Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 51(12): 6443-6460, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37207340

ABSTRACT

The mitochondrial ribosome (mitoribosome) has diverged drastically from its evolutionary progenitor, the bacterial ribosome. Structural and compositional diversity is particularly striking in the phylum Euglenozoa, with an extraordinary protein gain in the mitoribosome of kinetoplastid protists. Here we report an even more complex mitoribosome in diplonemids, the sister-group of kinetoplastids. Affinity pulldown of mitoribosomal complexes from Diplonema papillatum, the diplonemid type species, demonstrates that they have a mass of > 5 MDa, contain as many as 130 integral proteins, and exhibit a protein-to-RNA ratio of 11:1. This unusual composition reflects unprecedented structural reduction of ribosomal RNAs, increased size of canonical mitoribosomal proteins, and accretion of three dozen lineage-specific components. In addition, we identified >50 candidate assembly factors, around half of which contribute to early mitoribosome maturation steps. Because little is known about early assembly stages even in model organisms, our investigation of the diplonemid mitoribosome illuminates this process. Together, our results provide a foundation for understanding how runaway evolutionary divergence shapes both biogenesis and function of a complex molecular machine.


Subject(s)
Euglenozoa , Mitochondrial Ribosomes , Euglenozoa/classification , Euglenozoa/cytology , Euglenozoa/genetics , Eukaryota/cytology , Eukaryota/genetics , Mitochondrial Ribosomes/metabolism , Ribosomal Proteins/metabolism , RNA, Ribosomal/metabolism
2.
Microbes Environ ; 36(2)2021.
Article in English | MEDLINE | ID: mdl-34121037

ABSTRACT

Diplonemea (diplonemids) is one of the most abundant and species-rich protist groups in marine environments; however, their community structures among local and seasonal samples have not yet been compared. In the present study, we analyzed four diplonemid community structures around the Izu Peninsula, Japan using barcode sequences amplified from environmental DNA. These sequences and the results of statistical analyses indicated that communities at the same site were more similar to each other than those in the same season. Environmental variables were also measured, and their influence on diplonemid community structures was examined. Salinity, electrical conductivity, and temperature, and their correlated variables, appeared to influence the structures of diplonemid communities, which was consistent with previous findings; however, since the results obtained did not reach statistical significance, further studies are required. A comparison of each diplonemid community indicated that some lineages were unique to specific samples, while others were consistently detected in all samples. Members of the latter type are cosmopolitan candidates and may be better adapted to the environments of the studied area. Future studies that focus on the more adaptive members will provide a more detailed understanding of the mechanisms by which diplonemids are widely distributed in marine environments and will facilitate their utilization as indicator organisms to monitor environmental changes.


Subject(s)
Euglenozoa/classification , Euglenozoa/isolation & purification , Euglenozoa/genetics , Japan , Phylogeny , RNA, Ribosomal, 18S/genetics , Seawater/parasitology
3.
Open Biol ; 11(3): 200407, 2021 03.
Article in English | MEDLINE | ID: mdl-33715388

ABSTRACT

Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.


Subject(s)
Euglenozoa/classification , Ecosystem , Euglenozoa/genetics , Euglenozoa/physiology , Euglenozoa/virology , Mimiviridae/pathogenicity , Phylogeny , Symbiosis
4.
Trends Parasitol ; 37(2): 100-116, 2021 02.
Article in English | MEDLINE | ID: mdl-33127331

ABSTRACT

The unicellular trypanosomatids belong to the phylum Euglenozoa and all known species are obligate parasites. Distinct lineages infect plants, invertebrates, and vertebrates, including humans. Genome data for marine diplonemids, together with freshwater euglenids and free-living kinetoplastids, the closest known nonparasitic relatives to trypanosomatids, recently became available. Robust phylogenetic reconstructions across Euglenozoa are now possible and place the results of parasite-focused studies into an evolutionary context. Here we discuss recent advances in identifying the factors shaping the evolution of Euglenozoa, focusing on ancestral features generally considered parasite-specific. Remarkably, most of these predate the transition(s) to parasitism, suggesting that the presence of certain preconditions makes a significant lifestyle change more likely.


