Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Nutr Res ; 125: 1-15, 2024 May.
Article in English | MEDLINE | ID: mdl-38428258

ABSTRACT

Açaí seed extract (ASE) is obtained from Euterpe oleracea Mart. (açaí) plant (Amazon region) has high nutritional and functional value. ASE is rich in polyphenolic compounds, mainly proanthocyanidins. Proanthocyanidins can modulate the immune system and oxidative stress by inhibiting the toll-like receptor-4 (TLR-4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) pathway. A great deal of evidence suggests that inflammatory cytokines and oxidative stress contribute to the pathogenesis of intestinal mucositis, and these events can lead to intestinal dysmotility. We hypothesized that ASE acts as an anti-inflammatory and antioxidant compound in intestinal mucositis induced by 5-fluorouracil (5-FU) through modulation of the TLR-4/MyD88/phosphatidylinositol-3-kinase α/mechanistic target of rapamycin/NF-κBp65 pathway. The animals were divided into linear 5-FU (450 mg/kg) and 5-FU + ASE (10, 30, and 100 mg/kg) groups. The weight loss of the animals was evaluated daily. Samples from duodenum, jejunum, and ileum were obtained for histopathological, biochemical, and functional analyses. ASE reduced weight loss, inflammatory parameters (interleukin-1ß; tumor necrosis factor-α; myeloperoxidase activity) and the gene expression of mediators involved in the TLR-2/MyD88/NF-κB pathway. ASE prevented histopathological changes with beneficial effects on gastrointestinal transit delay, gastric emptying, and intestinal absorption/permeability. In conclusion, ASE protects the integrity of the intestinal epithelial barrier by inhibiting the TLR/MyD88/PI3K/mechanistic target of rapamycin/NF-κBp65 pathway.


Subject(s)
Euterpe , Fluorouracil , Mucositis , Myeloid Differentiation Factor 88 , Plant Extracts , Polyphenols , Seeds , Signal Transduction , TOR Serine-Threonine Kinases , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/prevention & control , Mucositis/metabolism , Myeloid Differentiation Factor 88/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Plant Extracts/pharmacology , Seeds/chemistry , Polyphenols/pharmacology , Male , Euterpe/chemistry , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Transcription Factor RelA/metabolism , Antioxidants/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Oxidative Stress/drug effects , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism
2.
Int J Toxicol ; 43(3_suppl): 64S-91S, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38485254

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of 8 palm tree (Euterpe edulis (juçara) and Euterpe oleracea (açaí))-derived ingredients as used in cosmetic products; these ingredients are reported to function mostly as skin conditioning agents. The Panel reviewed relevant data relating to the safety of these ingredients in cosmetic formulations. Industry should continue to use good manufacturing practices to limit impurities. The Panel concluded that palm tree (açaí and juçara)-derived ingredients are safe in cosmetics in the present practices of use and concentration described in this safety assessment.


Subject(s)
Consumer Product Safety , Cosmetics , Cosmetics/toxicity , Cosmetics/chemistry , Humans , Animals , Euterpe/chemistry , Euterpe/toxicity , Toxicity Tests , Risk Assessment
3.
Food Res Int ; 173(Pt 1): 113304, 2023 11.
Article in English | MEDLINE | ID: mdl-37803612

ABSTRACT

The increasing trade and popularity of açaí prompt this review. Therefore, it is imperative to provide an overview of the fruit's characteristics and the available data on its marketing, research, and products derived from its pulp and seeds to comprehend the current state of the açaí industry. Concerning food applications, it was observed that there is still room for developing processes that effectively preserve the bioactive compounds of the fruit while also being economically feasible, which presents an opportunity for future research. A notable research trend has been focused on utilizing the fruit's seeds, a byproduct of açaí processing, which is still considered a significant technological challenge. Furthermore, the studies compiled in this review attest to the industry's considerable progress and ongoing efforts to demonstrate the various properties of açaí, driving the sector's exponential growth in Brazil and worldwide.


