Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.365
Filter
1.
Sci Rep ; 14(1): 10593, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719939

ABSTRACT

Previous research on the neural correlates of consciousness (NCC) in visual perception revealed an early event-related potential (ERP), the visual awareness negativity (VAN), to be associated with stimulus awareness. However, due to the use of brief stimulus presentations in previous studies, it remains unclear whether awareness-related negativities represent a transient onset-related response or correspond to the duration of a conscious percept. Studies are required that allow prolonged stimulus presentation under aware and unaware conditions. The present ERP study aimed to tackle this challenge by using a novel stimulation design. Male and female human participants (n = 62) performed a visual task while task-irrelevant line stimuli were presented in the background for either 500 or 1000 ms. The line stimuli sometimes contained a face, which needed so-called visual one-shot learning to be seen. Half of the participants were informed about the presence of the face, resulting in faces being perceived by the informed but not by the uninformed participants. Comparing ERPs between the informed and uninformed group revealed an enhanced negativity over occipitotemporal electrodes that persisted for the entire duration of stimulus presentation. Our results suggest that sustained visual awareness negativities (SVAN) are associated with the duration of stimulus presentation.


Subject(s)
Consciousness , Electroencephalography , Evoked Potentials , Visual Perception , Humans , Male , Female , Consciousness/physiology , Visual Perception/physiology , Adult , Young Adult , Evoked Potentials/physiology , Photic Stimulation , Awareness/physiology , Evoked Potentials, Visual/physiology
2.
Comput Methods Programs Biomed ; 251: 108213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744056

ABSTRACT

BACKGROUND AND OBJECTIVE: Brain-Computer Interface (BCI) technology has recently been advancing rapidly, bringing significant hope for improving human health and quality of life. Decoding and visualizing visually evoked electroencephalography (EEG) signals into corresponding images plays a crucial role in the practical application of BCI technology. The recent emergence of diffusion models provides a good modeling basis for this work. However, the existing diffusion models still have great challenges in generating high-quality images from EEG, due to the low signal-to-noise ratio and strong randomness of EEG signals. The purpose of this study is to address the above-mentioned challenges by proposing a framework named NeuroDM that can decode human brain responses to visual stimuli from EEG-recorded brain activity. METHODS: In NeuroDM, an EEG-Visual-Transformer (EV-Transformer) is used to extract the visual-related features with high classification accuracy from EEG signals, then an EEG-Guided Diffusion Model (EG-DM) is employed to synthesize high-quality images from the EEG visual-related features. RESULTS: We conducted experiments on two EEG datasets (one is a forty-class dataset, and the other is a four-class dataset). In the task of EEG decoding, we achieved average accuracies of 99.80% and 92.07% on two datasets, respectively. In the task of EEG visualization, the Inception Score of the images generated by NeuroDM reached 15.04 and 8.67, respectively. All the above results outperform existing methods. CONCLUSIONS: The experimental results on two EEG datasets demonstrate the effectiveness of the NeuroDM framework, achieving state-of-the-art performance in terms of classification accuracy and image quality. Furthermore, our NeuroDM exhibits strong generalization capabilities and the ability to generate diverse images.


Subject(s)
Brain-Computer Interfaces , Brain , Electroencephalography , Humans , Brain/diagnostic imaging , Brain/physiology , Algorithms , Signal-To-Noise Ratio , Signal Processing, Computer-Assisted , Evoked Potentials, Visual/physiology
3.
Article in English | MEDLINE | ID: mdl-38781061

ABSTRACT

Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To address the challenge of data insufficiency in SSVEP-based BCIs, we introduce SSVEP-DAN, the first dedicated neural network model designed to align SSVEP data across different domains, encompassing various sessions, subjects, or devices. Our experimental results demonstrate the ability of SSVEP-DAN to transform existing source SSVEP data into supplementary calibration data. This results in a significant improvement in SSVEP decoding accuracy while reducing the calibration time. We envision SSVEP-DAN playing a crucial role in future applications of high-performance SSVEP-based BCIs. The source code for this work is available at: https://github.com/CECNL/SSVEP-DAN.