Subject(s)
Biological Evolution , Euglenozoa/classification , Euglenozoa/genetics , Parasites/genetics , Animals , Datasets as Topic , Euglenozoa Infections/parasitology , Genome/genetics , Humans , Parasites/classification , Phylogeny
5.
Environ Microbiol ; 22(9): 4014-4031, 2020 09.
Article in English | MEDLINE | ID: mdl-32779301

ABSTRACT

We analysed a widely used barcode, the V9 region of the 18S rRNA gene, to study the effect of environmental conditions on the distribution of two related heterotrophic protistan lineages in marine plankton, kinetoplastids and diplonemids. We relied on a major published dataset (Tara Oceans) where samples from the mesopelagic zone were available from just 32 of 123 locations, and both groups are most abundant in this zone. To close sampling gaps and obtain more information from the deeper ocean, we collected 57 new samples targeting especially the mesopelagic zone. We sampled in three geographic regions: the Arctic, two depth transects in the Adriatic Sea, and the anoxic Cariaco Basin. In agreement with previous studies, both protist groups are most abundant and diverse in the mesopelagic zone. In addition to that, we found that their abundance, richness, and community structure also depend on geography, oxygen concentration, salinity, temperature, and other environmental variables reflecting the abundance of algae and nutrients. Both groups studied here demonstrated similar patterns, although some differences were also observed. Kinetoplastids and diplonemids prefer tropical regions and nutrient-rich conditions and avoid high oxygen concentration, high salinity, and high density of algae.


Subject(s)
Euglenozoa/isolation & purification , Oceans and Seas , Plankton/isolation & purification , Seawater/microbiology , Biodiversity , Euglenozoa/classification , Euglenozoa/genetics , Geography , Plankton/classification , Plankton/genetics , RNA, Protozoan/genetics , RNA, Ribosomal, 18S/genetics , Seawater/chemistry , Species Specificity
6.
Environ Microbiol ; 22(11): 4658-4668, 2020 11.
Article in English | MEDLINE | ID: mdl-32830371

ABSTRACT

Diplonemids are considered marine protists and have been reported among the most abundant and diverse eukaryotes in the world oceans. Recently we detected the presence of freshwater diplonemids in Japanese deep freshwater lakes. However, their distribution and abundances in freshwater ecosystems remain unknown. We assessed abundance and diversity of diplonemids from several geographically distant deep freshwater lakes of the world by amplicon-sequencing, shotgun metagenomics and catalysed reporter deposition-fluorescent in situ hybridization (CARD-FISH). We found diplonemids in all the studied lakes, albeit with low abundances and diversity. We assembled long 18S rRNA sequences from freshwater diplonemids and showed that they form a new lineage distinct from the diverse marine clades. Freshwater diplonemids are a sister-group to a marine clade, which are mainly isolates from coastal and bay areas, suggesting a recent habitat transition from marine to freshwater habitats. Images of CARD-FISH targeted freshwater diplonemids suggest they feed on bacteria. Our analyses of 18S rRNA sequences retrieved from single-cell genomes of marine diplonemids show they encode multiple rRNA copies that may be very divergent from each other, suggesting that marine diplonemid abundance and diversity both have been overestimated. These results have wider implications on assessing eukaryotic abundances in natural habitats by using amplicon-sequencing alone.


Subject(s)
Euglenozoa/classification , Euglenozoa/isolation & purification , Lakes/microbiology , Biodiversity , Ecosystem , Euglenozoa/cytology , Euglenozoa/genetics , In Situ Hybridization, Fluorescence , Japan , Metagenomics , Phylogeny , RNA, Ribosomal, 18S/genetics , Species Specificity
7.
Biol Rev Camb Philos Soc ; 94(5): 1701-1721, 2019 10.
Article in English | MEDLINE | ID: mdl-31095885

ABSTRACT

Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (ß-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.