Subject(s)
Euterpe , Euterpe/chemistry , Antioxidants/analysis , Fruit/chemistry , Seeds , Brazil
4.
Molecules ; 28(18)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37764435

ABSTRACT

Açai seeds have been discarded improperly around the Amazonia region, but they can be seen as promising low-cost substrates for fermentation processes. The structural carbohydrates and physicochemical characterization of açai seeds from the Amazonia were assessed followed by the determination of the optimal hydrolysis conditions using H3PO4 (phosphoric acid) and H2SO4 (sulfuric acid) to obtain a liquor with high contents of simple carbohydrates and low levels of potential microbial inhibitors usually generated during acid hydrolysis of carbohydrates. A central composite rotational design was carried out varying the concentrations of diluted acid (0-5%, w/v), solids (0.1-25%, w/v), and hydrolysis time (9.5-110 min). Acid hydrolysis with H2SO4 was more effective in producing reducing sugars (15.9-103.1 g/L) than H3PO4 (2.9-33.9 g/L) during optimization. The optimal hydrolysis conditions with H2SO4 were 3.5% of acid (w/v), 25% of solids during 70 min at 121 °C, which provided a liquor with 55 g/L of reducing sugars and low levels of microbial inhibitors: acetic acid (1.8 g/L), hydroxymethyl furfural (338 mg/L), and furfural (10 mg/L). Thus, açai seeds were characterized as promising agroindustrial waste with high potential to be used as a low-cost substrate in biotechnological processes, comprising relevant environmental and bioeconomic aspects for the development of the Amazonia.


Subject(s)
Euterpe , Euterpe/chemistry , Hydrolysis , Furaldehyde/analysis , Carbohydrates/chemistry , Seeds/chemistry , Sugars/analysis
5.
Nutrients ; 15(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36839349

ABSTRACT

The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing qualities to regions outside its origin has rapidly expanded global demand for açaí berry. The health-promoting and disease-preventing properties of this plant are attributed to numerous bioactive phenolic compounds present in the leaf, pulp, fruit, skin, and seeds. The purpose of this review is to present an up-to-date, comprehensive, and critical evaluation of the health benefits of açaí and its phytochemicals with a special focus on cellular and molecular mechanisms of action. In vitro and in vivo studies showed that açaí possesses antioxidant and anti-inflammatory properties and exerts cardioprotective, gastroprotective, hepatoprotective, neuroprotective, renoprotective, antilipidemic, antidiabetic, and antineoplastic activities. Moreover, clinical trials have suggested that açaí can protect against metabolic stress induced by oxidation, inflammation, vascular abnormalities, and physical exertion. Due to its medicinal properties and the absence of undesirable effects, açaí shows a promising future in health promotion and disease prevention, in addition to a vast economic potential in the food and cosmetic industries.


Subject(s)
Arecaceae , Euterpe , Euterpe/chemistry , Plant Extracts/pharmacology , Antioxidants/pharmacology , Arecaceae/chemistry , Diet , Fruit/chemistry
6.
Environ Sci Pollut Res Int ; 30(18): 52485-52497, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36840876

ABSTRACT

The consumption of açaí fruit (Euterpe oleracea) has largely increased worldwide, resulting in a significant increase in the demand for its pulp. As a result, the small producing communities end up with large amounts of açaí endocarp residues, creating local environmental pollution problems. Therefore, chemical and physical routes were investigated for producing açaí endocarp adsorbents to propose a locally viable solution for this problem. The adsorption properties of the produced biochars were tested for clonazepam (CZM) removal, and the toxicity of the final solutions was evaluated. The results revealed that the chemical route generated biochar with about twice the surface area and pore volume (762 m2 g-1 and 0.098 cm3 g-1) than the physical route (498 m2 g-1 and 0.048 cm3 g-1). Furthermore, the Sips isotherm better described the CZM adsorption equilibrium for both biochars, with qs values of 26.94 and 61.86 mg g-1 for the physical- and chemical-activated adsorbents. Moreover, recycling studies were performed, and the chemical-activated biochar was stable for up to three cycles, reaching removal rates superior to 80%. Besides, the final toxicity decreased after the adsorptive treatment. Therefore, chemical activation can be used as a simple and effective method for producing stable and compelling adsorbents as an elegant way of adding value to the residues from açaí production, helping solve local environmental problems.