Subject(s)
Algorithms , Brain-Computer Interfaces , Electroencephalography , Evoked Potentials, Visual , Humans , Evoked Potentials, Visual/physiology , Male , Adult , Female , Neural Networks, Computer , Young Adult , Calibration , Reproducibility of Results
4.
J Neural Eng ; 21(3)2024 May 30.
Article in English | MEDLINE | ID: mdl-38812288

ABSTRACT

Objective. Magnetoencephalography (MEG) shares a comparable time resolution with electroencephalography. However, MEG excels in spatial resolution, enabling it to capture even the subtlest and weakest brain signals for brain-computer interfaces (BCIs). Leveraging MEG's capabilities, specifically with optically pumped magnetometers (OPM-MEG), proves to be a promising avenue for advancing MEG-BCIs, owing to its exceptional sensitivity and portability. This study harnesses the power of high-frequency steady-state visual evoked fields (SSVEFs) to build an MEG-BCI system that is flickering-imperceptible, user-friendly, and highly accurate.Approach.We have constructed a nine-command BCI that operates on high-frequency SSVEF (58-62 Hz with a 0.5 Hz interval) stimulation. We achieved this by placing the light source inside and outside the magnetic shielding room, ensuring compliance with non-magnetic and visual stimulus presentation requirements. Five participants took part in offline experiments, during which we collected six-channel multi-dimensional MEG signals along both the vertical (Z-axis) and tangential (Y-axis) components. Our approach leveraged the ensemble task-related component analysis algorithm for SSVEF identification and system performance evaluation.Main Results.The offline average accuracy of our proposed system reached an impressive 92.98% when considering multi-dimensional conjoint analysis using data from both theZandYaxes. Our method achieved a theoretical average information transfer rate (ITR) of 58.36 bits min-1with a data length of 0.7 s, and the highest individual ITR reached an impressive 63.75 bits min-1.Significance.This study marks the first exploration of high-frequency SSVEF-BCI based on OPM-MEG. These results underscore the potential and feasibility of MEG in detecting subtle brain signals, offering both theoretical insights and practical value in advancing the development and application of MEG in BCI systems.


Subject(s)
Brain-Computer Interfaces , Evoked Potentials, Visual , Magnetoencephalography , Photic Stimulation , Humans , Magnetoencephalography/methods , Evoked Potentials, Visual/physiology , Adult , Male , Female , Photic Stimulation/methods , Young Adult , Visual Cortex/physiology
5.
J Neurophysiol ; 131(6): 1156-1167, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38690998

ABSTRACT

Our eyes execute rapid, directional movements known as saccades, occurring several times per second, to focus on objects of interest in our environment. During these movements, visual sensitivity is temporarily reduced. Despite numerous studies on this topic, the underlying mechanism remains elusive, including a lingering debate on whether saccadic suppression affects the parvocellular visual pathway. To address this issue, we conducted a study employing steady-state visual evoked potentials (SSVEPs) elicited by chromatic and luminance stimuli while observers performed saccadic eye movements. We also employed an innovative analysis pipeline to enhance the signal-to-noise ratio, yielding superior results compared to the previous method. Our findings revealed a clear suppression effect on SSVEP signals during saccades compared to fixation periods. Notably, this suppression effect was comparable for both chromatic and luminance stimuli. We went further to measure the suppression effect across various contrast levels, which enabled us to model SSVEP responses with contrast response functions. The results suggest that saccades primarily reduce response gain without significantly affecting contrast gain and that this reduction applies uniformly to both chromatic and luminance pathways. In summary, our study provides robust evidence that saccades similarly suppress visual processing in both the parvocellular and magnocellular pathways within the human early visual cortex, as indicated by SSVEP responses. The observation that saccadic eye movements impact response gain rather than contrast gain implies that they influence visual processing through a multiplicative mechanism.NEW & NOTEWORTHY The present study demonstrates that saccadic eye movements reduce the processing of both luminance and chromatic stimuli in the early visual cortex of humans. By modeling the contrast response function, the study further shows that saccades affect visual processing by reducing the response gain rather than altering the contrast gain, suggesting that a multiplicative mechanism of visual attenuation affects both parvocellular and magnocellular pathways.


Subject(s)
Evoked Potentials, Visual , Saccades , Visual Cortex , Humans , Saccades/physiology , Male , Evoked Potentials, Visual/physiology , Adult , Female , Visual Cortex/physiology , Young Adult , Color Perception/physiology , Contrast Sensitivity/physiology , Electroencephalography , Visual Pathways/physiology , Photic Stimulation
6.
Eur J Neurosci ; 59(11): 2863-2874, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739367

