Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.471
Filter
1.
Sci Rep ; 14(1): 11734, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38777815

ABSTRACT

Heavy metal (HM) pollution threatens human and ecosystem health. Current methods for remediating water contaminated with HMs are expensive and have limited effect. Therefore, bioremediation is being investigated as an environmentally and economically viable alternative. Freshwater protists Euglena gracilis and Euglena mutabilis were investigated for their tolerance to cadmium (Cd). A greater increase in cell numbers under Cd stress was noted for E. mutabilis but only E. gracilis showed an increase in Cd tolerance following pre-treatment with elevated concentrations of S or N. To gain insight regarding the nature of the increased tolerance RNA-sequencing was carried out on E. gracilis. This revealed transcript level changes among pretreated cells, and additional differences among cells exposed to CdCl2. Gene ontology (GO) enrichment analysis reflected changes in S and N metabolism, transmembrane transport, stress response, and physiological processes related to metal binding. Identifying these changes enhances our understanding of how these organisms adapt to HM polluted environments and allows us to target development of future pre-treatments to enhance the use of E. gracilis in bioremediation relating to heavy metals.


Subject(s)
Cadmium , Nitrogen , Sulfur , Cadmium/toxicity , Sulfur/metabolism , Sulfur/pharmacology , Nitrogen/metabolism , Biodegradation, Environmental , Euglena/metabolism , Euglena/drug effects , Euglena/genetics , Water Pollutants, Chemical/toxicity , Euglena gracilis/metabolism , Euglena gracilis/drug effects , Euglena gracilis/genetics
2.
PLoS One ; 19(5): e0304833, 2024.
Article in English | MEDLINE | ID: mdl-38820480

ABSTRACT

Considering the differences in molecular structure and function, the effects of ß-1,3-glucans from Euglena gracilis and ß-1,3/1,6-glucans from Saccharomyces cerevisiae on immune and inflammatory activities in dogs were compared. Four diets were compared: control without ß-glucans (CON), 0.15 mg/kg BW/day of ß-1,3/1,6-glucans (Β-Y15), 0.15 mg/kg BW/day of ß-1,3-glucans (Β-S15), and 0.30 mg/kg BW/day of ß-1,3-glucans (Β-S30). Thirty-two healthy dogs (eight per diet) were organized in a block design. All animals were fed CON for a 42-day washout period and then sorted into one of four diets for 42 days. Blood and faeces were collected at the beginning and end of the food intake period and analysed for serum and faecal cytokines, ex vivo production of hydrogen peroxide (H2O2) and nitric oxide (NO), phagocytic activity of neutrophils and monocytes, C-reactive protein (CRP), ex vivo production of IgG, and faecal concentrations of IgA and calprotectin. Data were evaluated using analysis of covariance and compared using Tukey's test (P<0.05). Dogs fed Β-Y15 showed higher serum IL-2 than dogs fed Β-S30 (P<0.05). A higher phagocytic index of monocytes was observed in dogs fed the B-S15 diet than in those fed the other diets, and a higher neutrophil phagocytic index was observed for B-S15 and B-Y15 than in dogs fed the CON diet (P<0.05). Monocytes from dogs fed B-S15 and B-S30 produced more NO and less H2O2 than those from the CON and B-Y15 groups (P<0.05). Despite in the reference value, CRP levels were higher in dogs fed B-S15 and B-S30 diets (P<0.05). ß-1,3/1,6-glucan showed cell-mediated activation of the immune system, with increased serum IL-2 and neutrophil phagocytic index, whereas ß-1,3-glucan acted on the immune system by increasing the ex vivo production of NO by monocytes, neutrophil phagocytic index, and serum CRP. Calprotectin and CRP levels did not support inflammation or other health issues related to ß-glucan intake. In conclusion, both ß-glucan sources modulated some immune and inflammatory parameters in dogs, however, different pathways have been suggested for the recognition and action of these molecules, reinforcing the necessity for further mechanistic studies, especially for E. gracilis ß-1,3-glucan.