Subject(s)
Euterpe , Euterpe/chemistry , Clonazepam , Adsorption , Charcoal/chemistry
7.
J Biophotonics ; 16(3): e202200259, 2023 03.
Article in English | MEDLINE | ID: mdl-36349809

ABSTRACT

OBJECTIVE: To evaluate the potential of photodynamic therapy (PDT) with blue light-emitting diode (LED) 460 nm at 25, 50 and 100 J/cm2 using three concentrations of acai extracts (100, 40, and 10 mg/ml), in the proliferation and viability of head and neck tumor lines (SCC9). METHODS: Three groups of cells were analyzed for 3 days in an in vitro assay with MTT (3- (4,5-dimethylthiazol-2-yl) -2,5, -diphenyltetrazolium bromide) and crystal violet: cells in the absence of acai extract and PDT (control group); cells in the presence of acai extract and no light; and cells in the presence of acai extract and LED blue light (PDT groups). RESULTS: When using acai as a PS combined with blue LED (460 nm, 0.7466 cm2 , 1000 mW/cm2 ) and irradiation at 25, 50, and 100 J/cm2 , after 72 h, cell viability (p < 0.0001 vs. control, p = 0.0027 vs. 100 mg/ml açai group, p = 0.0039 vs. 40 mg/ml açai group, p = 0.0135 vs. 10 mg/ml açai group; One-Way ANOVA/Tukey) and proliferation (p < 0.05, One-Way ANOVA/Tukey) decreased. CONCLUSION: The acai in question is a potential photosensitizer (PS), with blue light absorbance and efficacy against head and neck tumor lines (SCC9).


Subject(s)
Euterpe , Photochemotherapy , Euterpe/chemistry , Plant Extracts/pharmacology , Photosensitizing Agents/pharmacology , Cell Survival
8.
J Agric Food Chem ; 70(51): 16218-16228, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36530137

ABSTRACT

We investigated changes in the phenolic profile and antioxidant properties in the extracts of developing seeds of açaí (Euterpe oleracea). Four developmental stages were evaluated, with earlier stages displaying higher antioxidant activity and polyphenols content, while mass spectrometry analysis identified procyanidins (PCs) as the major components of the extracts in all stages. B-type PCs varied from dimers to decamers, with A-type linkages in a smaller number. Extracted PCs decreased in average length from 20.5 to 10.1 along seed development. PC composition indicated that (-)-epicatechin corresponded to over 95% of extension units in all stages, while (+)-catechin presence as the starter unit increased from 42 to 78.8% during seed development. This variation was correlated to the abundance of key enzymes for PC biosynthesis during seed development. This study is the first to report PC content and composition variations during açaí seed development, which can contribute to studies on the plant's physiology and biotechnological applications.


Subject(s)
Antioxidants , Euterpe , Antioxidants/chemistry , Euterpe/chemistry , Phenols/analysis , Seeds/chemistry , Plant Extracts/chemistry
9.
Ultrastruct Pathol ; 46(6): 511-518, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36335591

ABSTRACT

Açaí (Euterpe oleracea Mart) is an Amazon plant with many biological properties. Previous report of this group evidenced autophagy induction after treatment with açaí seed extract in MCF-7 breast cancer cell lines by acridine orange assay. The aim of this study was to evaluate the ultrastructural changes induced by açaí seed extract in MCF-7 breast cancer cell lines. First, MCF- 7 breast cancer cell line viability was evaluated by MTT assay. Acridine orange assay showed increase in the acidic compartments, suggesting autophagolysosome formation. These cells were treated with 25 µg/ml for 24 h and evaluated by transmission electron microscopy (MET). This analysis showed that açaí seed extract induced autophagy, confirmed by autophagolysosome formation. Furthermore, açaí seed extract increased the number of mitochondria, suggesting the enrollment of reactive oxygen species in autophagy.


Subject(s)
Breast Neoplasms , Euterpe , Humans , Female , Euterpe/chemistry , MCF-7 Cells , Acridine Orange , Plant Extracts/pharmacology , Antioxidants/pharmacology
10.
Molecules ; 27(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35956841

ABSTRACT

Alzheimer's disease (AD) is characterised by progressive neuronal atrophy and the loss of neuronal function as a consequence of multiple pathomechanisms. Current AD treatments primarily operate at a symptomatic level to treat a cholinergic deficiency and can cause side effects. Hence, there is an unmet need for healthier lifestyles to reduce the likelihood of AD as well as improved treatments with fewer adverse reactions. Diets rich in phytochemicals may reduce neurodegenerative risk and limit disease progression. The native South American palm acai berry (Euterpe oleraceae) is a potential source of dietary phytochemicals beneficial to health. This study aimed to screen the nutraceutical potential of the acai berry, in the form of aqueous and ethanolic extracts, for the ability to inhibit acetyl- and butyryl-cholinesterase (ChE) enzymes and scavenge free radicals via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) or 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. In addition, this study aimed to quantify the acai berry's antioxidant potential via hydrogen peroxide or hydroxyl scavenging, nitric oxide scavenging, lipid peroxidation inhibition, and the ability to reduce ferric ions. Total polyphenol and flavonoid contents were also determined. Acai aqueous extract displayed a concentration-dependent inhibition of acetyl- and butyryl-cholinesterase enzymes. Both acai extracts displayed useful concentration-dependent free radical scavenging and antioxidant abilities, with the acai ethanolic extract being the most potent antioxidant and displaying the highest phenolic and flavonoid contents. In summary, extracts of the acai berry contain nutraceutical components with anti-cholinesterase and antioxidant capabilities and may therefore provide a beneficial dietary component that limits the pathological deficits evidenced in AD.


