Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(12): 6443-6460, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37207340

ABSTRACT

The mitochondrial ribosome (mitoribosome) has diverged drastically from its evolutionary progenitor, the bacterial ribosome. Structural and compositional diversity is particularly striking in the phylum Euglenozoa, with an extraordinary protein gain in the mitoribosome of kinetoplastid protists. Here we report an even more complex mitoribosome in diplonemids, the sister-group of kinetoplastids. Affinity pulldown of mitoribosomal complexes from Diplonema papillatum, the diplonemid type species, demonstrates that they have a mass of > 5 MDa, contain as many as 130 integral proteins, and exhibit a protein-to-RNA ratio of 11:1. This unusual composition reflects unprecedented structural reduction of ribosomal RNAs, increased size of canonical mitoribosomal proteins, and accretion of three dozen lineage-specific components. In addition, we identified >50 candidate assembly factors, around half of which contribute to early mitoribosome maturation steps. Because little is known about early assembly stages even in model organisms, our investigation of the diplonemid mitoribosome illuminates this process. Together, our results provide a foundation for understanding how runaway evolutionary divergence shapes both biogenesis and function of a complex molecular machine.


Subject(s)
Euglenozoa , Mitochondrial Ribosomes , Euglenozoa/classification , Euglenozoa/cytology , Euglenozoa/genetics , Eukaryota/cytology , Eukaryota/genetics , Mitochondrial Ribosomes/metabolism , Ribosomal Proteins/metabolism , RNA, Ribosomal/metabolism
2.
Environ Microbiol ; 22(11): 4658-4668, 2020 11.
Article in English | MEDLINE | ID: mdl-32830371

ABSTRACT

Diplonemids are considered marine protists and have been reported among the most abundant and diverse eukaryotes in the world oceans. Recently we detected the presence of freshwater diplonemids in Japanese deep freshwater lakes. However, their distribution and abundances in freshwater ecosystems remain unknown. We assessed abundance and diversity of diplonemids from several geographically distant deep freshwater lakes of the world by amplicon-sequencing, shotgun metagenomics and catalysed reporter deposition-fluorescent in situ hybridization (CARD-FISH). We found diplonemids in all the studied lakes, albeit with low abundances and diversity. We assembled long 18S rRNA sequences from freshwater diplonemids and showed that they form a new lineage distinct from the diverse marine clades. Freshwater diplonemids are a sister-group to a marine clade, which are mainly isolates from coastal and bay areas, suggesting a recent habitat transition from marine to freshwater habitats. Images of CARD-FISH targeted freshwater diplonemids suggest they feed on bacteria. Our analyses of 18S rRNA sequences retrieved from single-cell genomes of marine diplonemids show they encode multiple rRNA copies that may be very divergent from each other, suggesting that marine diplonemid abundance and diversity both have been overestimated. These results have wider implications on assessing eukaryotic abundances in natural habitats by using amplicon-sequencing alone.


Subject(s)
Euglenozoa/classification , Euglenozoa/isolation & purification , Lakes/microbiology , Biodiversity , Ecosystem , Euglenozoa/cytology , Euglenozoa/genetics , In Situ Hybridization, Fluorescence , Japan , Metagenomics , Phylogeny , RNA, Ribosomal, 18S/genetics , Species Specificity
3.
J Eukaryot Microbiol ; 66(3): 519-524, 2019 05.
Article in English | MEDLINE | ID: mdl-30080299

ABSTRACT

Recent surveys of marine microbial diversity have identified a previously unrecognized lineage of diplonemid protists as being among the most diverse heterotrophic eukaryotes in global oceans. Despite their monophyly (and assumed importance), they lack a formal taxonomic description, and are informally known as deep-sea pelagic diplonemids (DSPDs) or marine diplonemids. Recently, we documented morphology and molecular sequences from several DSPDs, one of which is particularly widespread and abundant in environmental sequence data. To simplify the communication of future work on this important group, here we formally propose to erect the family Eupelagonemidae to encompass this clade, as well as a formal genus and species description for the apparently most abundant phylotype, Eupelagonema oceanica, for which morphological information and single-cell amplified genome data are currently available.