Subject(s)
Biological Evolution , Euglenozoa/classification , Molecular Biology , Trypanosomatina/genetics , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Euglenida/classification , Euglenida/genetics , Euglenozoa/genetics , Genome/physiology , Introns/physiology , Mitochondria/genetics , Phototrophic Processes , Phylogeny , RNA Interference , RNA, Ribosomal, 28S/genetics , Trypanosomatina/classification , Trypanosomatina/enzymology
8.
Nat Microbiol ; 4(7): 1088-1095, 2019 07.
Article in English | MEDLINE | ID: mdl-31036911

ABSTRACT

Mutualistic symbioses are often a source of evolutionary innovation and drivers of biological diversification1. Widely distributed in the microbial world, particularly in anoxic settings2,3, they often rely on metabolic exchanges and syntrophy2,4. Here, we report a mutualistic symbiosis observed in marine anoxic sediments between excavate protists (Symbiontida, Euglenozoa)5 and ectosymbiotic Deltaproteobacteria biomineralizing ferrimagnetic nanoparticles. Light and electron microscopy observations as well as genomic data support a multi-layered mutualism based on collective magnetotactic motility with division of labour and interspecies hydrogen-transfer-based syntrophy6. The guided motility of the consortia along the geomagnetic field is allowed by the magnetic moment of the non-motile ectosymbiotic bacteria combined with the protist motor activity, which is a unique example of eukaryotic magnetoreception7 acquired by symbiosis. The nearly complete deltaproteobacterial genome assembled from a single consortium contains a full magnetosome gene set8, but shows signs of reduction, with the probable loss of flagellar genes. Based on the metabolic gene content, the ectosymbiotic bacteria are anaerobic sulfate-reducing chemolithoautotrophs that likely reduce sulfate with hydrogen produced by hydrogenosome-like organelles6 underlying the plasma membrane of the protist. In addition to being necessary hydrogen sinks, ectosymbionts may provide organics to the protist by diffusion and predation, as shown by magnetosome-containing digestive vacuoles. Phylogenetic analyses of 16S and 18S ribosomal RNA genes from magnetotactic consortia in marine sediments across the Northern and Southern hemispheres indicate a host-ectosymbiont specificity and co-evolution. This suggests a historical acquisition of magnetoreception by a euglenozoan ancestor from Deltaproteobacteria followed by subsequent diversification. It also supports the cosmopolitan nature of this type of symbiosis in marine anoxic sediments.


Subject(s)
Deltaproteobacteria/physiology , Euglenozoa/microbiology , Euglenozoa/physiology , Magnetic Fields , Symbiosis , Anaerobiosis , Biological Coevolution , Deltaproteobacteria/classification , Deltaproteobacteria/genetics , Deltaproteobacteria/metabolism , Euglenozoa/classification , Euglenozoa/ultrastructure , Eukaryota , Ferrosoferric Oxide/metabolism , Genome, Bacterial/genetics , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Hydrogen/metabolism , Locomotion/physiology , Magnetosomes/genetics , Magnetosomes/ultrastructure , Oceans and Seas , Phylogeny , RNA, Ribosomal/genetics , Species Specificity
9.
J Eukaryot Microbiol ; 66(3): 519-524, 2019 05.
Article in English | MEDLINE | ID: mdl-30080299

ABSTRACT

Recent surveys of marine microbial diversity have identified a previously unrecognized lineage of diplonemid protists as being among the most diverse heterotrophic eukaryotes in global oceans. Despite their monophyly (and assumed importance), they lack a formal taxonomic description, and are informally known as deep-sea pelagic diplonemids (DSPDs) or marine diplonemids. Recently, we documented morphology and molecular sequences from several DSPDs, one of which is particularly widespread and abundant in environmental sequence data. To simplify the communication of future work on this important group, here we formally propose to erect the family Eupelagonemidae to encompass this clade, as well as a formal genus and species description for the apparently most abundant phylotype, Eupelagonema oceanica, for which morphological information and single-cell amplified genome data are currently available.


Subject(s)
Euglenozoa/classification , Euglenozoa/cytology , Euglenozoa/genetics , Phylogeny , RNA, Protozoan/analysis
10.
Protist ; 169(2): 158-179, 2018 04.
Article in English | MEDLINE | ID: mdl-29604574

ABSTRACT

Diplonemids were recently found to be the most species-rich group of marine planktonic protists. Based on phylogenetic analysis of 18S rRNA gene sequences and morphological observations, we report the description of new members of the genus Rhynchopus - R. humris sp. n. and R. serpens sp. n., and the establishment of two new genera - Lacrimia gen. n. and Sulcionema gen. n., represented by L. lanifica sp. n. and S. specki sp. n., respectively. In addition, we describe the organism formerly designated as Diplonema sp. 2 (ATCC 50224) as Flectonema neradi gen. n., sp. n. The newly described diplonemids share a common set of traits. Cells are sac-like but variable in shape and size, highly metabolic, and surrounded by a naked cell membrane, which is supported by a tightly packed corset of microtubules. They carry a single highly reticulated peripheral mitochondrion containing a large amount of mitochondrial DNA, with lamellar cristae. The cytopharyngeal complex and flagellar pocket are contiguous and have separate openings. Two parallel flagella are inserted sub-apically into a pronounced flagellar pocket. Rhynchopus species have their flagella concealed in trophic stages and fully developed in swimming stages, while they permanently protrude in all other known diplonemid species.