ABSTRACT

Mismatch negativity (MMN) is an event-related potential component automatically elicited by events that violate predictions based on prior events. To elicit this component, researchers use stimulus repetition to induce predictions, and the MMN is obtained by subtracting the brain response to rare or unpredicted stimuli from that of frequent stimuli. Under the Predictive Processing framework, one increasingly popular interpretation of the mismatch response postulates that MMN represents a prediction error. In this context, the reduced MMN amplitude to auditory stimuli has been considered a potential biomarker of Schizophrenia, representing a reduced prediction error and the inability to update the mental model of the world based on the sensory signals. It is unclear, however, whether this amplitude reduction is specific for auditory events or if the visual MMN reveals a similar pattern in schizophrenia spectrum disorder. This review and meta-analysis aimed to summarise the available literature on the vMMN in schizophrenia. A systematic literature search resulted in 10 eligible studies that resulted in a combined effect size of g = -.63, CI [-.86, -.41], reflecting lower vMMN amplitudes in patients. These results are in line with the findings in the auditory domain. This component offers certain advantages, such as less susceptibility to overlap with components generated by attentional demands. Future studies should use vMMN to explore abnormalities in the Predictive Processing framework in different stages and groups of the SSD and increase the knowledge in the search for biomarkers in schizophrenia.


Subject(s)
Schizophrenia , Humans , Schizophrenia/physiopathology , Electroencephalography/methods , Evoked Potentials, Visual/physiology , Visual Perception/physiology
7.
Sci Rep ; 14(1): 11188, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755251

ABSTRACT

In primates, foveal and peripheral vision have distinct neural architectures and functions. However, it has been debated if selective attention operates via the same or different neural mechanisms across eccentricities. We tested these alternative accounts by examining the effects of selective attention on the steady-state visually evoked potential (SSVEP) and the fronto-parietal signal measured via EEG from human subjects performing a sustained visuospatial attention task. With a negligible level of eye movements, both SSVEP and SND exhibited the heterogeneous patterns of attentional modulations across eccentricities. Specifically, the attentional modulations of these signals peaked at the parafoveal locations and such modulations wore off as visual stimuli appeared closer to the fovea or further away towards the periphery. However, with a relatively higher level of eye movements, the heterogeneous patterns of attentional modulations of these neural signals were less robust. These data demonstrate that the top-down influence of covert visuospatial attention on early sensory processing in human cortex depends on eccentricity and the level of saccadic responses. Taken together, the results suggest that sustained visuospatial attention operates differently across different eccentric locations, providing new understanding of how attention augments sensory representations regardless of where the attended stimulus appears.


Subject(s)
Attention , Electroencephalography , Evoked Potentials, Visual , Humans , Attention/physiology , Male , Female , Evoked Potentials, Visual/physiology , Adult , Young Adult , Photic Stimulation , Visual Perception/physiology , Eye Movements/physiology
8.
Article in English | MEDLINE | ID: mdl-38625770

ABSTRACT

This study embarks on a comprehensive investigation of the effectiveness of repetitive transcranial direct current stimulation (tDCS)-based neuromodulation in augmenting steady-state visual evoked potential (SSVEP) brain-computer interfaces (BCIs), alongside exploring pertinent electroencephalography (EEG) biomarkers for assessing brain states and evaluating tDCS efficacy. EEG data were garnered across three distinct task modes (eyes open, eyes closed, and SSVEP stimulation) and two neuromodulation patterns (sham-tDCS and anodal-tDCS). Brain arousal and brain functional connectivity were measured by extracting features of fractal EEG and information flow gain, respectively. Anodal-tDCS led to diminished offsets and enhanced information flow gains, indicating improvements in both brain arousal and brain information transmission capacity. Additionally, anodal-tDCS markedly enhanced SSVEP-BCIs performance as evidenced by increased amplitudes and accuracies, whereas sham-tDCS exhibited lesser efficacy. This study proffers invaluable insights into the application of neuromodulation methods for bolstering BCI performance, and concurrently authenticates two potent electrophysiological markers for multifaceted characterization of brain states.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Evoked Potentials, Visual , Fractals , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Evoked Potentials, Visual/physiology , Male , Adult , Female , Young Adult , Arousal/physiology , Brain/physiology , Healthy Volunteers , Algorithms
9.
Sci Rep ; 14(1): 9281, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654008

ABSTRACT

Steady-state visual evoked potentials (SSVEP) are electroencephalographic signals elicited when the brain is exposed to a visual stimulus with a steady frequency. We analyzed the temporal dynamics of SSVEP during sustained flicker stimulation at 5, 10, 15, 20 and 40 Hz. We found that the amplitudes of the responses were not stable over time. For a 5 Hz stimulus, the responses progressively increased, while, for higher flicker frequencies, the amplitude increased during the first few seconds and often showed a continuous decline afterward. We hypothesize that these two distinct sets of frequency-dependent SSVEP signal properties reflect the contribution of parvocellular and magnocellular visual pathways generating sustained and transient responses, respectively. These results may have important applications for SSVEP signals used in research and brain-computer interface technology and may contribute to a better understanding of the frequency-dependent temporal mechanisms involved in the processing of prolonged periodic visual stimuli.