Subject(s)
Euglena gracilis , Feces , Saccharomyces cerevisiae , beta-Glucans , Animals , Dogs , beta-Glucans/pharmacology , Feces/chemistry , Inflammation , Male , Nitric Oxide/metabolism , Cytokines/metabolism , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Hydrogen Peroxide/metabolism , Phagocytosis/drug effects , Neutrophils/immunology , Neutrophils/drug effects , Neutrophils/metabolism , Female , Immunoglobulin G/blood , Glucans/pharmacology , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism
3.
Protist ; 175(3): 126033, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574508

ABSTRACT

Extrachromosomal circular DNA (eccDNA) enhances genomic plasticity, augmenting its coding and regulatory potential. Advances in high-throughput sequencing have enabled the investigation of these structural variants. Although eccDNAs have been investigated in numerous taxa, they remained understudied in euglenids. Therefore, we examined eccDNAs predicted from Illumina sequencing data of Euglena gracilis Z SAG 1224-5/25, grown under optimal photoperiod and exposed to UV irradiation. We identified approximately 1000 unique eccDNA candidates, about 20% of which were shared across conditions. We also observed a significant enrichment of mitochondrially encoded eccDNA in the UV-irradiated sample. Furthermore, we found that the heterogeneity of eccDNA was reduced in UV-exposed samples compared to cells that were grown in optimal conditions. Hence, eccDNA appears to play a role in the response to oxidative stress in Euglena, as it does in other studied organisms. In addition to contributing to the understanding of Euglena genomes, our results contribute to the validation of bioinformatics pipelines on a large, non-model genome.


Subject(s)
DNA, Circular , Euglena gracilis , Euglena gracilis/genetics , DNA, Circular/genetics , DNA, Protozoan/genetics , Ultraviolet Rays , Stress, Physiological
4.
Protist ; 175(3): 126035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688055

ABSTRACT

The protist Euglena gracilis has various trophic modes including heterotrophy and photoheterotrophy. To investigate how cultivation mode influences metabolic regulation, the chemical composition of cellular metabolites of Euglena gracilis grown under heterotrophic and photoheterotrophic conditions was monitored from the early exponential phase to the mid-stationary phase using two different techniques, i.e, nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HRMS). The combined metabolomics approach allowed an in-depth understanding of the mechanism of photoheterotrophic and heterotrophic growth for biomolecule production. Heterotrophic conditions promoted the production of polar amino and oxygenated compounds such as proteins and polyphenol compounds, especially at the end of the exponential phase while photoheterotrophic cells enhanced the production of organoheterocyclic compounds, carbohydrates, and alkaloids.


Subject(s)
Euglena gracilis , Heterotrophic Processes , Euglena gracilis/metabolism , Euglena gracilis/growth & development , Phototrophic Processes , Magnetic Resonance Spectroscopy , Mass Spectrometry , Metabolomics , Metabolome
5.
Biomolecules ; 14(3)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38540747

ABSTRACT

Age-dependent changes in the transcription levels of 5-day-old Euglena gracilis cells, which showed positive gravitaxis, 6-day-old cells without gravitactic orientation, and older cells (9- and 11-day-old, which displayed a precise negative gravitaxis) were determined through microarray analysis. Hierarchical clustering of four independent cell cultures revealed pronounced similarities in transcription levels at the same culture age, which proves the reproducibility of the cultivation method. Employing the non-oriented cells from the 6-day-old culture as a reference, about 2779 transcripts were found to be differentially expressed. While positively gravitactic cells (5-day-old culture) showed only minor differences in gene expression compared to the 6-day reference, pronounced changes of mRNAs (mainly an increase) were found in older cells compared to the reference culture. Among others, genes coding for adenylyl cyclases, photosynthesis, and metabolic enzymes were identified to be differentially expressed. The investigated cells were grown in batch cultures, so variations in transcription levels most likely account for factors such as nutrient depletion in the medium and self-shading. Based on these findings, a particular transcript (e.g., transcript 19556) was downregulated using the RNA interference technique. Gravitaxis and phototaxis were impaired in the transformants, indicating the role of this transcript in signal transduction. Results of the experiment are discussed regarding the increasing importance of E. gracilis in biotechnology as a source of valuable products and the possible application of E. gracilis in life-support systems.