Subject(s)
Alzheimer Disease , Euterpe , Alzheimer Disease/drug therapy , Antioxidants/chemistry , Dietary Supplements , Euterpe/chemistry , Flavonoids/chemistry , Phytochemicals , Plant Extracts/chemistry
11.
Cells ; 11(16)2022 08 22.
Article in English | MEDLINE | ID: mdl-36010690

ABSTRACT

The second-most common cause of dementia is vascular dementia (VaD). The majority of VaD patients experience cognitive impairment, which is brought on by oxidative stress and changes in autophagic function, which ultimately result in neuronal impairment and death. In this study, we examine a novel method for reversing VaD-induced changes brought on by açai berry supplementation in a VaD mouse model. The purpose of this study was to examine the impact of açai berries on the molecular mechanisms underlying VaD in a mouse model of the disease that was created by repeated ischemia-reperfusion (IR) of the whole bilateral carotid artery. Here, we found that açai berry was able to reduce VaD-induced behavioral alteration, as well as hippocampal death, in CA1 and CA3 regions. These effects are probably due to the modulation of nuclear factor erythroid 2-related factor 2 (Nrf-2) and Beclin-1, suggesting a possible crosstalk between these molecular pathways. In conclusion, the protective effects of açai berry could be a good supplementation in the future for the management of vascular dementia.


Subject(s)
Cognitive Dysfunction , Dementia, Vascular , Euterpe , Animals , Mice , Beclin-1/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/pathology , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Dementia, Vascular/pathology , Disease Models, Animal , Euterpe/chemistry , Oxidative Stress , NF-E2-Related Factor 2/metabolism
12.
Cell Physiol Biochem ; 56(S2): 1-20, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35551733

ABSTRACT

BACKGROUND/AIMS: Respiratory diseases are the world's biggest cause of mortality and disability. Specific nutrients have been proposed to positively affect disease progression as novel therapy alternatives to glucocorticosteroids. There has been a lot of attention in the possible health advantages of dietary assumption of Açai Seeds, popular native fruit found in the Amazon region which is rich in bioactive compounds. Until today nobody investigated the beneficial property of Açai Seeds administration in lung disease. METHODS: In our study we use two model of lung disease: for acute lung disease we use an intrapleural injection of Carrageenan; for chronic disease we used an intratracheal instillation of bleomycin. Açai Seeds was administered orally dissolved in saline. RESULTS: We found that Açai Seeds was able to reduce histological alteration, cells infiltration, pro inflammatory cytokine release, inflammation, and oxidative stress in both acute and chronic model of lung disease. CONCLUSION: Our data clearly demonstrate for the first time that Açai Seeds administration was useful against lung disease by the reduction of NF-κB nuclear translocation and by the stimulation of Nrf2/ARE pathways promoting the physiological antioxidant defense.


Subject(s)
Euterpe , Lung Diseases , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Euterpe/chemistry , Fruit/chemistry , Humans , Inflammation/drug therapy , Inflammation/metabolism , Lung/metabolism , Lung Diseases/drug therapy , NF-E2-Related Factor 2/analysis , NF-kappa B/analysis , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Seeds
13.
Aquat Toxicol ; 246: 106148, 2022 May.
Article in English | MEDLINE | ID: mdl-35364510