Subject(s)
Euglenozoa/classification , Euglenozoa/genetics , DNA, Mitochondrial/genetics , Japan , Phylogeny , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
11.
Parasite ; 24: 20, 2017.
Article in English | MEDLINE | ID: mdl-28593838

ABSTRACT

In the Amazon region the phlebotomine fauna is considered one of the most diverse in the world. The use of Shannon traps may provide information on the anthropophily of the species and improve the traps' performance in terms of diversity and quantity of insects collected when white and black colored traps are used together. This study sought to verify the attractiveness of the traps to the phlebotomine species of the Brazilian Amazon basin using Shannon traps under these conditions. The insects were collected using two Shannon traps installed side by side, one white and the other black, in a primary forest area of the municipality of Xapuri, Acre, Brazil. Samples were collected once a month during the period August 2013 to July 2015. A sample of females was dissected to test for natural infection by flagellates. A total of 6,309 (864 males and 5,445 females) specimens (36 species) were collected. Psychodopygus carrerai carrerai (42%), Nyssomyia shawi (36%), and Psychodopygus davisi (13%), together represented 90% of the insects collected. Nyssomyia shawi and Psychodopygus davisi were more attracted by the white color. Specimens of Nyssomyia shawi, Nyssomyia whitmani, and Psychodopygus hirsutus hirsutus were found naturally infected by flagellates in the mid and hindgut. This is the first study in Acre state using and comparing both black and white Shannon traps, demonstrating the richness, diversity, and anthropophilic behavior of the phlebotomine species and identifying proven and putative vectors of the etiological agents of leishmaniasis.


Subject(s)
Color , Insect Vectors/physiology , Leishmaniasis, Cutaneous/transmission , Psychodidae/physiology , Animals , Brazil/epidemiology , Ecosystem , Euglenozoa/classification , Euglenozoa/isolation & purification , Female , Insect Vectors/classification , Insect Vectors/parasitology , Leishmaniasis, Cutaneous/epidemiology , Lighting , Male , Psychodidae/classification , Psychodidae/parasitology , Rain , Seasons , Tropical Climate
12.
J Phycol ; 53(1): 198-217, 2017 02.
Article in English | MEDLINE | ID: mdl-27859237

ABSTRACT

The history of euglenoids may have begun as early as ~2 bya. These early phagotrophs ate cyanobacteria, archaea, and eubacteria, and the subsequent appearance of red algae and chromalveolates provided euglenoids with additional food sources. Following the appearance of green algae, euglenoids acquired a chloroplast via a secondary endosymbiotic event with a green algal ancestor. This endosymbiosis also involved a massive transfer of nuclear-encoded genes from the symbiont nucleus to the host. Expecting these genes to have a green algal origin, this research has shown, through the use of DNA-sequences and the analysis of phylogenetic relationships, that many housekeeping genes have a red algal/chromalveolate ancestry. This suggested that many other endosymbiotic/horizontal gene transfers, which brought genes from chromalveolates to euglenoids, may have been taking place long before the acquisition of the chloroplast. The investigation of the origin of the enzymes involved in the tetrapyrrole synthesis pathway provided insights into horizontal gene transfer in euglenoids and demonstrated that the euglenoid nuclear genome is a mosaic comprised of genes from the ancestral lineage plus genes transferred endosymbiotically/horizontally from green, red, and chromalveolates lineages.