Subject(s)
Euglena gracilis , Euglena gracilis/genetics , Reproducibility of Results , Phototaxis , Photosynthesis , Signal Transduction
6.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 705-721, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38545972

ABSTRACT

Euglena gracilis is a unicellular eukaryote between animal and plant cells, which is widely distributed in nature. E. gracilis has both plant and animal characteristics, and can grow photoautotrophically, heterotrophically and mixotrophically. E. gracilis also features on abundant and various cellular composition. Recently, extensive researches on unique cellular components of E. gracilis have revealed its application in the field of medicine, food, and feedstuff, in terms of improving immunity, fighting inflammation, and lowering uric acid levels. The application prospects of paramylon in biomedical area were also discovered. As food ingredients, food additives, feedstuffs and cosmetic ingredients, E. gracilis has been certified domestically and overseas. A series of products have been developed overseas, especially in Japan. However, the research and development of E. gracilis are still in its infancy in China, and there is huge space for development. At present, the research and potential application of cultivation and product functions of E. gracilis have been rarely reviewed. This review systematically examines both the domestic and abroad research of cultivation and production of E. gracilis, as well as the biological activity of E. gracilis powder and paramylon. The existing problems in the application, exploitation, and possible development direction of E. gracilis in the future are prospected. This review might be useful for establishing and optimizing large-scale and efficient heterotrophic technology, as well as developing related products of E. gracilis with specific functions.


Subject(s)
Euglena gracilis , China , Heterotrophic Processes
7.
J Microbiol Biotechnol ; 34(4): 880-890, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38379288

ABSTRACT

The immunomodulatory effects of Euglena gracilis (Euglena) and its bioactive component, ß-1,3-glucan (paramylon), have been clarified through various studies. However, the detailed mechanisms of the immune regulation remain to be elucidated. This study was designed not only to investigate the immunomodulatory effects but also to determine the genetic mechanisms of Euglena and ß-glucan in cyclophosphamide (CCP)-induced immunosuppressed mice. The animals were orally administered saline, Euglena (800 mg/kg B.W.) or ß-glucan (400 mg/kg B.W.) for 19 days, and CCP (80 mg/kg B.W.) was subsequently administered to induce immunosuppression in the mice. The mice exhibited significant decreases in body weight, organ weight, and the spleen index. However, there were significant improvements in the spleen weight and the spleen index in CCP-induced mice after the oral administration of Euglena and ß-glucan. Transcriptome analysis of the splenocytes revealed immune-related differentially expressed genes (DEGs) regulated in the Euglena- and ß-glucantreated groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that pathways related with interleukin (IL)-17 and cAMP play significant roles in regulating T cells, B cells, and inflammatory cytokines. Additionally, Ptgs2, a major inflammatory factor, was exclusively expressed in the Euglena-treated group, suggesting that Euglena's beneficial components, such as carotenoids, could regulate these genes by influencing immune lymphocytes and inflammatory cytokines in CCP-induced mice. This study validated the immunomodulatory effects of Euglena and highlighted its underlying mechanisms, suggesting a positive contribution to the determination of phenotypes associated with immune-related diseases and the research and development of immunotherapies.


Subject(s)
Cyclophosphamide , Euglena gracilis , Gene Expression Profiling , Spleen , Transcriptome , beta-Glucans , Animals , Euglena gracilis/genetics , Mice , Spleen/immunology , Spleen/drug effects , Transcriptome/drug effects , beta-Glucans/pharmacology , beta-Glucans/administration & dosage , Glucans/pharmacology , Male , Immunologic Factors/pharmacology , Immunomodulating Agents/pharmacology , Cytokines/metabolism , Immunocompromised Host
8.
Bioresour Technol ; 397: 130497, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408501

ABSTRACT

To effectively improve biomass growth and flue-gas CO2 fixation of microalgae, acid-tolerant Euglena gracilis was modified with cobalt-60 γ-ray irradiation and polyethylene glycol (PEG) adaptive screening to obtain the mutant strain M800. The biomass dry weight and maximum CO2 fixation rate of M800 were both 1.47 times higher than that of wild strain, which was attributed to a substantial increase in key carbon fixation enzyme RuBisCO activity and photosynthetic pigment content. The high charge separation quantum efficiency in PSII reaction center, efficient light utilization and energy regulation that favors light conversion, were the underlying drivers of efficient photosynthetic carbon fixation in M800. M800 had stronger antioxidant capacity in sufficient high-carbon environment, alleviating lipid peroxidation damage. After adding 1 mM PEG, biomass dry weight of M800 reached 2.31 g/L, which was 79.1 % higher than that of wild strain. Cell proliferation of M800 was promoted, the apoptosis and necrosis rates decreased.