ABSTRACT

Saxitoxin (STX) is a neurotoxic cyanotoxin that also generate reactive oxygen species, leading to a situation of oxidative stress and altered metabolism. The Amazonian fruit açaí Euterpe oleracea possesses a high concentration of antioxidant molecules, a fact that prompted us to evaluate its chemoprotection activity against STX toxicity (obtained from samples of Trichodesmium sp. collected in the environment) in the shrimp Litopenaeus vannamei. For 30 days, shrimps were maintained in 16 aquaria containing 10 shrimps (15% salinity, pH 8.0, 24 °C, 12C/12D photoperiod) and fed twice daily with a diet supplemented with lyophilized açaí pulp (10%), in addition to the control diet. After, shrimps (7.21 ± 0.04 g) were exposed to the toxin added to the feed for 96 h. Four treatments were defined: CTR (control diet), T (lyophilized powder of Trichodesmium sp. 0.8 µg/g), A (10% of açaí) and the combination T + A. HPLC analysis showed predominance of gonyautoxin-1 concentrations (GTX-1) and gonyautoxin-4 concentrations (GTX-4). The results of molecular docking simulations indicated that all variants of STX, including GTX-1, can be a substrate of isoform mu of the glutathione-S-transferase (GST) enzyme since these molecules obtained similar values of estimated Free Energy of Binding (FEB), as well as similar final positions on the binding site. GSH levels were reduced in muscle tissues of shrimp in the T, A, and T + A treatments. Increased GST activity was observed in shrimp hepatopancreas of the T treatment and the gills of the A and T + A treatments. A decrease of protein sulfhydryl groups (P-SH) was observed in gills of shrimps from T + A treatment. A reduction in malondialdehyde (MDA) levels was registered in the hepatopancreas of the T + A treatment in respect to the Control, T, and A treatments. The use of açaí supplements in L. vannamei feed was able to partially mitigate the toxic effects caused by Trichodesmium sp. extracts, and points to mu GST isoform as a key enzyme for saxitoxin detoxification in L. vannamei, an issue that deserves further investigation.


Subject(s)
Euterpe , Penaeidae , Water Pollutants, Chemical , Animals , Euterpe/chemistry , Molecular Docking Simulation , Saxitoxin/toxicity , Water Pollutants, Chemical/toxicity
14.
Microsc Res Tech ; 85(5): 1964-1975, 2022 May.
Article in English | MEDLINE | ID: mdl-35045209

ABSTRACT

We introduce a study of image analysis of kefir biofilms associated with Acai extract prepared by fermentation of fresh kefir grains natural. Atomic force microscopy data were studied, aiming to understand how the concentration of acai berry (Euterpe oleracea Mart.) influences the surface morphology as well as the texture complexity, evaluated by the fractal dimension. The results showed that the superficial morphology was affected by the increase of Acai concentration in the biofilms, as well as the fractal dimension. It has also been observed that the surface of the biofilm presented saturation when concentration changes from 40 to 60 ml. On the other hand, it was observed that the intermediate sample produced with 20 ml of acai berry seems to be the best point for biofilms production that can serve as a skin dressing since other studies related to mechanical properties and in vitro and in vivo tests can confirm this applicability. Thus, the characterization of the surface morphology of kefir biofilms by the evaluation of surface statistical parameters and fractal geometry may provide promising results regarding the applicability of these films. RESEARCH HIGHLIGHTS: We characterized the structural complexity of the 3-D surface of the kefir biofilms associated with açaí extract. The 3-D surface analysis of the samples was performed using an atomic force microscope operating in contact mode. We determined the stereometric and fractal dimension of the analyzed samples.


Subject(s)
Euterpe , Kefir , Biofilms , Euterpe/chemistry , Fractals , Kefir/analysis , Plant Extracts/chemistry
15.
Nutr Neurosci ; 25(6): 1188-1199, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33170113

ABSTRACT

INTRODUCTION: Neuropsychiatric diseases are responsible for one of the highest burden of morbidity and mortality worldwide. These illnesses include schizophrenia, bipolar disorder, and major depression. Individuals affected by these diseases may present mitochondrial dysfunction and oxidative stress. Additionally, patients also have increased peripheral and neural chronic inflammation. The Brazilian fruit, açaí, has been demonstrated to be a neuroprotective agent through its recovery of mitochondrial complex I activity. This extract has previously shown anti-inflammatory effects in inflammatory cells. However, there is a lack of understanding of potential anti-neuroinflammatory mechanisms, such as cell cycle involvement. OBJECTIVE: The objective of this study is to evaluate the anti-neuroinflammatory potential of an açaí extract in lipopolysaccharide-activated BV-2 microglia cells. METHODS: Açaí extract was produced and characterized through high performance liquid chromatography. Following açaí extraction and characterization, BV-2 microglia cells were activated with LPS and a dose-response curve was generated to select the most effective açaí dose to reduce cellular proliferation. This dose was then used to assess reactive oxygen species (ROS) production, double-strand DNA release, cell cycle modulation, and cytokine and caspase protein expression. RESULTS: Characterization of the açaí extract revealed 10 bioactive molecules. The extract reduced cellular proliferation, ROS production, and reduced pro-inflammatory cytokines and caspase 1 protein expression under 1 µg/mL in LPS-activated BV-2 microglia cells but had no effect on double strand DNA release. Additionally, açaí treatment caused cell cycle arrest, specifically within synthesis and G2/Mitosis phases. CONCLUSION: These results suggest that the freeze-dried hydroalcoholic açaí extract presents high anti-neuroinflammatory potential.