Subject(s)
Euglenozoa/genetics , Euglenozoa/metabolism , Evolution, Molecular , Gene Transfer, Horizontal , Tetrapyrroles/metabolism , Biosynthetic Pathways , Euglenozoa/classification , Phylogeny , Symbiosis , Tetrapyrroles/genetics
13.
Curr Biol ; 26(22): 3053-3059, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27875688

ABSTRACT

Recent global surveys of marine biodiversity have revealed that a group of organisms known as "marine diplonemids" constitutes one of the most abundant and diverse planktonic lineages [1]. Though discovered over a decade ago [2, 3], their potential importance was unrecognized, and our knowledge remains restricted to a single gene amplified from environmental DNA, the 18S rRNA gene (small subunit [SSU]). Here, we use single-cell genomics (SCG) and microscopy to characterize ten marine diplonemids, isolated from a range of depths in the eastern North Pacific Ocean. Phylogenetic analysis confirms that the isolates reflect the entire range of marine diplonemid diversity, and comparisons to environmental SSU surveys show that sequences from the isolates range from rare to superabundant, including the single most common marine diplonemid known. SCG generated a total of ∼915 Mbp of assembled sequence across all ten cells and ∼4,000 protein-coding genes with homologs in the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology database, distributed across categories expected for heterotrophic protists. Models of highly conserved genes indicate a high density of non-canonical introns, lacking conventional GT-AG splice sites. Mapping metagenomic datasets [4] to SCG assemblies reveals virtually no overlap, suggesting that nuclear genomic diversity is too great for representative SCG data to provide meaningful phylogenetic context to metagenomic datasets. This work provides an entry point to the future identification, isolation, and cultivation of these elusive yet ecologically important cells. The high density of nonconventional introns, however, also portends difficulty in generating accurate gene models and highlights the need for the establishment of stable cultures and transcriptomic analyses.


Subject(s)
Euglenozoa/classification , Euglenozoa/genetics , Genome, Protozoan , Plankton/classification , Plankton/genetics , Amino Acid Sequence , Biodiversity , California , Euglenozoa/cytology , Metagenomics , Pacific Ocean , Phylogeny , Plankton/cytology , RNA, Protozoan/genetics , Sequence Alignment
14.
Curr Biol ; 26(22): 3060-3065, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27875689

ABSTRACT

The world's oceans represent by far the largest biome, with great importance for the global ecosystem [1-4]. The vast majority of ocean biomass and biodiversity is composed of microscopic plankton. Recent results from the Tara Oceans metabarcoding study revealed that a significant part of the plankton in the upper sunlit layer of the ocean is represented by an understudied group of heterotrophic excavate flagellates called diplonemids [5, 6]. We have analyzed the diversity and distribution patterns of diplonemid populations on the extended set of Tara Oceans V9 18S rDNA metabarcodes amplified from 850 size- fractionated plankton communities sampled across 123 globally distributed locations, for the first time also including samples from the mesopelagic zone, which spans the depth from about 200 to 1,000 meters. Diplonemids separate into four major clades, with the vast majority falling into the deep-sea pelagic diplonemid clade. Remarkably, diversity of this clade inferred from metabarcoding data surpasses even that of dinoflagellates, metazoans, and rhizarians, qualifying diplonemids as possibly the most diverse group of marine planktonic eukaryotes. Diplonemids display strong vertical separation between the photic and mesopelagic layers, with the majority of their relative abundance and diversity occurring in deeper waters. Globally, diplonemids display no apparent biogeographic structuring, with a few hyperabundant cosmopolitan operational taxonomic units (OTUs) dominating their communities. Our results suggest that the planktonic diplonemids are among the key heterotrophic players in the largest ecosystem of our biosphere, yet their roles in this ecosystem remain unknown.


Subject(s)
Biodiversity , Ecosystem , Euglenozoa/classification , Plankton/classification , Aquatic Organisms/physiology , DNA Barcoding, Taxonomic , Euglenozoa/genetics , Oceans and Seas , Plankton/genetics , RNA, Protozoan/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, RNA
15.
Eur J Protistol ; 56: 250-276, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27889663

