Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.630
Filter
1.
Mol Cell ; 84(11): 2135-2151.e7, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848692

ABSTRACT

In response to stress, eukaryotes activate the integrated stress response (ISR) via phosphorylation of eIF2α to promote the translation of pro-survival effector genes, such as GCN4 in yeast. Complementing the ISR is the target of rapamycin (TOR) pathway, which regulates eIF4E function. Here, we probe translational control in the absence of eIF4E in Saccharomyces cerevisiae. Intriguingly, we find that loss of eIF4E leads to de-repression of GCN4 translation. In addition, we find that de-repression of GCN4 translation is accompanied by neither eIF2α phosphorylation nor reduction in initiator ternary complex (TC). Our data suggest that when eIF4E levels are depleted, GCN4 translation is de-repressed via a unique mechanism that may involve faster scanning by the small ribosome subunit due to increased local concentration of eIF4A. Overall, our findings suggest that relative levels of eIF4F components are key to ribosome dynamics and may play important roles in translational control of gene expression.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Stress, Physiological , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Phosphorylation , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Eukaryotic Initiation Factor-4F/metabolism , Eukaryotic Initiation Factor-4F/genetics , Protein Biosynthesis , Gene Expression Regulation, Fungal , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics , Signal Transduction , Ribosomes/metabolism , Ribosomes/genetics , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics
2.
PLoS Pathog ; 20(6): e1012355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935808

ABSTRACT

Stress granules (SGs), formed by untranslated messenger ribonucleoproteins (mRNPs) during cellular stress in eukaryotes, have been linked to flavivirus interference without clear understanding. This study reveals the role of Zika virus (ZIKV) NS2B as a scaffold protein mediating interaction between protein phosphatase 1α (PP1α) and eukaryotic initiation factor 2α (eIF2α). This interaction promotes eIF2α dephosphorylation by PP1α, inhibiting SG formation. The NS2B-PP1α complex exhibits remarkable stability, resisting ubiquitin-induced degradation and amplifying eIF2α dephosphorylation, thus promoting ZIKV replication. In contrast, the NS2BV35A mutant, interacting exclusively with eIF2α, fails to inhibit SG formation, resulting in reduced viral replication and diminished impact on brain organoid growth. These findings reveal PP1α's dual role in ZIKV infection, inducing interferon production as an antiviral factor and suppressing SG formation as a viral promoter. Moreover, we found that NS2B also serves as a versatile mechanism employed by flaviviruses to counter host antiviral defenses, primarily by broadly inhibiting SG formation. This research advances our comprehension of the complex interplay in flavivirus-host interactions, offering potential for innovative therapeutic strategies against flavivirus infections.


Subject(s)
Eukaryotic Initiation Factor-2 , Protein Phosphatase 1 , Stress Granules , Viral Nonstructural Proteins , Virus Replication , Zika Virus Infection , Zika Virus , Zika Virus/physiology , Virus Replication/physiology , Humans , Zika Virus Infection/virology , Zika Virus Infection/metabolism , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Protein Phosphatase 1/metabolism , Eukaryotic Initiation Factor-2/metabolism , Stress Granules/metabolism , Animals
3.
Biosci Rep ; 44(7)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38873976

ABSTRACT

The heterotrimeric eIF2 complex consists of a core eIF2γ subunit to which binds eIF2α and eIF2ß subunits and plays an important role in delivering the Met-tRNAiMet to the 40S ribosome and start codon selection. The intricacies of eIF2ß-γ interaction in promoting Met-tRNAiMet binding are not clearly understood. Previously, the zinc-binding domain (ZBD) eIF2ßS264Y mutation was reported to cause Met-tRNAiMet binding defect due to the intrinsic GTPase activity. We showed that the eIF2ßS264Y mutation has eIF2ß-γ interaction defect. Consistently, the eIF2ßT238A intragenic suppressor mutation restored the eIF2ß-γ and Met-tRNAiMet binding. The eIF2ß-ZBD residues Asn252Asp and Arg253Ala mutation caused Met-tRNAiMet binding defect that was partially rescued by the eIF2ßT238A mutation, suggesting the eIF2ß-ZBD modulates Met-tRNAiMet binding. The suppressor mutation rescued the translation initiation fidelity defect of the eIF2γN135D SW-I mutation and eIF2ßF217A/Q221A double mutation in the HTH domain. The eIF2ßT238A suppressor mutation could not rescue the eIF2ß binding defect of the eIF2γV281K mutation; however, combining the eIF2ßS264Y mutation with the eIF2γV281K mutation was lethal. In addition to the previously known interaction of eIF2ß with the eIF2γ subunit via its α1-helix, the eIF2ß-ZBD also interacts with the eIF2γ subunit via guanine nucleotide-binding interface; thus, the eIF2ß-γ interacts via two distinct binding sites.