Subject(s)
Euterpe , Microglia , Plant Extracts , Animals , Cell Line , Cytokines/metabolism , Euterpe/chemistry , Lipopolysaccharides , Mice , Microglia/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism
16.
Chem Biol Interact ; 351: 109721, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34715092

ABSTRACT

Obesity is recognized as an independent risk factor for cardiovascular diseases and is an important contributor to cardiac mortality. Açaí seed extract (ASE), rich in proanthocyanidins, has been shown to have potential anti-obesity effects. This study aimed to investigate the therapeutic effect of ASE in cardiovascular remodeling associated with obesity and compare it with that of rosuvastatin. Male C57BL/6 mice were fed a high-fat diet or a standard diet for 12 weeks. The ASE (300 mg/kg/day) and rosuvastatin (20 mg/kg/day) treatments started in the 8th week until the 12th week, totaling 4 weeks of treatment. Our data showed that treatment with ASE and rosuvastatin reduced body weight, ameliorated lipid profile, and improved cardiovascular remodeling. Treatment with ASE but not rosuvastatin reduced hyperglycemia and oxidative stress by reducing immunostaining of 8-isoprostane and increasing SOD-1 and GPx expression in HFD mice. ASE and rosuvastatin reduced NOX4 expression, increased SIRT-1 and Nrf2 expression and catalase and GPx activities, and improved vascular and cardiac remodeling in HFD mice. The therapeutic effect of ASE was similar to that of rosuvastatin in reducing dyslipidemia and cardiovascular remodeling but was superior in reducing oxidative damage and hyperglycemia, suggesting that ASE was a promising natural product for the treatment of cardiovascular alterations associated with obesity.


Subject(s)
Antioxidants/therapeutic use , Cardiomegaly/drug therapy , Obesity/metabolism , Oxidative Stress/drug effects , Plant Extracts/therapeutic use , Ventricular Remodeling/drug effects , Animals , Cardiomegaly/etiology , Diet, High-Fat , Euterpe/chemistry , Male , Mice, Inbred C57BL , Mice, Obese , Obesity/complications , Proanthocyanidins/therapeutic use , Seeds/chemistry
17.
Meat Sci ; 184: 108667, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34656002

ABSTRACT

The current trends among consumers are pushing for the use of natural antioxidants options. Açaí fruit is rich on polyphenolic components but no studies have been carried out to evaluate their effect in meat products. The objective was to investigate the effect of açaí extract on refrigerated pork patties quality. Five treatments were done: without antioxidant (CON), Sodium Erythorbate 500 mg.kg -1 (ERY), Açaí Extract: 250 (AEL), 500 (AEM), 750 mg.kg -1 (AEH). Açaí extract did not affect the proximate composition, pH and cooking parameters. The concentrations of açaí extract studied increased antioxidant activity and reduced lipid oxidation (0.379, 0.293, and 0.217 vs. 0.889 mg MDA.kg-1 for AEL, AEM, AEH vs. CON, respectively). However, only the AEL treatment did not affect the color parameters, showing the best option for the application on pork patties. Thus, açaí extract at 250 mg.kg-1 can be used as a natural antioxidant replacing sodium erythorbate to preserve the quality of refrigerated pork patties.