Subject(s)
Electroencephalography , Evoked Potentials, Visual , Photic Stimulation , Evoked Potentials, Visual/physiology , Humans , Male , Female , Adult , Young Adult , Brain-Computer Interfaces , Visual Cortex/physiology
10.
BMC Psychiatry ; 24(1): 307, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654234

ABSTRACT

BACKGROUND: Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a chronic breathing disorder characterized by recurrent upper airway obstruction during sleep. Although previous studies have shown a link between OSAHS and depressive mood, the neurobiological mechanisms underlying mood disorders in OSAHS patients remain poorly understood. This study aims to investigate the emotion processing mechanism in OSAHS patients with depressive mood using event-related potentials (ERPs). METHODS: Seventy-four OSAHS patients were divided into the depressive mood and non-depressive mood groups according to their Self-rating Depression Scale (SDS) scores. Patients underwent overnight polysomnography and completed various cognitive and emotional questionnaires. The patients were shown facial images displaying positive, neutral, and negative emotions and tasked to identify the emotion category, while their visual evoked potential was simultaneously recorded. RESULTS: The two groups did not differ significantly in age, BMI, and years of education, but showed significant differences in their slow wave sleep ratio (P = 0.039), ESS (P = 0.006), MMSE (P < 0.001), and MOCA scores (P = 0.043). No significant difference was found in accuracy and response time on emotional face recognition between the two groups. N170 latency in the depressive group was significantly longer than the non-depressive group (P = 0.014 and 0.007) at the bilateral parieto-occipital lobe, while no significant difference in N170 amplitude was found. No significant difference in P300 amplitude or latency between the two groups. Furthermore, N170 amplitude at PO7 was positively correlated with the arousal index and negatively with MOCA scores (both P < 0.01). CONCLUSION: OSAHS patients with depressive mood exhibit increased N170 latency and impaired facial emotion recognition ability. Special attention towards the depressive mood among OSAHS patients is warranted for its implications for patient care.


Subject(s)
Depression , Emotions , Sleep Apnea, Obstructive , Humans , Male , Middle Aged , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/psychology , Sleep Apnea, Obstructive/complications , Depression/physiopathology , Depression/psychology , Depression/complications , Female , Adult , Emotions/physiology , Polysomnography , Evoked Potentials/physiology , Electroencephalography , Facial Recognition/physiology , Evoked Potentials, Visual/physiology , Facial Expression
11.
J Neurosci Methods ; 406: 110132, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604523

ABSTRACT

BACKGROUND: Traditional therapist-based rehabilitation training for patients with movement impairment is laborious and expensive. In order to reduce the cost and improve the treatment effect of rehabilitation, many methods based on human-computer interaction (HCI) technology have been proposed, such as robot-assisted therapy and functional electrical stimulation (FES). However, due to the lack of active participation of brain, these methods have limited effects on the promotion of damaged nerve remodeling. NEW METHOD: Based on the neurofeedback training provided by the combination of brain-computer interface (BCI) and exoskeleton, this paper proposes a multimodal brain-controlled active rehabilitation system to help improve limb function. The joint control mode of steady-state visual evoked potential (SSVEP) and motor imagery (MI) is adopted to achieve self-paced control and thus maximize the degree of brain involvement, and a requirement selection function based on SSVEP design is added to facilitate communication with aphasia patients. COMPARISON WITH EXISTING METHODS: In addition, the Transformer is introduced as the MI decoder in the asynchronous online BCI to improve the global perception of electroencephalogram (EEG) signals and maintain the sensitivity and efficiency of the system. RESULTS: In two multi-task online experiments for left hand, right hand, foot and idle states, subject achieves 91.25% and 92.50% best accuracy, respectively. CONCLUSION: Compared with previous studies, this paper aims to establish a high-performance and low-latency brain-controlled rehabilitation system, and provide an independent and autonomous control mode of the brain, so as to improve the effect of neural remodeling. The performance of the proposed method is evaluated through offline and online experiments.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Exoskeleton Device , Neurofeedback , Humans , Electroencephalography/methods , Male , Neurofeedback/methods , Neurofeedback/instrumentation , Evoked Potentials, Visual/physiology , Adult , Brain/physiology , Brain/physiopathology , Female , Young Adult , Imagination/physiology , Imagery, Psychotherapy/methods
12.
J Integr Neurosci ; 23(4): 73, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38682224