Subject(s)
Protein Binding , Binding Sites , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2B/metabolism , Eukaryotic Initiation Factor-2B/genetics , Eukaryotic Initiation Factor-2B/chemistry , Mutation , RNA, Transfer, Met/metabolism , RNA, Transfer, Met/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Zinc/metabolism
4.
Int J Biol Macromol ; 273(Pt 1): 132968, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38871097

ABSTRACT

Eukaryotic Initiation Translation Factor 2A (EIF2A) is considered to be primarily responsible for the initiation of translation when a cell is subjected to stressful conditions. However, information regarding this protein is still incomplete. Using a combination of proteomic approaches, we demonstrated that EIF2A is the molecular target of the naturally occurring bioactive compound cannabidiolic acid (CBDA) within human glioblastoma cells. This finding allowed us to undertake a study aimed at obtaining further information on the functions that EIF2A plays in tumor cells. Indeed, our data showed that CBDA is able to activate EIF2A when the cells are in no-stress conditions. It induces conformational changes in the protein structure, thus increasing EIF2A affinity towards the proteins participating in the Eukaryotic Translation Machinery. Consequently, following glioblastoma cells incubation with CBDA we observed an enhanced neosynthesis of proteins involved in the stress response, nucleic acid translation and organization, and protein catabolism. These changes in gene expression resulted in increased levels of ubiquitinated proteins and accumulation of the autophagosome. Our results, in addition to shedding light on the molecular mechanism underlying the biological effect of a phytocannabinoid in cancer cells, demonstrated that EIF2A plays a critical role in regulation of protein homeostasis.


Subject(s)
Eukaryotic Initiation Factor-2 , Glioblastoma , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Eukaryotic Initiation Factor-2/metabolism , Cell Line, Tumor , Proteostasis/drug effects , Protein Biosynthesis/drug effects , Proteomics/methods
5.
Mol Cell ; 84(11): 2009-2010, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848688

ABSTRACT

In this issue, Diamond et al.1 and Kim et al.2 report that depletion of eIF4E leads to translational upregulation of GCN4, a key player in the integrated stress response, in an eIF2α phosphorylation-independent manner, suggesting a new mode of translational adaptation.


Subject(s)
Eukaryotic Initiation Factor-4E , Stress, Physiological , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4E/genetics , Phosphorylation , Humans , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics , Protein Biosynthesis , Animals , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
6.
Cells ; 13(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891018

ABSTRACT

(1) Background: Stress granules (SGs) are cytoplasmic protein-RNA condensates that assemble in response to various insults. SG production is driven by signaling pathways that are relevant to human disease. Compounds that modulate SG characteristics are therefore of clinical interest. Pifithrin-µ is a candidate anti-tumor agent that inhibits members of the hsp70 chaperone family. While hsp70s are required for granulostasis, the impact of pifithrin-µ on SG formation is unknown. (2) Methods: Using HeLa cells as model system, cell-based assays evaluated the effects of pifithrin-µ on cell viability. Quantitative Western blotting assessed cell signaling events and SG proteins. Confocal microscopy combined with quantitative image analyses examined multiple SG parameters. (3) Results: Pifithrin-µ induced bona fide SGs in the absence of exogenous stress. These SGs were dynamic; their properties were determined by the duration of pifithrin-µ treatment. The phosphorylation of eIF2α was mandatory to generate SGs upon pifithrin-µ exposure. Moreover, the formation of pifithrin-µ SGs was accompanied by profound changes in cell signaling. Pifithrin-µ reduced the activation of 5'-AMP-activated protein kinase, whereas the pro-survival protein kinase Akt was activated. Long-term pifithrin-µ treatment caused a marked loss of cell viability. (4) Conclusions: Our study identified stress-related changes in cellular homeostasis that are elicited by pifithrin-µ. These insights are important knowledge for the appropriate therapeutic use of pifithrin-µ and related compounds.


