high entrapment efficiency. Transethosomal formulation showed shear-thinning behavior. Eugenol-loaded transethosomal gel was significantly able to enhance the retention of the drug in the skin. Transethosomal gel was significantly able to reduce Ear thickness, DLC, TLC, and IL-6 levels in mice model of AD. These results indicate that the eugenol-loaded transethosomal gel could be a promising carrier for the topical administration of eugenol for the treatment of AD.


Subject(s)
Dermatitis, Atopic , Eugenol , Animals , Mice , Eugenol/pharmacology , Skin Absorption , Administration, Cutaneous , Dermatitis, Atopic/drug therapy , Drug Carriers/chemistry , Skin/metabolism , Antioxidants/metabolism
14.
Open Vet J ; 14(3): 830-839, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38682150

ABSTRACT

Background: Heat stress (HS) is a main abiotic stress factor for the health and welfare of animals. Recently, the use of nano-emulsion essential oils exhibited a promising approach to mitigate the detrimental impacts of abiotic and biotic stresses, ultimately contributing to the global aim of sustainable livestock production. Aim: The current study was piloted to assess the impact of eugenol nano-emulsion (EUGN) supplementation on growth performance, serum metabolites, redox homeostasis, immune response, and pro-inflammatory reactions in growing rabbits exposed to HS. Methods: A total of 100 male weaning rabbits aged 35 days were divided into 4 treatments. Rabbits were fed the diet with EUGN at different concentrations: 0 (control group; EUGN0), 50 (EUGN50), 100 (EUGN100), and 150 (EUGN150) mg/kg diet for 8 weeks under summer conditions. Results: Dietary EUGN levels significantly improved (p < 0.05) the body weight, body weight gain, carcass weights, and improved feed conversion ratio of rabbits. EUGN supplementation significantly increased Hb, platelets, and red blood cells , while the mean corpuscular hemoglobin and eosinophils were significantly decreased compared to the control one. Compared with EUGN0 stressed rabbits, all EUGN-experimental groups had a reduction in levels of total glycerides (p < 0.01), uric acid, total bilirubin, direct bilirubin, and gamma-glutamyl transpeptidase (p < 0.01). Total antioxidant capacity and glutathione peroxidase were significantly improved by EUGN treatment when compared to the control one (p < 0.01), while the EUGN100 exhibited the greatest levels of catalase. Lipid peroxidation (malondialdehyde) was significantly decreased in EUGN-treated groups. All pro-inflammatory cytokines serum interleukin 4, Interleukin 1ß, and tumor necrosis factor alpha were considerably decreased after dietary EUGN supplementation (p < 0.05). The serum concentrations of immunoglobulins (IgG and IgM) were significantly improved in rabbits of the EUGN150 group. Conclusion: This study shows that EUGN can be used as a novel feed additive to enhance the growth performance, immune variables, and antioxidants, and reduce the inflammatory response of growing rabbits exposed to thermal stress.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Eugenol , Homeostasis , Animals , Rabbits , Eugenol/administration & dosage , Eugenol/pharmacology , Male , Dietary Supplements/analysis , Animal Feed/analysis , Homeostasis/drug effects , Diet/veterinary , Oxidation-Reduction/drug effects , Emulsions , Inflammation/veterinary , Heat-Shock Response/drug effects
15.
Pestic Biochem Physiol ; 201: 105886, 2024 May.
Article in English | MEDLINE | ID: mdl-38685252

ABSTRACT

This study evaluates the pediculicidal activity of nanoformulations containing different binary essential oil component mixtures (eugenol:linalool, 1,8 -cineole:linalool, and eugenol:thymol) using immersion bioassays. These have allowed us to evaluate the knockdown time affecting 50% of the individuals (KT50). In addition, the type of interaction between the components in each mixture was established in terms of the combination index (IC). The KT50 values were 6.07; 8.83; 7.17 and 27.23 h for linalool, 1,8 -cineole, eugenol, and thymol, respectively. For the eugenol:linalool mixtures, the efficacy was lower or equal to that obtained for the nanoformulations of the pure compounds, with values of KT50 about 13.33, 8.16 and 6.71 h for mixtures with ratios 3:1, 1:1 and 1:3, respectively. These mixtures present IC > 1, evidencing antagonistic interaction, which is enhanced with eugenol content. In the case of the binary mixtures of 1,8 -cineole: linalool, KT50 values were similar to those obtained for eugenol:linalool mixtures with similar ratios. In this case, IC assumes values close to unity, suggesting additive interactions independently of the mixture composition. On the other side, mixtures of eugenol:thymol with 1:1 and 1:3 ratios showed values of 9.40 and 32.93 h, while the mixture with a 3:1 ratio showed the greatest effectiveness (KT50 of 4.42 h). Eugenol:thymol mixtures show synergistic interaction (IC < 1) for combinations 3:1 and 1:1, while no interaction was observed for 1:3 combination. This indicates that eugenol enhances thymol activity. These results must be considered an important step forward to the development of effective pediculicidal nanoformulations based on botanical compounds.