Subject(s)
Euglenozoa/classification , Euglenozoa/cytology , Euglenozoa/genetics , Phylogeny , RNA, Protozoan/analysis
4.
Curr Biol ; 26(22): 3053-3059, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27875688

ABSTRACT

Recent global surveys of marine biodiversity have revealed that a group of organisms known as "marine diplonemids" constitutes one of the most abundant and diverse planktonic lineages [1]. Though discovered over a decade ago [2, 3], their potential importance was unrecognized, and our knowledge remains restricted to a single gene amplified from environmental DNA, the 18S rRNA gene (small subunit [SSU]). Here, we use single-cell genomics (SCG) and microscopy to characterize ten marine diplonemids, isolated from a range of depths in the eastern North Pacific Ocean. Phylogenetic analysis confirms that the isolates reflect the entire range of marine diplonemid diversity, and comparisons to environmental SSU surveys show that sequences from the isolates range from rare to superabundant, including the single most common marine diplonemid known. SCG generated a total of ∼915 Mbp of assembled sequence across all ten cells and ∼4,000 protein-coding genes with homologs in the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology database, distributed across categories expected for heterotrophic protists. Models of highly conserved genes indicate a high density of non-canonical introns, lacking conventional GT-AG splice sites. Mapping metagenomic datasets [4] to SCG assemblies reveals virtually no overlap, suggesting that nuclear genomic diversity is too great for representative SCG data to provide meaningful phylogenetic context to metagenomic datasets. This work provides an entry point to the future identification, isolation, and cultivation of these elusive yet ecologically important cells. The high density of nonconventional introns, however, also portends difficulty in generating accurate gene models and highlights the need for the establishment of stable cultures and transcriptomic analyses.


Subject(s)
Euglenozoa/classification , Euglenozoa/genetics , Genome, Protozoan , Plankton/classification , Plankton/genetics , Amino Acid Sequence , Biodiversity , California , Euglenozoa/cytology , Metagenomics , Pacific Ocean , Phylogeny , Plankton/cytology , RNA, Protozoan/genetics , Sequence Alignment
5.
Eur J Protistol ; 56: 250-276, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27889663

ABSTRACT

Discoveries of numerous new taxa and advances in ultrastructure and sequence phylogeny (including here the first site-heterogeneous 18S rDNA trees) require major improvements to euglenozoan higher-level taxonomy. I therefore divide Euglenozoa into three subphyla of substantially different body plans: Euglenoida with pellicular strips; anaerobic Postgaardia (class Postgaardea) dependent on surface bacteria and with uniquely modified feeding apparatuses; and new subphylum Glycomonada characterised by glycosomes (Kinetoplastea, Diplonemea). Euglenoida comprise two new infraphyla: Entosiphona with three feeding rods and Dipilida ancestrally with two. Dipilida comprise basal superclass Rigimonada with longitudinal rigid strips [i.e. new classes Stavomonadea (Petalomonadida, Decastavida and new order Heterostavida) and Ploeotarea (Ploeotiida) with contrasting oral cytoskeletons] and derived superclass Spirocuta with more numerous spirally arranged, often slideable, strips (clade Peranemea/Euglenophyceae) and a different, highly conserved microtubule pattern at strip joints. Peranemea comprise four orders: Peranemida (anterior gliding, protrusible rods), and three new, Anisonemida (posterior gliders), Natomonadida (swimmers including phagotrophic new suborder Metanemina and osmotrophic suborder Rhabdomonadina), and Acroglissida (anterior gliders with cytoproct). I establish orders Entosiphonida, Rapazida, Bihospitida; and seven new euglenoid families (Entosiphonidae, peranemean Neometanemidae, Rapazidae, two stavomonad, two ploeotiid) and three new postgaardian, and three kinetoplastid families (Neobodonidae, Rhynchomonadidae, Parabodonidae), plus new diplonemid family Hemistasiidae for Hemistasia.