Subject(s)
Cell Survival , Signal Transduction , Stress Granules , Humans , Cell Survival/drug effects , Signal Transduction/drug effects , HeLa Cells , Stress Granules/metabolism , Phosphorylation/drug effects , Toluene/analogs & derivatives , Toluene/pharmacology , Eukaryotic Initiation Factor-2/metabolism , Proto-Oncogene Proteins c-akt/metabolism
7.
Chem Biol Interact ; 398: 111090, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38825057

ABSTRACT

Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play pivotal roles in the pathology of cerebral ischemia. In this study, we investigated whether phelligridimer A (PA), an active compound isolated from the medicinal and edible fungus Phellinus igniarius, ameliorates ischemic cerebral injury by restoring mitochondrial function and restricting ER stress. An in vitro cellular model of ischemic stroke-induced neuronal damage was established by exposing HT-22 neuronal cells to oxygen-glucose deprivation/reoxygenation (OGD/R). An in vivo animal model was established in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). The results showed that PA (1-10 µM) dose-dependently increased HT-22 cell viability, reduced OGD/R-induced lactate dehydrogenase release, and reversed OGD/R-induced apoptosis. PA reduced OGD/R-induced accumulation of reactive oxygen species, restored mitochondrial membrane potential, and increased ATP levels. Additionally, PA reduced the expression of the 78-kDa glucose-regulated protein (GRP78) and the phosphorylation of inositol-requiring enzyme-1α (p-IRE1α) and eukaryotic translation-initiation factor 2α (p-eIF2α). PA also inhibited the activation of the mitogen-activated protein kinase (MAPK) pathway in the OGD/R model. Moreover, treatment with PA restored the expression of mitofusin 2 (Mfn-2), a protein linking mitochondria and ER. The silencing of Mfn-2 abolished the protective effects of PA. The results from the animal study showed that PA (3-10 mg/kg) significantly reduced the volume of cerebral infarction and neurological deficits, which were accompanied by an increased level of Mfn-2, and decreased activation of the ER stress in the penumbra of the ipsilateral side after MCAO/R in rats. Taken together, these results indicate that PA counteracts cerebral ischemia-induced injury by restoring mitochondrial function and reducing ER stress. Therefore, PA might be a novel protective agent to prevent ischemia stroke-induced neuronal injury.


Subject(s)
Brain Ischemia , Endoplasmic Reticulum Stress , GTP Phosphohydrolases , Rats, Sprague-Dawley , Reactive Oxygen Species , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy , GTP Phosphohydrolases/metabolism , Rats , Male , Endoplasmic Reticulum Stress/drug effects , Mice , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Reactive Oxygen Species/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Apoptosis/drug effects , Cell Line , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Mitochondria/drug effects , Mitochondria/metabolism , Neuroprotective Agents/pharmacology , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Membrane Potential, Mitochondrial/drug effects , Glucose/metabolism , Cell Survival/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Heat-Shock Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Eukaryotic Initiation Factor-2/metabolism
8.
Toxicol Lett ; 397: 48-54, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734221

ABSTRACT

The skin, the organ with the largest surface area in the body, is the most susceptible to chemical exposure from the external environment. In this study, we aimed to establish an in vitro skin toxicity monitoring system that utilizes the mechanism of stress granule (SG) formation induced by various cellular stresses. In HaCaT cells, a keratinocyte cell line that comprises the human skin, a green fluorescent protein (GFP) was knocked in at the C-terminal genomic locus of Ras GTPase-activating protein-binding protein 1 (G3BP1), a representative component of SGs. The G3BP1-GFP knock-in HaCaT cells and wild-type (WT) HaCaT cells formed SGs containing G3BP1-GFP upon exposure to arsenite and household chemicals, such as bisphenol A (BPA) and benzalkonium chloride (BAC), in real-time. In addition, the exposure of G3BP1-GFP knock-in HaCaT cells to BPA and BAC promoted the phosphorylation of eukaryotic initiation factor 2 alpha and protein kinase R-like endoplasmic reticulum kinase, which are cell signaling factors involved in SG formation, similar to WT HaCaT cells. In conclusion, this novel G3BP1-GFP knock-in human skin cell system can monitor SG formation in real-time and be utilized to assess skin toxicity to various substances.