ABSTRACT

BACKGROUND: To enhance the information transfer rate (ITR) of a steady-state visual evoked potential (SSVEP)-based speller, more characters with flickering symbols should be used. Increasing the number of symbols might reduce the classification accuracy. A hybrid brain-computer interface (BCI) improves the overall performance of a BCI system by taking advantage of two or more control signals. In a simultaneous hybrid BCI, various modalities work with each other simultaneously, which enhances the ITR. METHODS: In our proposed speller, simultaneous combination of electromyogram (EMG) and SSVEP was applied to increase the ITR. To achieve 36 characters, only nine stimulus symbols were used. Each symbol allowed the selection of four characters based on four states of muscle activity. The SSVEP detected which symbol the subject was focusing on and the EMG determined the target character out of the four characters dedicated to that symbol. The frequency rate for character encoding was applied in the EMG modality and latency was considered in the SSVEP modality. Online experiments were carried out on 10 healthy subjects. RESULTS: The average ITR of this hybrid system was 96.1 bit/min with an accuracy of 91.2%. The speller speed was 20.9 char/min. Different subjects had various latency values. We used an average latency of 0.2 s across all subjects. Evaluation of each modality showed that the SSVEP classification accuracy varied for different subjects, ranging from 80% to 100%, while the EMG classification accuracy was approximately 100% for all subjects. CONCLUSIONS: Our proposed hybrid BCI speller showed improved system speed compared with state-of-the-art systems based on SSVEP or SSVEP-EMG, and can provide a user-friendly, practical system for speller applications.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Electromyography , Evoked Potentials, Visual , Humans , Evoked Potentials, Visual/physiology , Adult , Male , Electroencephalography/methods , Female , Young Adult , Brain/physiology
13.
J Neural Eng ; 21(3)2024 May 17.
Article in English | MEDLINE | ID: mdl-38688262

ABSTRACT

Objective.The rapid serial visual presentation (RSVP) paradigm, which is based on the electroencephalogram (EEG) technology, is an effective approach for object detection. It aims to detect the event-related potentials (ERP) components evoked by target images for rapid identification. However, the object detection performance within this paradigm is affected by the visual disparity between adjacent images in a sequence. Currently, there is no objective metric to quantify this visual difference. Consequently, a reliable image sorting method is required to ensure the generation of a smooth sequence for effective presentation.Approach. In this paper, we propose a novel semantic image sorting method for sorting RSVP sequences, which aims at generating sequences that are perceptually smoother in terms of the human visual experience.Main results. We conducted a comparative analysis between our method and two existing methods for generating RSVP sequences using both qualitative and quantitative assessments. A qualitative evaluation revealed that the sequences generated by our method were smoother in subjective vision and were more effective in evoking stronger ERP components than those generated by the other two methods. Quantitatively, our method generated semantically smoother sequences than the other two methods. Furthermore, we employed four advanced approaches to classify single-trial EEG signals evoked by each of the three methods. The classification results of the EEG signals evoked by our method were superior to those of the other two methods.Significance. In summary, the results indicate that the proposed method can significantly enhance the object detection performance in RSVP-based sequences.


Subject(s)
Electroencephalography , Evoked Potentials, Visual , Photic Stimulation , Semantics , Humans , Electroencephalography/methods , Male , Female , Photic Stimulation/methods , Young Adult , Adult , Evoked Potentials, Visual/physiology , Pattern Recognition, Visual/physiology , Algorithms
14.
Int J Psychophysiol ; 200: 112344, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614439