ABSTRACT

Discoveries of numerous new taxa and advances in ultrastructure and sequence phylogeny (including here the first site-heterogeneous 18S rDNA trees) require major improvements to euglenozoan higher-level taxonomy. I therefore divide Euglenozoa into three subphyla of substantially different body plans: Euglenoida with pellicular strips; anaerobic Postgaardia (class Postgaardea) dependent on surface bacteria and with uniquely modified feeding apparatuses; and new subphylum Glycomonada characterised by glycosomes (Kinetoplastea, Diplonemea). Euglenoida comprise two new infraphyla: Entosiphona with three feeding rods and Dipilida ancestrally with two. Dipilida comprise basal superclass Rigimonada with longitudinal rigid strips [i.e. new classes Stavomonadea (Petalomonadida, Decastavida and new order Heterostavida) and Ploeotarea (Ploeotiida) with contrasting oral cytoskeletons] and derived superclass Spirocuta with more numerous spirally arranged, often slideable, strips (clade Peranemea/Euglenophyceae) and a different, highly conserved microtubule pattern at strip joints. Peranemea comprise four orders: Peranemida (anterior gliding, protrusible rods), and three new, Anisonemida (posterior gliders), Natomonadida (swimmers including phagotrophic new suborder Metanemina and osmotrophic suborder Rhabdomonadina), and Acroglissida (anterior gliders with cytoproct). I establish orders Entosiphonida, Rapazida, Bihospitida; and seven new euglenoid families (Entosiphonidae, peranemean Neometanemidae, Rapazidae, two stavomonad, two ploeotiid) and three new postgaardian, and three kinetoplastid families (Neobodonidae, Rhynchomonadidae, Parabodonidae), plus new diplonemid family Hemistasiidae for Hemistasia.


Subject(s)
Euglenozoa/classification , Phylogeny , Euglenozoa/cytology , Euglenozoa/genetics , RNA, Ribosomal, 18S/genetics , Species Specificity
16.
Eur J Protistol ; 56: 232-249, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27771468

ABSTRACT

The genus Phytomonas includes trypanosomatids transmitted to the fruits, latex, and phloem of vascular plants by hemipterans. We inferred the phylogenetic relationships of plant and insect isolates assigned to the previously defined genetic groups A-F and H of Phytomonas, particularly those from groups A, C and E comprising flagellates of Solanaceae fruits. Phylogenetic analyses using glycosomal Glyceraldehyde Phosphate Dehydrogenase (gGAPDH) and Small Subunit rRNA (SSU rRNA) genes strongly supported the monophyly of the genus Phytomonas and its division into seven main infrageneric phylogenetic lineages (Phy clades). Isolates from fruit or latex do not constitute monophyletic assemblages but disperse through more than one lineages. In this study, fruit flagellates were distributed in three clades: PhyA, formed by isolates from Solanaceae and phytophagous hemipterans; PhyC comprising flagellates from four plant families; and PhyE, which contains 15 fruit isolates from seven species of Solanaceae. The flagellates of PhyE are described as Phytomonas dolleti n. sp. according to their positioning in phylogenetic trees, complemented by data about their life cycle, and developmental and morphological characteristics in cultures, fruits of Solanum spp., and salivary glands of the vector, the phytophagous hemipteran Arvelius albopunctatus (Pentatomidae).


Subject(s)
Euglenozoa/classification , Hemiptera/parasitology , Phylogeny , Animals , Salivary Glands/parasitology , Solanaceae/parasitology , Species Specificity
17.
Curr Biol ; 25(16): R702-4, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26294177

ABSTRACT

Lukes et al. introduce an enigmatic group of unicellular eukaryotes called the diplonemids, which according to recent surveys may be widespread in marine ecosystems.


Subject(s)
Biodiversity , Euglenozoa/classification , Euglenozoa/physiology , Aquatic Organisms/classification , Aquatic Organisms/genetics , Aquatic Organisms/physiology , Euglenozoa/genetics
18.
J Eukaryot Microbiol ; 62(3): 318-26, 2015.
Article in English | MEDLINE | ID: mdl-25283986

ABSTRACT

Two phagotrophic euglenid strains (Strains Pac and Tam) were isolated from coastal locations in Taiwan. Ultrastructural characteristics of the strains included five pellicle strips joined at the posterior end. The strips were formed by major grooves with bifurcated edges. At the cell anterior, the feeding structure formed a lip. Underneath the lip was a comb composed of layers of microtubules. Farther back, two supporting rods tapered toward the posterior end, and a number of vanes with attached microtubules were present between the rods. The morphological characteristics agree with Ploeotia costata Strain CCAP 1265/1. However, the 18S rDNA sequences of Strains Pac/Tam lacked a group I intron and possessed three extra insertions of 116, 67, and 53 bp. Phylogenetic analysis indicated low sequence similarity between Strains Pac/Tam and CCAP 1265/1 (92%). The morphospecies P. costata apparently includes a substantial level of DNA sequence divergence, and likely represents multiple molecular species units.