Subject(s)
Cytoplasmic Granules , DNA Helicases , Green Fluorescent Proteins , Keratinocytes , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Humans , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Arsenites/toxicity , Skin/drug effects , Skin/metabolism , Gene Knock-In Techniques , Genes, Reporter/drug effects , Phenols/toxicity , HaCaT Cells , Phosphorylation , Benzhydryl Compounds/toxicity , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics , Toxicity Tests/methods
9.
J Mol Biol ; 436(13): 168594, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38724002

ABSTRACT

The recent SARS-CoV-2 pandemic and associated COVID19 disease illustrates the important role of viral defence mechanisms in ensuring survival and recovery of the host or patient. Viruses absolutely depend on the host's protein synthesis machinery to replicate, meaning that impeding translation is a powerful way to counteract viruses. One major approach used by cells to obstruct protein synthesis is to phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α). Mammals possess four different eIF2α-kinases: PKR, HRI, PEK/PERK, and GCN2. While PKR is currently considered the principal eIF2α-kinase involved in viral defence, the other eIF2α-kinases have also been found to play significant roles. Unsurprisingly, viruses have developed mechanisms to counteract the actions of eIF2α-kinases, or even to exploit them to their benefit. While some of these virulence factors are specific to one eIF2α-kinase, such as GCN2, others target all eIF2α-kinases. This review critically evaluates the current knowledge of viral mechanisms targeting the eIF2α-kinase GCN2. A detailed and in-depth understanding of the molecular mechanisms by which viruses evade host defence mechanisms will help to inform the development of powerful anti-viral measures.


Subject(s)
COVID-19 , Protein Serine-Threonine Kinases , SARS-CoV-2 , Humans , Protein Serine-Threonine Kinases/metabolism , COVID-19/virology , COVID-19/metabolism , SARS-CoV-2/physiology , Animals , Eukaryotic Initiation Factor-2/metabolism , Virus Replication , eIF-2 Kinase/metabolism , Phosphorylation , Host-Pathogen Interactions
10.
Am J Physiol Heart Circ Physiol ; 327(1): H1-H11, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38700493

ABSTRACT

Although the unfolded protein response (UPR) contributes to survival by removing misfolded proteins, endoplasmic reticulum (ER) stress also activates proapoptotic pathways. Changed sensitivity to normal developmental stimuli may underlie observed cardiomyocyte apoptosis in the healthy perinatal heart. We determined in vitro sensitivity to thapsigargin in sheep cardiomyocytes from four perinatal ages. In utero cardiac activation of ER stress and apoptotic pathways was determined at these same ages. Thapsigargin-induced phosphorylation of eukaryotic initiation factor 2 (EIF2A) was decreased by 72% between 135 and 143 dGA (P = 0.0096) and remained low at 1 dPN (P = 0.0080). Conversely, thapsigargin-induced caspase cleavage was highest around the time of birth: cleaved caspase 3 was highest at 1 dPN (3.8-fold vs. 135 dGA, P = 0.0380; 7.8-fold vs. 5 dPN, P = 0.0118), cleaved caspase 7 and cleaved caspase 12 both increased between 135 and 143 dGA (25-fold and 6.9-fold respectively, both P < 0.0001) and remained elevated at 1 dPN. Induced apoptosis, measured by TdT-mediated dUTP nick-end labeling (TUNEL) assay, was highest around the time of birth (P < 0.0001). There were changes in myocardial ER stress pathway components in utero. Glucose (78 kDa)-regulated protein (GRP78) protein levels were high in the fetus and declined after birth (P < 0.0001). EIF2A phosphorylation was profoundly depressed at 1 dPN (vs. 143 dGA, P = 0.0113). In conclusion, there is dynamic regulation of ER proteostasis, ER stress, and apoptosis cascade in the perinatal heart. Apoptotic signaling is more readily activated in fetal cardiomyocytes near birth, leading to widespread caspase cleavage in the newborn heart. These pathways are important for the regulation of normal maturation in the healthy perinatal heart.NEW & NOTEWORTHY Cardiomyocyte apoptosis occurs even in the healthy, normally developing perinatal myocardium. As cardiomyocyte number is a critical contributor to heart health, the sensitivity of cardiomyocytes to endoplasmic reticulum stress leading to apoptosis is an important consideration. This study suggests that the heart has less robust protective mechanisms in response to endoplasmic reticulum stress immediately before and after birth, and that more cardiomyocyte death can be induced by stress in this period.