ABSTRACT

This study explores the impact of movement-outcome congruency and motor dominance on the action-associated modulations of early visual event-related potentials (ERPs). Employing the contingent paradigm, participants with varying degrees of motor dominance were exposed to stimuli depicting left or right human hands in the corresponding visual hemifields. Stimuli were either passively observed or evoked by voluntary button-presses with the dominant or non-dominant hand, in a manner that was either congruent or incongruent with stimulus laterality and hemifield. Early occipital responses (C1 and P1 components) revealed modulations consistent with sensory attenuation (SA) for self-evoked stimuli. Our findings suggest that sensory attenuation during the initial stages of visual processing (C1 component) is a general phenomenon across all degrees of handedness and stimulus/movement combinations. However, the magnitude of C1 suppression was modulated by handedness and movement-stimulus congruency, reflecting stronger SA in right-handed participants for stimuli depicting the right hand, when elicited by actions of the corresponding hand, and measured above the contralateral occipital lobe. P1 modulation suggested concurrent but opposing influences of attention and sensory prediction, with more pronounced suppression following stimulus-congruent button-presses over the hemisphere contralateral to movement, especially in left-handed individuals. We suggest that effects of motor dominance on the degree of SA may stem from functional/anatomical asymmetries in the processing of body parts (C1) and attention networks (P1). Overall, our results demonstrate the modulating effect of hand dominance and movement-outcome congruency on SA, underscoring the need for deeper exploration of their interplay. Additional empirical evidence in this direction could substantiate a premotor account for action-associated modulation of early sensory processing in the visual domain.


Subject(s)
Electroencephalography , Evoked Potentials, Visual , Functional Laterality , Psychomotor Performance , Humans , Male , Female , Young Adult , Adult , Functional Laterality/physiology , Psychomotor Performance/physiology , Evoked Potentials, Visual/physiology , Visual Perception/physiology , Attention/physiology , Movement/physiology
15.
J Neural Eng ; 21(3)2024 May 07.
Article in English | MEDLINE | ID: mdl-38639058

ABSTRACT

Objective.Brain-computer interface (BCI) systems with large directly accessible instruction sets are one of the difficulties in BCI research. Research to achieve high target resolution (⩾100) has not yet entered a rapid development stage, which contradicts the application requirements. Steady-state visual evoked potential (SSVEP) based BCIs have an advantage in terms of the number of targets, but the competitive mechanism between the target stimulus and its neighboring stimuli is a key challenge that prevents the target resolution from being improved significantly.Approach.In this paper, we reverse the competitive mechanism and propose a frequency spatial multiplexing method to produce more targets with limited frequencies. In the proposed paradigm, we replicated each flicker stimulus as a 2 × 2 matrix and arrange the matrices of all frequencies in a tiled fashion to form the interaction interface. With different arrangements, we designed and tested three example paradigms with different layouts. Further we designed a graph neural network that distinguishes between targets of the same frequency by recognizing the different electroencephalography (EEG) response distribution patterns evoked by each target and its neighboring targets.Main results.Extensive experiment studies employing eleven subjects have been performed to verify the validity of the proposed method. The average classification accuracies in the offline validation experiments for the three paradigms are 89.16%, 91.38%, and 87.90%, with information transfer rates (ITR) of 51.66, 53.96, and 50.55 bits/min, respectively.Significance.This study utilized the positional relationship between stimuli and did not circumvent the competing response problem. Therefore, other state-of-the-art methods focusing on enhancing the efficiency of SSVEP detection can be used as a basis for the present method to achieve very promising improvements.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Evoked Potentials, Visual , Photic Stimulation , Humans , Evoked Potentials, Visual/physiology , Electroencephalography/methods , Male , Photic Stimulation/methods , Female , Adult , Young Adult , Algorithms
16.
Neurosci Lett ; 830: 137777, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38621505

ABSTRACT

Omitted stimulus potentials (OSPs) are elicited in response to the omission of expected stimuli and are thought to reflect prediction errors. If prediction errors are signaled in the sensory cortex, OSPs are expected to be generated in the sensory cortex. The present study investigated the involvement of the early visual cortex in the generation of OSPs by testing whether omitted visual stimuli elicit brain responses in a spatially specific manner. Checkerboard pattern stimuli were presented alternately in the upper and lower visual fields, and the stimuli were omitted in 10 % of the trials. Event-related potentials were recorded from 33 participants. While a retinotopic C1 component was evoked by real visual stimuli, omitted stimuli did not produce any response reflecting retinotopy but did elicit a visual mismatch negativity, which was larger for omitted stimuli expected in the lower visual field than for those in the upper visual field. These results suggest that omitted visual stimuli are processed in a different pathway than actual stimuli.