Subject(s)
Acyclic Monoterpenes , Eucalyptol , Eugenol , Monoterpenes , Monoterpenes/pharmacology , Monoterpenes/chemistry , Animals , Eugenol/pharmacology , Eugenol/chemistry , Eucalyptol/pharmacology , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Pediculus/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Thymol/pharmacology , Thymol/chemistry , Micelles , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Nanoparticles/chemistry , Lice Infestations/drug therapy
16.
Discov Med ; 36(183): 739-752, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665023

ABSTRACT

BACKGROUND: Eugenol exhibits broad-spectrum antibacterial and anti-inflammatory properties. However, cytotoxicity at high concentrations limits the full utilization of eugenol-based drug complexes. Formulations of multidrug-loaded eugenol-based nanoemulsions have reduced cytotoxicity; however, it remains crucial to understand how these eugenol complexes interact with primary human carrier proteins to design and develop therapeutic alternatives. Consequently, this study primarily aims to investigate the impact on Human Serum Albumin (HSA) when it interacts with eugenol-based complexes loaded with first-line anti-tuberculosis drugs. METHODS: This study used various spectroscopic such as UV-visible spectroscopy, Fluorescence spectroscopy, Fourier-transform infrared spectroscopy and computational methods such as molecular docking and 100 ns molecular simulation to understand the impact of eugenol-based first-line anti-tuberculosis drug-loaded nanoemulsions on HSA structure. RESULTS: The binding of the HSA protein and eugenol-based complexes was studied using UV-visible spectroscopic analysis. Minor changes in the fluorophores of the protein further confirmed binding upon interaction with the complexes. The Fourier-transform infrared spectra showed no significant changes in protein structure upon interaction with eugenol-based multidrug-loaded nanoemulsions, suggesting that this complex is safe for internal administration. Unlike eugenol or first-line anti-tuberculosis alone, molecular docking revealed the strength of the binding interactions between the complexes and the protein through hydrogen bonds. The docked complexes were subjected to a 100 ns molecular dynamics simulation, which strongly supported the conclusion that the structure and stability of the protein were not compromised by the interaction. CONCLUSIONS: From the results we could comprehend that the eugenol (EUG)-drug complex showed greater stability in HSA protein structure when compared to HSA interacting with isoniazid (INH), rifampicin (RIF), pyrazinamide (PYR), or ethambutol (ETH) alone or with EUG alone. Thus, inferring the potential of EUG-based drug-loaded formulations for a safer and efficient therapeutic use.


Subject(s)
Antitubercular Agents , Emulsions , Eugenol , Molecular Docking Simulation , Serum Albumin, Human , Eugenol/chemistry , Eugenol/pharmacology , Humans , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/pharmacokinetics , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Emulsions/chemistry , Spectroscopy, Fourier Transform Infrared , Protein Binding
17.
ACS Appl Mater Interfaces ; 16(17): 21595-21609, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635857

ABSTRACT

A microneedle transdermal drug delivery system simultaneously avoids systemic toxicity of oral administration and low efficiency of traditional transdermal administration, which is of great significance for acne vulgaris therapy. Herein, eugenol-loaded hyaluronic acid-based dissolving microneedles (E@P-EO-HA MNs) with antibacterial and anti-inflammatory activities are developed for acne vulgaris therapy via eugenol transdermal delivery integrated with photothermal therapy. E@P-EO-HA MNs are pyramid-shaped with a sharp tip and a hollow cavity structure, which possess sufficient mechanical strength to penetrate the stratum corneum of the skin and achieve transdermal delivery, in addition to excellent in vivo biocompatibility. Significantly, E@P-EO-HA MNs show effective photothermal therapy to destroy sebaceous glands and achieve antibacterial activity against deep-seated Propionibacterium acnes (P. acnes) under near-infrared-light irradiation. Moreover, cavity-loaded eugenol is released from rapidly dissolved microneedle bodies to play a sustained antibacterial and anti-inflammatory therapy on the P. acnes infectious wound. E@P-EO-HA MNs based on a synergistic therapeutic strategy combining photothermal therapy and eugenol transdermal administration can significantly alleviate inflammatory response and ultimately facilitate the repair of acne vulgaris. Overall, E@P-EO-HA MNs are expected to be clinically applied as a functional minimally invasive transdermal delivery strategy for superficial skin diseases therapy in skin tissue engineering.