Subject(s)
Animals, Newborn , Apoptosis , Myocytes, Cardiac , Thapsigargin , Animals , Apoptosis/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Sheep , Thapsigargin/pharmacology , Female , Eukaryotic Initiation Factor-2/metabolism , Endoplasmic Reticulum Stress/drug effects , Phosphorylation , Endoplasmic Reticulum Chaperone BiP , Pregnancy , Unfolded Protein Response , Cells, Cultured , Heat-Shock Proteins/metabolism , Signal Transduction , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects
11.
Med Oncol ; 41(6): 140, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713310

ABSTRACT

Glioblastoma (GBM) is an extremely aggressive primary brain tumor with poor prognosis, short survival time post-diagnosis and high recurrence. Currently, no cure for GBM exists. The identification of an effective therapeutic modality for GBM remains a high priority amongst medical professionals and researches. In recent studies, inhalant cannabidiol (CBD) has demonstrated promise in effectively inhibiting GBM tumor growth. However, exactly how CBD treatment affects the physiology of these tumor cells remains unclear. Stress granules (SG) (a sub-class of biomolecular condensates (BMC)) are dynamic, membrane-less intracellular microstructures which contain proteins and nucleic acids. The formation and signaling of SGs and BMCs plays a significant role in regulating malignancies. This study investigates whether inhaled CBD may play an intervening role towards SGs in GBM tumor cells. Integrated bioinformatics approaches were preformed to gain further insights. This includes use of Immunohistochemistry and flow cytometry to measure SGs, as well as expression and phosphorylation of eukaryotic initiation factor-2α (eIF2α). The findings of this study reveal that CBD receptors (and co-regulated genes) have the potential to play an important biological role in the formation of BMCs within GBM. In this experiment, CBD treatment significantly increased the volume of TIAR-1. This increase directly correlated with elevation in both eIF2α expression and p-eIF2α in CBD treated tissues in comparison to the placebo group (p < 0.05). These results suggest that inhalant CBD significantly up-regulated SGs in GBM, and thus support a theory of targeting BMCs as a potential therapeutic substrate for treating GBM.


Subject(s)
Brain Neoplasms , Cannabidiol , Glioblastoma , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Cannabidiol/pharmacology , Humans , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Stress Granules/metabolism , Stress Granules/drug effects , Cell Line, Tumor , Eukaryotic Initiation Factor-2/metabolism
12.
J Biol Chem ; 300(6): 107398, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777145

ABSTRACT

The unfolded protein response pathways (UPR), autophagy, and compartmentalization of misfolded proteins into inclusion bodies are critical components of the protein quality control network. Among inclusion bodies, aggresomes are particularly intriguing due to their association with cellular survival, drug resistance, and aggresive cancer behavior. Aggresomes are molecular condensates formed when collapsed vimentin cages encircle misfolded proteins before final removal by autophagy. Yet significant gaps persist in the mechanisms governing aggresome formation and elimination in cancer cells. Understanding these mechanisms is crucial, especially considering the involvement of LC3A, a member of the MAP1LC3 family, which plays a unique role in autophagy regulation and has been reported to be epigenetically silenced in many cancers. Herein, we utilized the tetracycline-inducible expression of LC3A to investigate its role in choroid plexus carcinoma cells, which inherently exhibit the presence of aggresomes. Live cell imaging was employed to demonstrate the effect of LC3A expression on aggresome-positive cells, while SILAC-based proteomics identified LC3A-induced protein and pathway alterations. Our findings demonstrated that extended expression of LC3A is associated with cellular senescence. However, the obstruction of lysosomal degradation in this context has a deleterious effect on cellular viability. In response to LC3A-induced autophagy, we observed significant alterations in mitochondrial morphology, reflected by mitochondrial dysfunction and increased ROS production. Furthermore, LC3A expression elicited the activation of the PERK-eIF2α-ATF4 axis of the UPR, underscoring a significant change in the protein quality control network. In conclusion, our results elucidate that LC3A-mediated autophagy alters the protein quality control network, exposing a vulnerability in aggresome-positive cancer cells.