Subject(s)
Evoked Potentials, Visual , Photic Stimulation , Visual Cortex , Visual Fields , Humans , Male , Female , Young Adult , Photic Stimulation/methods , Evoked Potentials, Visual/physiology , Adult , Visual Fields/physiology , Visual Cortex/physiology , Electroencephalography/methods , Visual Perception/physiology , Visual Pathways/physiology , Retina/physiology
17.
Indian J Ophthalmol ; 72(Suppl 3): S509-S513, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38648460

ABSTRACT

PURPOSE: Mutations of G protein-coupled receptor 143 (GPR143) and FERM domain containing 7 (FRMD7) may result in congenital nystagmus (CN) in the first 6 months of life. We aimed to compare the differences in ocular oscillations between patients with these two gene mutations as well as the functional and structural changes in their retinas and visual pathways. METHODS: Medical records were retrospectively reviewed to identify patients of congenital nystagmus with confirmed mutations in either GPR143 or FMRD7 genes from January 2018 to May 2023. The parameters of the ocular oscillations were recorded using Eyelink 1000 Plus. The retinal structure and function were evaluated using optical coherence tomography and multi-focal electroretinography (mERG). The visual pathway and optical nerve projection were evaluated using visual evoked potentials. The next-generation sequencing technique was used to identify the pathogenic variations in the disease-causing genes for CN. RESULTS: Twenty nystagmus patients of GPR143 and 21 patients of FMRD7 who had been confirmed by molecular testing between January 2018 and May 2023 were included. Foveal hypoplasia was detected only in patients with the GPR143 pathogenic variant. mERG examination showed a flat response topography in the GPR143 group compared to the FRMD7 group. VEP showed that bilateral amplitude inconsistency was detected only in the patients with GPR143 gene mutation. The amplitude and frequency of the ocular oscillations were not found to differ between patients with two different genetic mutations. CONCLUSIONS: Although the etiology and molecular mechanisms are completely different between CN patients, they may have similar ocular oscillations. A careful clinical examination and electrophysiological test will be helpful in making a differential diagnosis. Our novel identified variants will further expand the spectrum of the GPR143 and FRMD7 variants.


Subject(s)
Cytoskeletal Proteins , Membrane Proteins , Nystagmus, Congenital , Female , Humans , Male , Cytoskeletal Proteins/genetics , DNA/genetics , DNA Mutational Analysis , Electroretinography , Evoked Potentials, Visual/physiology , Eye Movements/physiology , Eye Proteins/genetics , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Mutation , Nystagmus, Congenital/genetics , Nystagmus, Congenital/physiopathology , Nystagmus, Congenital/diagnosis , Retina/physiopathology , Retrospective Studies , Tomography, Optical Coherence/methods
18.
Doc Ophthalmol ; 148(3): 155-166, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622306

ABSTRACT

PURPOSE: The aim of this neurophysiological study was to retrospectively analyze visual evoked potentials (VEPs) acquired during an examination for diagnosing optic nerve involvement in patients with Lyme neuroborreliosis (LNB). Attention was focused on LNB patients with peripheral facial palsy (PFP) and optic nerve involvement. METHODS: A total of 241 Czech patients were classified as having probable/definite LNB (193/48); of these, 57 were younger than 40 years, with a median age of 26.3 years, and 184 were older than 40 years, with a median age of 58.8 years. All patients underwent pattern-reversal (PVEP) and motion-onset (MVEP) VEP examinations. RESULTS: Abnormal VEP results were observed in 150/241 patients and were noted more often in patients over 40 years (p = 0.008). Muscle/joint problems and paresthesia were observed to be significantly more common in patients older than 40 years (p = 0.002, p = 0.030), in contrast to headache and decreased visual acuity, which were seen more often in patients younger than 40 years (p = 0.001, p = 0.033). Peripheral facial palsy was diagnosed in 26/241 LNB patients. Among patients with PFP, VEP peak times above the laboratory limit was observed in 22 (84.6%) individuals. Monitoring of patients with PFP and pathological VEP showed that the adjustment of visual system function occurred in half of the patients in one to more years, in contrast to faster recovery from peripheral facial palsy within months in most patients. CONCLUSION: In LNB patients, VEP helps to increase sensitivity of an early diagnostic process.


Subject(s)
Evoked Potentials, Visual , Lyme Neuroborreliosis , Optic Nerve Diseases , Humans , Lyme Neuroborreliosis/physiopathology , Lyme Neuroborreliosis/diagnosis , Lyme Neuroborreliosis/complications , Middle Aged , Adult , Evoked Potentials, Visual/physiology , Retrospective Studies , Male , Female , Optic Nerve Diseases/physiopathology , Optic Nerve Diseases/diagnosis , Aged , Young Adult , Adolescent , Facial Paralysis/physiopathology , Facial Paralysis/diagnosis , Child , Aged, 80 and over , Visual Acuity/physiology , Optic Nerve/physiopathology
19.
Brain Res ; 1836: 148933, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38604554