Subject(s)
Acne Vulgaris , Administration, Cutaneous , Anti-Bacterial Agents , Eugenol , Hyaluronic Acid , Needles , Photothermal Therapy , Propionibacterium acnes , Acne Vulgaris/therapy , Acne Vulgaris/drug therapy , Eugenol/chemistry , Eugenol/pharmacology , Hyaluronic Acid/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Propionibacterium acnes/drug effects , Mice , Drug Delivery Systems , Humans , Skin
18.
Int J Biol Macromol ; 267(Pt 2): 131495, 2024 May.
Article in English | MEDLINE | ID: mdl-38614180

ABSTRACT

Konjac glucomannan (KGM) is becoming a very potential food packaging material due to its good film-forming properties and stability. However, KGM film has several shortcomings such as low mechanical strength, strong water absorption, and poor self-antibacterial performance, which limits its application. Therefore, in order to enhance the mechanical and functional properties of KGM film, this study prepared Pickering nanoemulsion loaded with eugenol and added it to the KGM matrix to explore the improvement effect of Pickering nanoemulsion on KGM film properties. Compared to pure KGM film and eugenol directly added film, the mechanical strength of Pickering-KGM film was significantly improved due to the establishment of ample hydrogen bonding interactions between the ß-cyclodextrin inclusion complex system and KGM. Pickering-KGM film had significant antioxidant capacity than pure KGM film and eugenol directly added KGM film (eugenol-KGM film) (~3.21 times better than KGM film, ~0.51 times better than eugenol-KGM film). In terms of antibacterial activity, Pickering-KGM film had good inhibitory effect on Escherichia coli, Staphylococcus aureus, and Candida albicans, and raspberry preservation experiment showed that the shelf life of the Pickering-KGM film could be extended to about 6 days. To sum up, this study developed a novel means to improve the film performance and provide a new insight for the development and application of food packaging film.


Subject(s)
Emulsions , Eugenol , Food Packaging , Mannans , Eugenol/chemistry , Eugenol/pharmacology , Mannans/chemistry , Emulsions/chemistry , Food Packaging/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Candida albicans/drug effects , Microbial Sensitivity Tests
19.
J Agric Food Chem ; 72(12): 6463-6470, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38501643

ABSTRACT

Eugenol, the main component of essential oil from the Syzygium aromaticum clove tree, has great potential as an alternative bioresource feedstock for biosynthesis purposes. Although eugenol degradation to ferulic acid was investigated, an efficient method for directly converting eugenol to targeted natural products has not been established. Herein we identified the inherent inhibitions by simply combining the previously reported ferulic acid biosynthetic pathway and vanillin biosynthetic pathway. To overcome this, we developed a novel biosynthetic pathway for converting eugenol into vanillin, by introducing cinnamoyl-CoA reductase (CCR), which catalyzes conversion of coniferyl aldehyde to feruloyl-CoA. This approach bypasses the need for two catalysts, namely coniferyl aldehyde dehydrogenase and feruloyl-CoA synthetase, thereby eliminating inhibition while simplifying the pathway. To further improve efficiency, we enhanced CCR catalytic efficiency via directed evolution and leveraged an artificialvanillin biosensor for high-throughput screening. Switching the cofactor preference of CCR from NADP+ to NAD+ significantly improved pathway efficiency. This newly designed pathway provides an alternative strategy for efficiently biosynthesizing feruloyl-CoA-derived natural products using eugenol.


Subject(s)
Acyl Coenzyme A , Benzaldehydes , Biosynthetic Pathways , Coumaric Acids , Eugenol , Eugenol/metabolism
20.
Mol Biol Rep ; 51(1): 439, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520476

ABSTRACT

BACKGROUND: Ocimum tenuiflorum L. is a highly traded medicinal with several therapeutic values. Green Tulsi and purple Tulsi are two subtypes in O. tenuiflorum and both have the same medicinal properties. Recent reports have revealed that purple Tulsi contains higher quantities of methyl eugenol (ME), which is moderately toxic and potentially carcinogenic. Therefore, we developed an allele-specific PCR (AS-PCR) method to distinguish the green and purple Tulsi. METHODS AND RESULT: Using the green Tulsi as a reference, 12 single nucleotide polymorphisms (SNPs) and 10 insertions/deletions (InDels) were identified in the chloroplast genome of the purple Tulsi. The C > T SNP at the 1,26,029 position in the ycf1 gene was selected for the development of the AS-PCR method. The primers were designed to amplify 521 bp and 291 bp fragments specific to green and purple Tulsi, respectively. This AS-PCR method was validated in 10 accessions from each subtype and subsequently verified using Sanger sequencing. Subsequently, 30 Tulsi powder samples collected from the market were subjected to molecular identification by AS-PCR. The results showed that 80% of the samples were purple Tulsi, and only 3.5% were green Tulsi. About 10% of the samples were a mixture of both green and purple Tulsi. Two samples (6.5%) did not contain O. tenuiflorum and were identified as O. gratissimum. CONCLUSION: The market samples of Tulsi were predominantly derived from purple Tulsi. The AS-PCR method will be helpful for quality control and market surveillance of Tulsi herbal powders.


Subject(s)
Eugenol/analogs & derivatives , Ocimum sanctum , Ocimum , Plant Extracts , Ocimum sanctum/genetics , Ocimum/genetics , Alleles , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...