Subject(s)
Activating Transcription Factor 4 , Autophagy , Eukaryotic Initiation Factor-2 , Microtubule-Associated Proteins , Mitochondria , eIF-2 Kinase , Humans , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Mitochondria/metabolism , Mitochondria/pathology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics , Cell Line, Tumor , Unfolded Protein Response , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics
13.
Front Immunol ; 15: 1358036, 2024.
Article in English | MEDLINE | ID: mdl-38690262

ABSTRACT

Background: It remains unclear whether BPIV3 infection leads to stress granules formation and whether G3BP1 plays a role in this process and in viral replication. This study aims to clarify the association between BPIV3 and stress granules, explore the effect of G3BP1 on BPIV3 replication, and provide significant insights into the mechanisms by which BPIV3 evades the host's antiviral immunity to support its own survival. Methods: Here, we use Immunofluorescence staining to observe the effect of BPIV3 infection on the assembly of stress granules. Meanwhile, the expression changes of eIF2α and G3BP1 were determined. Overexpression or siRNA silencing of intracellular G3BP1 levels was examined for its regulatory control of BPIV3 replication. Results: We identify that the BPIV3 infection elicited phosphorylation of the eIF2α protein. However, it did not induce the assembly of stress granules; rather, it inhibited the formation of stress granules and downregulated the expression of G3BP1. G3BP1 overexpression facilitated the formation of stress granules within cells and hindered viral replication, while G3BP1 knockdown enhanced BPIV3 expression. Conclusion: This study suggest that G3BP1 plays a crucial role in BPIV3 suppressing stress granule formation and viral replication.


Subject(s)
DNA Helicases , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Stress Granules , Virus Replication , Animals , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA Recognition Motif Proteins/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , Stress Granules/metabolism , Cattle , Eukaryotic Initiation Factor-2/metabolism , Respirovirus Infections/immunology , Respirovirus Infections/metabolism , Host-Pathogen Interactions/immunology , Phosphorylation , Cell Line , Cytoplasmic Granules/metabolism
14.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732072

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disease. Despite new methods of diagnostics and treatment as well as extensive biological and immunosuppressive treatment, the etiology of RA is not fully understood. Moreover, the problem of diagnosis and treatment of RA patients is still current and affects a large group of patients. It is suggested that endoplasmic reticulum (ER)-related features may impair adaptation to chronic stress, inferring the risk of rheumatoid arthritis. The main goal in this study was evaluation of changes in mRNA translation to determine chronic ER stress conditions in rheumatoid arthritis patients. The study group consist of 86 individuals including a total of 56 rheumatoid arthritis patients and 30 healthy controls. The expression level of mRNA form blood samples of RA patients as well as controls of the unfolded protein response (UPR)-associated genes (p-eIF2, BCL-2, PERK, ATF4, and BAX) were investigated using real-time qPCR. GAPDH expression was used as a standard control. Considering the median, the expression levels of PERK, BCL-2, p-eIF2, ATF4, and BAX were found to be significantly increased in the blood of RA patients compared with the control group. The p-value for the PERK gene was 0.0000000036, the p-value for the BCL-2 gene was 0.000000014, the p-value for the p-eIF2 gene was 0.006948, the p-value for the ATF4 gene was 0.0000056, and the p-value for the BAX gene was 0.00019, respectively. Thus, it can be concluded that the targeting of the components of the PERK-dependent UPR signaling pathway via small-molecule PERK inhibitors may contribute to the development of novel, innovative treatment strategies against rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Endoplasmic Reticulum Stress , Gene Expression Profiling , Unfolded Protein Response , eIF-2 Kinase , Humans , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/blood , Unfolded Protein Response/genetics , Female , Male , Middle Aged , Endoplasmic Reticulum Stress/genetics , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Adult , Aged , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Case-Control Studies , RNA, Messenger/genetics , RNA, Messenger/metabolism , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics
15.
Biomed Pharmacother ; 175: 116684, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713951

ABSTRACT

Chinese herbs have been used to treat small-cell lung cancer (SCLC) due to their low toxicity and significant efficacy. This study focused on oridonin, a natural compound extracted from Rabdosia rubescens, and aimed to investigate its potential antitumor activity on SCLC and to evaluate the synergistic effect of combining oridonin with other small molecules. In this study, oridonin exhibited a dual effect. At lower concentrations, it suppressed the cell viability of SCLC cells (H1688 and H446). At high concentrations, oridonin induced SCLC cell apoptosis, damaged HBE cells in vitro and compromised the function of the liver and heart in vivo. The lower concentration of oridonin induced autophagy by enhancing the expression of p62 and the LC3B-II/LC3B-I ratio. This phenomenon might be associated with the activation of the protein kinase RNA-like ER kinase (PERK)/eukaryotic initiation factor 2 alpha (eIF2α)/growth arrest and DNA damage-inducible gene 153 (CHOP/GAD153) pathway. Therefore, the combined effect of oridonin with GSK2606414 or 3- methyladenine increased apoptosis in SCLC cells and reduced tumor growth. A similar phenomenon was observed after oridonin was combined with p62 or CHOP RNA interference treatment. Simultaneously, the combination of oridonin and GSK2606414 exhibited therapeutic efficacy without manifesting adverse effects. Our findings suggest that oridonin at lower concentrations can induce autophagy by activating the PERK/eIF2α/CHOP signaling pathway. The inhibition of the PERK/eIF2α/CHOP pathway could enhance oridonin therapeutic responses by triggering apoptosis. The novel therapeutic approach of combining oridonin with a PERK inhibitor is promising as a strategy for the treatment of SCLC.