ABSTRACT

OBJECTIVE: To investigate the potential changes of glucose metabolism and glucose transporter protein (GLUT) in the visual cortex of formally deprived amblyopic rats, as well as the effects of enriched environments on the levels of nerve conduction and glucose metabolism in the visual cortex of amblyopic rats. METHODS: 36 rats were randomly divided into three groups: CON + SE (n = 12), MD + SE (n = 12) and MD + EE (n = 12). The right eyelids of both MD + SE and MD + EE groups were sutured. After successful modelling, the MD + EE group was maintained in an enriched environment, and the other two groups were kept in the same environment. Pattern visual evoked potentials (PVEP) was used to confirm models' effect, glucose metabolism was analyzed by Micro-PET/CT (18F-FDG), and the protein as well as mRNA expression levels of GLUT were detected by Western Blot and quantitative RT-PCR (quantitative Reverse Transcription-Polymerase Chain Reaction) analyses, site of GLUT expression by immunofluorescence (IF). RESULTS: After suture modelling, both the MD + EE and MD + SE groups objective visual nerve conduction function decreased, the glucose metabolism in the visual cortex was markedly lower. After the enriched environment intervention, it recovered in the MD + EE group. The expression levels of GLUT1 and GLUT3 were increased in the MD + EE group in comparison with the MD + SE group. GLUT1 was primarily expressed on astrocytes and endothelial cells, but GLUT3 was mainly expressed on neurons. CONCLUSION: Enrichment of the environment exhibited a therapeutic effect on amblyopia, which could be related to the enhancement of glucose metabolism and GLUT expression in the visual cortex.


Subject(s)
Amblyopia , Environment , Glucose , Rats, Sprague-Dawley , Visual Cortex , Animals , Visual Cortex/metabolism , Amblyopia/metabolism , Amblyopia/therapy , Amblyopia/physiopathology , Glucose/metabolism , Rats , Evoked Potentials, Visual/physiology , Male , Disease Models, Animal , Glucose Transport Proteins, Facilitative/metabolism , Neural Conduction/physiology , Glucose Transporter Type 1/metabolism
20.
Clin Neurophysiol ; 161: 122-132, 2024 May.
Article in English | MEDLINE | ID: mdl-38461596

ABSTRACT

OBJECTIVE: To explore associations of the main component (P100) of visual evoked potentials (VEP) to pre- and postchiasmatic damage in multiple sclerosis (MS). METHODS: 31 patients (median EDSS: 2.5), 13 with previous optic neuritis (ON), and 31 healthy controls had VEP, optical coherence tomography and magnetic resonance imaging. We tested associations of P100-latency to the peripapillary retinal nerve fiber layer (pRNFL), ganglion cell/inner plexiform layers (GCIPL), lateral geniculate nucleus volume (LGN), white matter lesions of the optic radiations (OR-WML), fractional anisotropy of non-lesional optic radiations (NAOR-FA), and to the mean thickness of primary visual cortex (V1). Effect sizes are given as marginal R2 (mR2). RESULTS: P100-latency, pRNFL, GCIPL and LGN in patients differed from controls. Within patients, P100-latency was significantly associated with GCIPL (mR2 = 0.26), and less strongly with OR-WML (mR2 = 0.17), NAOR-FA (mR2 = 0.13) and pRNFL (mR2 = 0.08). In multivariate analysis, GCIPL and NAOR-FA remained significantly associated with P100-latency (mR2 = 0.41). In ON-patients, P100-latency was significantly associated with LGN volume (mR2 = -0.56). CONCLUSIONS: P100-latency is affected by anterior and posterior visual pathway damage. In ON-patients, damage at the synapse-level (LGN) may additionally contribute to latency delay. SIGNIFICANCE: Our findings corroborate post-chiasmatic contributions to the VEP-signal, which may relate to distinct pathophysiological mechanisms in MS.


Subject(s)
Evoked Potentials, Visual , Geniculate Bodies , Multiple Sclerosis , Visual Pathways , Humans , Male , Female , Geniculate Bodies/physiopathology , Geniculate Bodies/diagnostic imaging , Adult , Evoked Potentials, Visual/physiology , Visual Pathways/physiopathology , Visual Pathways/diagnostic imaging , Middle Aged , Multiple Sclerosis/physiopathology , Multiple Sclerosis/diagnostic imaging , Tomography, Optical Coherence/methods , Magnetic Resonance Imaging , Optic Neuritis/physiopathology , Optic Neuritis/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...