Subject(s)
Antioxidants/pharmacology , Euterpe/chemistry , Meat Products/analysis , Plant Extracts/pharmacology , Animals , Ascorbic Acid/pharmacology , Color , Food Storage , Powders , Swine
18.
Molecules ; 28(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36615261

ABSTRACT

The chemical mechanism of the acid cleavage of proanthocyanidins (PAs) has been known for decades but has yet to be optimized. Therefore, we optimized this process in Byrsonima crassifolia, Euterpe oleracea and Inga edulis extracts using the response surface methodology and assessed the effect of hydrochloric acid concentration (0.3−3.7 N), time (39−291 min), and temperature (56−98 °C) on the following response variables: PAs reduction, astringency reduction, antioxidant capacity/total polyphenols (TEAC/TP) ratio, and cyanidin content. The response variables were maximized when cleavage was performed with 3 N HCl at 88 °C for 165 min. Under these conditions, the mean PAs value and astringency in the three extracts decreased by 91% and 75%, respectively, the TEAC/TP ratio remained unchanged after treatment (p > 0.05), and the increase in cyanidin confirmed the occurrence of cleavage. Thus, the results suggest that acid cleavage efficiently minimizes undesirable technological PAs characteristics, expanding the industrial applications.


Subject(s)
Euterpe , Proanthocyanidins , Polyphenols , Euterpe/chemistry , Antioxidants/chemistry , Plant Extracts/chemistry
19.
Int J Mol Sci ; 22(23)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34884824

ABSTRACT

Ovarian aging is associated with elevated oxidative stress and diminished oocyte developmental competence. We aimed to determine the impact of systemic antioxidant treatment in aged mice. Female outbred CF-1 mice were aged for 9 months prior to an 8-week 45 mg Euterpe oleracea (açaí) daily supplement. The açaí treatment induced a threefold increase in serum antioxidant power (FRAP) compared to both young and aged mice (p < 0.0001). Compared to young mice, aged mice had fewer oocytes and reduced blastocyst development (p < 0.0001); açaí did not affect the oocyte numbers, but improved blastocyst formation (p < 0.05). Additionally, açaí alleviated the aging-related decrease in implantation potential (p < 0.01). The aged mice showed evidence of elevated ovarian ER stress (increased whole-ovary PDIA4 expression, granulosa cell and oocyte GRP78 expression, and oocyte PDIA4 protein), reduced oocyte mitochondrial quality (higher PRKN activation and mitochondrial DNA oxidative damage), and dysregulated uterine glandular epithelium. Antioxidant intervention was sufficient to lessen these effects of ovarian aging, likely in part by the upregulation of NRF2. We conclude that açaí treatment is a promising strategy to improve ER and mitochondrial function in the ovaries, thereby ameliorating the decreased oocyte competence that occurs with ovarian aging.


Subject(s)
Aging , Antioxidants/metabolism , Oocytes/metabolism , Animals , Antioxidants/chemistry , Blastocyst/cytology , Blastocyst/drug effects , Blastocyst/metabolism , Endoplasmic Reticulum Chaperone BiP/genetics , Endoplasmic Reticulum Chaperone BiP/metabolism , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Euterpe/chemistry , Euterpe/metabolism , Female , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Oocytes/cytology , Oocytes/drug effects , Oxidative Stress/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
20.
Int J Mol Sci ; 22(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34768954

ABSTRACT

Reactive oxygen species (ROS) are aerobic products generated during cellular respiration, but in the case of oxidative stress, they become key factors in the development of inflammatory processes and chronic diseases such as diabetes and rheumatoid arthritis. In this work, Euterpe oleracea oil (EOO), as well as the complexes produced by slurry (S) and kneading (K), were analyzed for antioxidant capacity in vitro, while only the ß-cyclodextrin complex obtained by kneading (EOO-ßCD-K), which showed better complexation, was selected for anti-inflammatory assays in vivo. In the scavenging activity of OH·, the hydroxypropyl-ß-cyclodextrin complex obtained by kneading (EOO-HPßCD-K) exhibited an activity 437% higher than the pure oil. In the paw edema assay, EOO-ßCD-K reduced edema by 200% and myeloperoxidase (MPO) activity by 112%. In an air pouch model, this treatment showed a reduction in leukocyte, MPO, and Interleukin-1ß (IL-1ß) levels; meanwhile those of glutathione and IL-10 were increased, demonstrating its ability to potentiate the anti-inflammatory effect of EOO.


Subject(s)
Euterpe/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , 2-Hydroxypropyl-beta-cyclodextrin/administration & dosage , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/administration & dosage , Antioxidants/chemistry , Antioxidants/pharmacology , Edema/drug therapy , Female , In Vitro Techniques , Male , Mice , Phytochemicals/administration & dosage , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Oils/administration & dosage , Plants, Medicinal/chemistry , beta-Cyclodextrins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...