Subject(s)
Apoptosis , Autophagy , Diterpenes, Kaurane , Eukaryotic Initiation Factor-2 , Lung Neoplasms , Signal Transduction , Small Cell Lung Carcinoma , Transcription Factor CHOP , eIF-2 Kinase , Diterpenes, Kaurane/pharmacology , Autophagy/drug effects , Transcription Factor CHOP/metabolism , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/metabolism , eIF-2 Kinase/metabolism , Apoptosis/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cell Line, Tumor , Eukaryotic Initiation Factor-2/metabolism , Animals , Signal Transduction/drug effects , Mice, Nude , Mice, Inbred BALB C , Mice , Xenograft Model Antitumor Assays , Cell Survival/drug effects , Drug Synergism , Male
16.
Sci Rep ; 14(1): 8451, 2024 04 11.
Article in English | MEDLINE | ID: mdl-38605136

ABSTRACT

Protein synthesis is a highly energy-consuming process that is downregulated in response to many environmental stresses or adverse conditions. Studies in the yeast Saccharomyces cerevisiae have shown that bulk translation is inhibited during adaptation to iron deficiency, which is consistent with its requirement for ribosome biogenesis and recycling. Although iron deficiency anemia is the most common human nutritional disorder, how iron modulates translation in mammals is poorly understood. Studies during erythropoiesis have shown that iron bioavailability is coordinated with globin synthesis via bulk translation regulation. However, little is known about the control of translation during iron limitation in other tissues. Here, we investigated how iron depletion affects protein synthesis in human osteosarcoma U-2 OS cells. By adding an extracellular iron chelator, we observed that iron deficiency limits cell proliferation, induces autophagy, and decreases the global rate of protein synthesis. Analysis of specific molecular markers indicates that the inhibition of bulk translation upon iron limitation occurs through the eukaryotic initiation factor eIF2α and mechanistic target of rapamycin (mTOR) pathways. In contrast to other environmental and nutritional stresses, iron depletion does not trigger the assembly of messenger ribonucleoprotein stress granules, which typically form upon polysome disassembly.


Subject(s)
Iron Deficiencies , Iron , Animals , Humans , Iron/metabolism , Phosphorylation , Protein Biosynthesis , Saccharomyces cerevisiae/metabolism , Eukaryotic Initiation Factor-2/metabolism , Mammals/metabolism
17.
Mol Biol Cell ; 35(6): br12, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38656789

ABSTRACT

The endoplasmic reticulum (ER) is a single-copy organelle that cannot be generated de novo, suggesting coordination between the mechanisms overseeing ER integrity and those controlling the cell cycle to maintain organelle inheritance. The Unfolded Protein Response (UPR) is a conserved signaling network that regulates ER homeostasis. Here, we show that pharmacological and genetic inhibition of the UPR sensors IRE1, ATF6, and PERK in unstressed cells delays the cell cycle, with PERK inhibition showing the most penetrant effect, which was associated with a slowdown of the G1-to-S/G2 transition. Treatment with the small molecule ISRIB to bypass the effects of PERK-dependent phosphorylation of the translation initiation factor eIF2α had no such effect, suggesting that cell cycle timing depends on PERK's kinase activity but is independent of eIF2α phosphorylation. Using complementary light and electron microscopy and flow cytometry-based analyses, we also demonstrate that the ER enlarges before mitosis. Together, our results suggest coordination between UPR signaling and the cell cycle to maintain ER physiology during cell division.