Subject(s)
Euglenozoa/classification , Euglenozoa/isolation & purification , Genetic Variation , Genotype , Phylogeny , Cluster Analysis , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Environmental Microbiology , Euglenozoa/genetics , Euglenozoa/ultrastructure , Integrons , Microscopy , Molecular Sequence Data , Mutagenesis, Insertional , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA , Taiwan
19.
Eur J Protistol ; 49(1): 32-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22925570

ABSTRACT

Microbial eukaryotes living in low oxygen environments often have novel physiological and morphological features that facilitate symbiotic relationships with bacteria and other means for acquiring nutrients. Comparative studies of these features provide evidence for phylogenetic relationships and evolutionary history. Postgaardi mariagerensis, for instance, is a euglenozoan that lives in low oxygen environments and is enveloped by episymbiotic bacteria. The general ultrastructure of P. mariagerensis was described more than a decade ago and no further studies have been carried out since, mainly because these cells are difficult to obtain. Postgaardi lacks the diagnostic features found in other major euglenozoan lineages (e.g., pellicle strips and kinetoplast-like mitochondrial inclusions) and no molecular data are available, so the phylogenetic position of this genus within the Euglenozoa remains unclear. We re-examined and reconstructed the ultrastructural organization of the feeding apparatus in Postgaardi by serial sectioning an existing block of resin-embedded cells. Postgaardi possesses distinctive finger-like projections within the feeding apparatus; this system has only been found in one other highly distinctive flagellate, namely the symbiontid Calkinsia. Detailed comparisons of the cytoskeleton in Postgaardi and in two symbiontids, Calkinsia and Bihospites, provided new evidence for phylogenetic relationships and character evolution in all three genera.


Subject(s)
Biological Evolution , Euglenozoa/classification , Euglenozoa/ultrastructure , Euglenozoa/physiology , Microscopy, Electron, Transmission , Phylogeny
20.
Exp Parasitol ; 133(3): 255-64, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23220323

ABSTRACT

Ras-like small GTPases are regulatory proteins that control multiple aspects of cellular function, and are particularly prevalent in vesicular transport. A proportion of GTPase paralogs appear restricted to certain eukaryote lineages, suggesting roles specific to a restricted lineage, and hence potentially reflecting adaptation to individual lifestyles or ecological niche. Here we describe the role of a GTPase, TbFRP, a FYVE domain N-terminally fused to a Ras-like GTPase, originally identified in Trypanosoma brucei. As FYVE-domains specifically bind phosphoinositol 3-phosphate (PI3P), which associates with endosomes, we suggest that TbFRP may unite phosphoinositide and small G protein endosomal signaling in trypanosomatids. TbFRP orthologs are present throughout the Euglenazoa suggesting that FRP has functions throughout the group. We show that the FYVE domain of TbFRP is functional in PI3P-dependent membrane targeting and localizes at the endosomal region. Further, while TbFRP is apparently non-essential, knockdown and immunochemical evidence indicates that TbFRP is rapidly cleaved upon synthesis, releasing the GTPase and FYVE-domains. Finally, TbFRP expression at both mRNA and protein levels is cell density-dependent. Together, these data suggest that TbFRP is an endocytic GTPase with a highly unusual mechanism of action that involves proteolysis of the nascent protein and membrane targeting via PI3P.


Subject(s)
GTP Phosphohydrolases/metabolism , Phosphatidylinositols/metabolism , Trypanosoma brucei brucei/enzymology , Amino Acid Sequence , Animals , Euglenozoa/classification , Euglenozoa/enzymology , Euglenozoa/genetics , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/genetics , Genome, Protozoan/genetics , Molecular Sequence Data , Open Reading Frames , Phylogeny , Protein Structure, Tertiary , Proteolysis , Rabbits , Signal Transduction/physiology , Trypanosoma brucei brucei/classification , Trypanosoma brucei brucei/genetics , Trypanosomatina/classification , Trypanosomatina/enzymology , Trypanosomatina/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...