Subject(s)
Euglena gracilis , Microalgae , Carbon Dioxide , Photosynthesis , Mutagenesis , Carbon Cycle , Biomass
9.
Microb Biotechnol ; 17(2): e14393, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38332568

ABSTRACT

Transgene-free genome editing based on clustered regularly interspaced short palindromic repeats (CRISPR) technology is key to achieving genetic engineering in microalgae for basic research and industrial applications. Euglena gracilis, a unicellular phytoflagellate microalga, is a promising biomaterial for foods, feeds, cosmetics and biofuels. However, methods for the genetic manipulation of E. gracilis are still limited. Here, we developed a high-efficiency, transgene-free genome editing method for E. gracilis using Lachnospiraceae bacterium CRISPR-associated protein 12a (LbCas12a) ribonucleoprotein (RNP) complex, which complements the previously established Cas9 RNP-based method. Through the direct delivery of LbCas12a-containing RNPs, our method reached mutagenesis rates of approximately 77.2-94.5% at two different E. gracilis target genes, Glucan synthase-like 2 (EgGSL2) and a phytoene synthase gene (EgcrtB). Moreover, in addition to targeted mutagenesis, we demonstrated efficient knock-in and base editing at the target site using LbCas12a-based RNPs with a single-stranded DNA donor template in E. gracilis. This study extends the genetic engineering capabilities of Euglena to accelerate its basic use for research and engineering for bioproduction.


Subject(s)
Euglena gracilis , Gene Editing , Gene Editing/methods , CRISPR-Cas Systems , Euglena gracilis/genetics , Genetic Engineering , Ribonucleoproteins/genetics
10.
Protist ; 175(2): 126017, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38295671

ABSTRACT

Biological complexity is challenging to define, but can be considered through one or more features, including overall genome size, number of genes, morphological features, multicellularity, number of life cycle stages and the ability to adapt to different environments. Euglena gracilis meets several of these criteria, with a large genome of ∼38,000 protein coding genes and a considerable ability to survive under many different conditions, some of which can be described as challenging or harsh. Potential molecular exemplars of complexity tying these aspects together are signalling pathways, including GTPases, kinases and ubiquitylation, which increase the functionality of the gene-encoded proteome manyfold. Each of these examples can modulate both protein activity and gene expression. To address the connection between genome size and complexity I have undertaken a brief, and somewhat qualitative, survey of the small ras-like GTPase superfamily of E. gracilis. Unexpectedly, apart from Rab-GTPases which control intracellular transport and organelle identify, the size of the GTPase cohort is modest, and, for example, has not scaled with gene number when compared to the close relatives, trypanosomatids. I suggest that understanding the functions of this protein family will be vital to uncovering the complexity of E. gracilis biology.


Subject(s)
Euglena gracilis , ras Proteins , Humans , ras Proteins/genetics , Euglena gracilis/genetics , Signal Transduction/genetics , Genome , Proteome/genetics
11.
Biosci Biotechnol Biochem ; 88(2): 206-211, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-37974047

ABSTRACT

Paramylon, a starch-like carbohydrate accumulated in Euglena gracilis cells, could be a potential source as a raw material for chemical products; its high-yield production would thus be highly desired. Although the molecular weight and polymerization degree of paramylon are important properties for its use as a raw material for chemical products, the available information about paramylon molecular weight remains insufficient. Therefore, in this study, we investigated a high-density E. gracilis culture approach and how culture conditions affect paramylon molecular weight. The nitrogen source, cultivation temperature, and nutrient feeding were optimized for maximum biomass and paramylon productivity. The maximum dry cell weight and paramylon content yields reached 108.9 g/L and 87.2%, respectively. Paramylon molecular weight was in the range of 220 000-320 000 Da. Our gel permeation chromatography analysis showed that the cells with a higher paramylon content tended to contain paramylon of a higher molecular weight.