Subject(s)
Activating Transcription Factor 6 , Cell Cycle , Endoplasmic Reticulum , Eukaryotic Initiation Factor-2 , Protein Serine-Threonine Kinases , Signal Transduction , Unfolded Protein Response , eIF-2 Kinase , eIF-2 Kinase/metabolism , Humans , Cell Cycle/physiology , Endoplasmic Reticulum/metabolism , Phosphorylation , Eukaryotic Initiation Factor-2/metabolism , Activating Transcription Factor 6/metabolism , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/metabolism , Animals , HeLa Cells , Endoplasmic Reticulum Stress/physiology
18.
Vet Microbiol ; 293: 110095, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643723

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) envelope protein (E) has been characterized as an important structural protein that plays critical roles in the interplay with its host to affect the virus life cycle. Stress granules (SGs) are host translationally silent ribonucleoproteins, which are mainly induced by the phosphorylation of eIF2α in the PERK/eIF2α signaling pathway. Our previous study found that PEDV E protein caused endoplasmic reticulum stress response (ERS)-mediated suppression of antiviral proteins' translation. However, the link and the underlying mechanism by which PEDV induces SGs formation and suppresses host translation remain elusive. In this study, our results showed that PEDV E protein significantly elevated the expression of GRP78, CANX, and phosphorylation of PERK and eIF2α, indicating that the PERK/eIF2α branch of ERS was activated. PEDV E protein localized to the ER and aggregated into puncta to reconstruct ER structure, and further induced SGs formation, which has been caused through upregulating the G3BP1 expression level. In addition, a significant global translational stall and endogenous protein translation attenuation were detected in the presence of E protein overexpression, but the global mRNA transcriptional level remained unchanged, suggesting that the shutoff of protein translation was associated with the translation, not with the transcription process. Collectively, this study demonstrates that PERK/eIF2α activation is required for SGs formation and protein translation stall. This study is beneficial for us to better understand the mechanism by which PEDV E suppresses host protein synthesis, and provides us a new insight into the host translation regulation during virus infection.


Subject(s)
Eukaryotic Initiation Factor-2 , Porcine epidemic diarrhea virus , Protein Biosynthesis , Signal Transduction , Stress Granules , Viral Envelope Proteins , eIF-2 Kinase , Animals , Chlorocebus aethiops , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Endoplasmic Reticulum Chaperone BiP/metabolism , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics , Phosphorylation , Porcine epidemic diarrhea virus/physiology , Stress Granules/metabolism , Stress Granules/genetics , Swine , Vero Cells , Viral Envelope Proteins/metabolism
19.
Nat Commun ; 15(1): 3467, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658612

ABSTRACT

Light triggers an enhancement of global translation during photomorphogenesis in Arabidopsis, but little is known about the underlying mechanisms. The phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) at a conserved serine residue in the N-terminus has been shown as an important mechanism for the regulation of protein synthesis in mammalian and yeast cells. However, whether the phosphorylation of this residue in plant eIF2α plays a role in regulation of translation remains elusive. Here, we show that the quadruple mutant of SUPPRESSOR OF PHYA-105 family members (SPA1-SPA4) display repressed translation efficiency after light illumination. Moreover, SPA1 directly phosphorylates the eIF2α C-terminus under light conditions. The C-term-phosphorylated eIF2α promotes translation efficiency and photomorphogenesis, whereas the C-term-unphosphorylated eIF2α results in a decreased translation efficiency. We also demonstrate that the phosphorylated eIF2α enhances ternary complex assembly by promoting its affinity to eIF2ß and eIF2γ. This study reveals a unique mechanism by which light promotes translation via SPA1-mediated phosphorylation of the C-terminus of eIF2α in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Cycle Proteins , Eukaryotic Initiation Factor-2 , Light , Protein Biosynthesis , Phosphorylation , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Eukaryotic Initiation Factor-2/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Biosynthesis/radiation effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Gene Expression Regulation, Plant/radiation effects , Mutation
20.
Cell Rep ; 43(4): 114011, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38573854

ABSTRACT

Fatalska et al.1 use an interdisciplinary strategy to elucidate how an intrinsically disordered regulatory subunit of protein phosphatase 1 binds trimeric eIF2 and positions the phosphatase-substrate complex for dephosphorylation. As validation, they show that a disease mutation abolishes the interaction.


Subject(s)
Eukaryotic Initiation Factor-2 , Protein Phosphatase 1 , Protein Phosphatase 1/metabolism , Humans , Eukaryotic Initiation Factor-2/metabolism , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Protein Binding , Phosphorylation , Protein Subunits/metabolism , Protein Subunits/chemistry , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...