Subject(s)
Euglenozoa/classification , Phylogeny , Euglenozoa/cytology , Euglenozoa/genetics , RNA, Ribosomal, 18S/genetics , Species Specificity
6.
Proc Biol Sci ; 283(1830)2016 05 11.
Article in English | MEDLINE | ID: mdl-27170716

ABSTRACT

The remodelling of organelle function is increasingly appreciated as a central driver of eukaryotic biodiversity and evolution. Kinetoplastids including Trypanosoma and Leishmania have evolved specialized peroxisomes, called glycosomes. Glycosomes uniquely contain a glycolytic pathway as well as other enzymes, which underpin the physiological flexibility of these major human pathogens. The sister group of kinetoplastids are the diplonemids, which are among the most abundant eukaryotes in marine plankton. Here we demonstrate the compartmentalization of gluconeogenesis, or glycolysis in reverse, in the peroxisomes of the free-living marine diplonemid, Diplonema papillatum Our results suggest that peroxisome modification was already under way in the common ancestor of kinetoplastids and diplonemids, and raise the possibility that the central importance of gluconeogenesis to carbon metabolism in the heterotrophic free-living ancestor may have been an important selective driver. Our data indicate that peroxisome modification is not confined to the kinetoplastid lineage, but has also been a factor in the success of their free-living euglenozoan relatives.


Subject(s)
Euglenozoa/cytology , Euglenozoa/metabolism , Peroxisomes/metabolism , Trypanosoma cruzi/cytology , Amino Acids/metabolism , Carbon/metabolism , Enzymes/metabolism , Euglenozoa/genetics , Gluconeogenesis , Microbodies , Pentose Phosphate Pathway , Phylogeny , Signal Transduction , Trypanosoma cruzi/metabolism
7.
BMC Microbiol ; 10: 145, 2010 May 19.
Article in English | MEDLINE | ID: mdl-20482870

ABSTRACT

BACKGROUND: Poorly understood but highly diverse microbial communities exist within anoxic and oxygen-depleted marine sediments. These communities often harbour single-celled eukaryotes that form symbiotic associations with different prokaryotes. During low tides in South-western British Columbia, Canada, vast areas of marine sand become exposed, forming tidal pools. Oxygen-depleted sediments within these pools are distinctively black at only 2-3 cm depth; these layers contain a rich variety of microorganisms, many of which are undescribed. We discovered and characterized a novel (uncultivated) lineage of heterotrophic euglenozoan within these environments using light microscopy, scanning and transmission electron microscopy, serial sectioning and ultrastructural reconstruction, and molecular phylogenetic analyses of small subunit rDNA sequences. RESULTS: Bihospites bacati n. gen. et sp. is a biflagellated microbial eukaryote that lives within low-oxygen intertidal sands and dies within a few hours of exposure to atmospheric oxygen. The cells are enveloped by two different prokaryotic episymbionts: (1) rod-shaped bacteria and (2) longitudinal strings of spherical bacteria, capable of ejecting an internal, tightly wound thread. Ultrastructural data showed that B. bacati possesses all of the euglenozoan synapomorphies. Moreover, phylogenetic analyses of SSU rDNA sequences demonstrated that B. bacati groups strongly with the Symbiontida: a newly established subclade within the Euglenozoa that includes Calkinsia aureus and other unidentified organisms living in low-oxygen sediments. B. bacati also possessed novel features, such as a compact C-shaped rod apparatus encircling the nucleus, a cytostomal funnel and a distinctive cell surface organization reminiscent of the pellicle strips in phagotrophic euglenids. CONCLUSIONS: We characterized the ultrastructure and molecular phylogenetic position of B. bacati n. gen. et sp. Molecular phylogenetic analyses demonstrated that this species belongs to the Euglenozoa and currently branches as the earliest diverging member of the Symbiontida. This is concordant with ultrastructural features of B. bacati that are intermediate between C. aureus and phagotrophic euglenids, indicating that the most recent ancestor of the Symbiontida descended from phagotrophic euglenids. Additionally, the extrusive episymbionts in B. bacati are strikingly similar to so-called "epixenosomes", prokaryotes previously described in a ciliate species and identified as members of the Verrucomicrobia. These parallel symbioses increase the comparative context for understanding the origin(s) of extrusive organelles in eukaryotes and underscores how little we know about the symbiotic communities of marine benthic environments.


Subject(s)
Euglenozoa/classification , Euglenozoa/cytology , Geologic Sediments/microbiology , Animals , Bacteria/growth & development , Bacteria/isolation & purification , British Columbia , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Euglenozoa/isolation & purification , Euglenozoa/microbiology , Genes, rRNA , Microscopy , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Molecular Sequence Data , RNA, Protozoan/genetics , RNA, Ribosomal/genetics , Sequence Analysis, DNA , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...