Subject(s)
Euglena gracilis , Molecular Weight , Glucans , Starch
12.
Bioresour Technol ; 393: 130114, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38013030

ABSTRACT

Appropriate concentration of carbon dioxide (CO2) will promote algae growth and metabolism. Building upon this finding, the present study investigated the impact of different CO2 concentrations (5% and 20%) on the carbon sequestration capacity of E. gracilis through aeration culturing, employing a combination of physiological analyses and transcriptome analysis. The results demonstrated that under 5% CO2 concentration, the cell density of E. gracilis was 1.79 times higher than that achieved in an air culture condition, and the paramylon content of E. gracilis was found to be 6.18 times higher than that of the air group. Based on transcriptome analysis, the carbon metabolism of E. gracilis was discussed. Significant up-regulation expression of genes associated with carbon synthesis was validated by an increase in paramylon content. This study revealed that under 5% CO2 conditions, E. gracilis exhibited elevated growth rate and enhanced photosynthetic carbon assimilation efficiency.


Subject(s)
Carbon Dioxide , Euglena gracilis , Carbon Dioxide/pharmacology , Carbon Dioxide/metabolism , Euglena gracilis/genetics , Euglena gracilis/metabolism , Glucans/metabolism , Gene Expression Profiling
13.
Aquat Toxicol ; 266: 106802, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38096643

ABSTRACT

Microplastics (MPs) introduced into aquatic environments inevitably interact with aquatic organisms such as plankton, potentially yielding adverse effects on the aquatic ecosystem. The extent to which MPs can infiltrate planktonic cells and evoke a molecular response remains largely unknown. In the present study, the internalization of fluorescently labeled polystyrene (PS) MPs on Euglena gracilis cells was investigated, determining the transcriptional responses within protozoa after an 8-day exposure period. The results showed that exposure to 25 mg/L PS-MPs for 8 days, significantly inhibited protozoan growth (P < 0.05) and decreased the chlorophyll a content of E. gracilis. The photosynthetic efficiency of E. gracilis was suppressed by MPs after 4 days, and then recovered to control values by the eighth day. Fluorescence imaging confirmed the presence of MPs in E. gracilis. Transcriptomic analysis revealed the influence of PS-MPs on a diverse range of transcriptional processes, encompassing oxidative phosphorylation, oxidation-reduction process, photosynthesis, and antioxidant enzymes. Notably, a majority of the differentially expressed genes (DEGs) exhibited down-regulation. Furthermore, PS-MPs disturbed the transcriptional regulation of chloroplasts and photosynthesis. These findings indicate a direct interaction between PS-MPs and organelles within E. gracilis cells following internalization, thereby disrupting regular gene expression patterns and posing a substantial environmental risk to the aquatic ecosystem.


Subject(s)
Euglena gracilis , Water Pollutants, Chemical , Microplastics/toxicity , Polystyrenes/toxicity , Polystyrenes/metabolism , Plastics , Chlorophyll A , Euglena gracilis/genetics , Ecosystem , Water Pollutants, Chemical/toxicity , Plankton/metabolism
14.
Bioresour Technol ; 394: 130213, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38113951

ABSTRACT

Five fruit and vegetable byproducts were evaluated as carbon sources and media for beta-glucan production from Euglena gracilis. Orange peel showed the highest beta-glucan concentration (6.5 g/L) and productivity (1.9 g/L/day) when used as a medium. However, when employed as carbon sources, apple pomace showed the highest beta-glucan concentration (10.6 g/L) and productivity (3.5 g/L/day). The appropriate chemical oxygen demand/nitrogen ratio (71.1) and favorable carbon sources of apple contributed to beta-glucan production. Increasing sugar concentrations in apple pomace and orange peel from 10 to 30 g/L raised the beta-glucan concentration to 11.6 g/L. Using apple pomace and orange peel individually proved more effective than mixing them for beta-glucan production. Therefore, apple as a carbon source is the most effective fruit and vegetables byproduct for beta-glucan production. This is expected to reduce the cost of E. gracilis cultivation on a large-scale and contribute to the circular economy.


Subject(s)
Euglena gracilis , Malus , beta-Glucans , Vegetables , Fruit , Carbon
15.
Protist ; 174(6): 125996, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38041972

ABSTRACT

Euglena gracilis, photosynthetic protist, has a unique ability to generate wax esters in the absence of oxygen, employing a distinctive fatty acid synthesis mechanism. Through comprehensive inhibitor assays and gene-silencing techniques, our research clearly emphasized the indispensable role of the mitochondrial anaerobic respiratory chain in this biosynthesis. We identified acyl-CoA dehydrogenase, electron transfer flavoprotein (ETF), and rhodoquinone (RQ) as central molecular components in the pathway. These findings strongly indicated a potential reversal of beta-oxidation occurring within mitochondria for fatty acid production in anaerobic conditions. Furthermore, our analysis revealed the pivotal function of nicotinamide nucleotide transhydrogenase (NNT) in efficiently managing the NADPH/NAD+ conversion essential for sustaining anaerobic metabolism. This review outlines our key findings and provides a comprehensive understanding of the molecular mechanisms that enable E. gracilis to produce wax ester anaerobically.


Subject(s)
Euglena gracilis , Euglena gracilis/genetics , Euglena gracilis/metabolism , Anaerobiosis , Esters/metabolism , Mitochondria/metabolism , Fatty Acids , Respiration
16.
Mar Drugs ; 21(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37888454

ABSTRACT

Euglena gracilis is one of the few permitted edible microalgae. Considering consumer acceptance, E. gracilis grown heterotrophically with yellow appearances have wider food industrial applications such as producing meat analogs than green cells. However, there is much room to improve the protein content of heterotrophic culture cells. In this study, the effects of nitrogen sources, temperature, initial pH, and C/N ratios on the protein production of E. gracilis were evaluated under heterotrophic cultivation. These results indicated that ammonium sulfate was the optimal nitrogen source for protein production. The protein content of E. gracilis cultured by ammonium sulfate increased by 113% and 44.7% compared with that cultured by yeast extract and monosodium glutamate, respectively. The manipulation of the low C/N ratio further improved E. gracilis protein content to 66.10% (w/w), which was 1.6-fold of that in the C/N = 25 group. Additionally, amino acid analysis revealed that the nitrogen-to-protein conversion factor (NTP) could be affected by nitrogen sources. A superior essential amino acid index (EAAI) of 1.62 and a balanced amino acid profile further confirmed the high nutritional value of E. gracilis protein fed by ammonium sulfate. This study highlighted the vast potency of heterotrophic cultured E. gracilis as an alternative dietary protein source.


Subject(s)
Euglena gracilis , Microalgae , Euglena gracilis/metabolism , Microalgae/metabolism , Ammonium Sulfate/metabolism , Proteins/metabolism , Amino Acids/metabolism , Nitrogen/metabolism
17.
Acta Biochim Biophys Sin (Shanghai) ; 55(11): 1740-1748, 2023 11 25.
Article in English | MEDLINE | ID: mdl-37705346

ABSTRACT

Diverse splicing types in nuclear and chloroplast genes of protist Euglena gracilis have been recognized for decades. However, the splicing machinery responsible for processing nuclear precursor messenger RNA introns, including trans-splicing of the 5' terminal outron and spliced leader (SL) RNA, remains elusive. Here, we identify 166 spliceosomal protein genes and two snRNA genes from E. gracilis by performing bioinformatics analysis from a combination of next-generation and full-length transcriptomic RNA sequencing (RNAseq) data as well as draft genomic data. With the spliceosomal proteins we identified in hand, the insensitivity of E. gracilis to some splicing modulators is revealed at the sequence level. The prevalence of SL RNA-mediated trans-splicing is estimated to be more than 70% from our full-length RNAseq data. Finally, the splicing proteomes between E. gracilis and its three evolutionary cousins within the same Excavata group are compared. In conclusion, our study characterizes the spliceosomal components in E. gracilis and provides the molecular basis for further exploration of underlying splicing mechanisms.


Subject(s)
Euglena gracilis , Euglena gracilis/genetics , Euglena gracilis/metabolism , Transcriptome , Base Sequence , Spliceosomes/genetics , Spliceosomes/metabolism , Genomics
18.
Nutr Res ; 119: 90-97, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769481

ABSTRACT

Euglena gracilis (Euglena) is a microalgae found in most freshwater environments that produces paramylon, an insoluble ß-1,3-glucan linked to human immunity. We hypothesized that Euglena powder has effects on immune function in apparently healthy adults. The study included male or female volunteers between the ages of 20 and 70 years who had white blood cell counts ranging from 4 × 103/µL to 10 × 103/µL, a "severe" rating on the stress questionnaire from the Korea National Health and Nutrition Examination Survey, and at least 2 upper respiratory infections with cold-like symptoms in the previous year. Participants received either a placebo or 700 mg of Euglena powder daily for 8 weeks. The study measured natural killer cell activity, cytokine concentrations, and blood lipid profiles to confirm the immune effect of Euglena consumption. In conclusion, Euglena improved immunological function through natural killer cell activity. Safety assessment showed no significant changes in vital signs or clinical chemistry indicators, and there were no adverse events associated with Euglena consumption. Euglena supplementation may help boost the immune systems of healthy individuals.


Subject(s)
Euglena gracilis , Euglena , Adult , Humans , Male , Female , Young Adult , Middle Aged , Aged , Powders , Healthy Volunteers , Nutrition Surveys , Dietary Supplements , Killer Cells, Natural , Immunity
19.
Integr Cancer Ther ; 22: 15347354231195323, 2023.
Article in English | MEDLINE | ID: mdl-37646331

ABSTRACT

Extracts from Euglena gracilis have been shown to prevent cancer growth in mouse models. However, the molecular mechanism of this anti-cancer activity has not been determined nor has the effect of Euglena extracts on tobacco smoke carcinogen-induced carcinogenesis. Here, we investigate the hypothesis that this anti-cancer activity is a result of changes in the intestinal microbiota induced by oral administration of the extract. We found that a Euglena gracilis water extract prevents lung tumorigenesis induced by a tobacco smoke-specific carcinogen (NNK) in mice treated either 2 weeks before or 10 weeks after NNK injection. Both of these treatment regimens are associated with significant increases in 27 microbiota metabolites found in the mouse feces, including large increases in triethanolamine, salicylate, desaminotyrosine, N-acetylserine, glycolate, and aspartate. Increases in the short-chain fatty acids (SCFAs) including acetate, propionate and butyrate are also observed. We also detected a significant attenuation of lung carcinoma cell growth through the induction of cell cycle arrest and apoptosis caused by low levels of SCFAs. This study provides strong evidence of anti-cancer activity in Euglena gracilis extracts against tobacco smoke carcinogen-induced tumorigenesis and demonstrates that this activity is linked to increased production of specific gut microbiota metabolites and the resultant induction of cell cycle arrest and apoptosis of lung carcinoma cells.


Subject(s)
Carcinoma , Euglena gracilis , Gastrointestinal Microbiome , Lung Neoplasms , Tobacco Smoke Pollution , Mice , Animals , Carcinogens/toxicity , Lung Neoplasms/chemically induced , Lung Neoplasms/prevention & control , Tobacco Smoke Pollution/adverse effects , Carcinogenesis/chemically induced
20.
Eur J Protistol ; 90: 126010, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37540916

ABSTRACT

The ecto-phosphatases belong to a group of enzymes closely associated with the cell surface that has its catalytic site facing the extracellular environment, where different phosphorylated substrates can be hydrolyzed. In the present work, we biochemically characterized the ecto-phosphatase activity of the freshwater microalgae Euglena gracilis, a model microorganism, ubiquitously distributed and resistant to several environmental stressors. The ecto-phosphatase activity is acidic, stimulated by copper and presents the following apparent kinetic parameters: Km = 2.52 ± 0.12 mM p-NPP and Vmax = 3.62 ± 0.06 nmol p-NP × h-1 × 106 cells. We observed that zinc, orthovanadate, molybdate, fluoride, and inorganic phosphate inhibit the ecto-phosphatase activity with different magnitudes. Fluoroaluminate complexes are also inhibitors of this ecto-phosphatase activity. They can be formed in the enzyme reaction conditions and are likely to occur in a natural environment where E. gracilis can be found. The ecto-phosphatase activity is constant through the culture growth phases and is negatively modulated after continuous subculturing in the dark when a shift from phototrophic to the heterotrophic metabolism is likely. The analysis of those biochemical parameters may contribute to understanding the role of E. gracilis ecto-phosphatase activity in natural environments.


Subject(s)
Euglena gracilis , Phosphoric Monoester Hydrolases , Phosphoric Monoester Hydrolases/metabolism , Euglena gracilis/metabolism , Cell Membrane/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...