Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.271
Filter
1.
Psychiatr Genet ; 34(3): 74-80, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38690959

ABSTRACT

BACKGROUND: Biallelic loss-of-function variants in SMPD4 cause a rare and severe neurodevelopmental disorder. These variants have been identified in a group of children with neurodevelopmental disorders with microcephaly, arthrogryposis, and structural brain anomalies. SMPD4 encodes a sphingomyelinase that hydrolyzes sphingomyelin into ceramide at neutral pH and can thereby affect membrane lipid homeostasis. SMPD4 localizes to the membranes of the endoplasmic reticulum and nuclear envelope and interacts with nuclear pore complexes. MATERIALS AND METHODS: For the efficient prenatal diagnosis of rare and undiagnosed diseases, the parallel detection of copy number variants (CNVs) and single nucleotide variants using whole-exome analysis is required. A physical examination of the parents was performed. Karyotype and whole-exome analysis were performed for the fetus and the parents. RESULTS: A fetus with microcephaly and arthrogryposis; biallelic null variants (c.387-1G>A; Chr2[GRCh38]: g.130142742_130202459del) were detected by whole-exome sequencing (WES). We have reported for the first time the biallelic loss-of-function mutations in SMPD4 in patients born to unrelated parents in China. CONCLUSION: WES could replace chromosomal microarray analysis and copy number variation sequencing as a more cost-effective genetic test for detecting CNVs and diagnosing highly heterogeneous conditions.


Subject(s)
DNA Copy Number Variations , Exome Sequencing , Microcephaly , Polymorphism, Single Nucleotide , Prenatal Diagnosis , Sphingomyelin Phosphodiesterase , Humans , DNA Copy Number Variations/genetics , Exome Sequencing/methods , Female , Prenatal Diagnosis/methods , Sphingomyelin Phosphodiesterase/genetics , Polymorphism, Single Nucleotide/genetics , Pregnancy , Microcephaly/genetics , Heterozygote , Arthrogryposis/genetics , Arthrogryposis/diagnosis , Male , Exome/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis
2.
Nat Commun ; 15(1): 4010, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750076

ABSTRACT

The availability of protein measurements and whole exome sequence data in the UK Biobank enables investigation of potential observational and genetic protein-cancer risk associations. We investigated associations of 1463 plasma proteins with incidence of 19 cancers and 9 cancer subsites in UK Biobank participants (average 12 years follow-up). Emerging protein-cancer associations were further explored using two genetic approaches, cis-pQTL and exome-wide protein genetic scores (exGS). We identify 618 protein-cancer associations, of which 107 persist for cases diagnosed more than seven years after blood draw, 29 of 618 were associated in genetic analyses, and four had support from long time-to-diagnosis ( > 7 years) and both cis-pQTL and exGS analyses: CD74 and TNFRSF1B with NHL, ADAM8 with leukemia, and SFTPA2 with lung cancer. We present multiple blood protein-cancer risk associations, including many detectable more than seven years before cancer diagnosis and that had concordant evidence from genetic analyses, suggesting a possible role in cancer development.


Subject(s)
Biological Specimen Banks , Exome , Neoplasms , Proteomics , Humans , United Kingdom/epidemiology , Neoplasms/genetics , Neoplasms/blood , Neoplasms/epidemiology , Risk Factors , Male , Female , Exome/genetics , Prospective Studies , Middle Aged , Blood Proteins/genetics , Aged , Exome Sequencing , Genetic Predisposition to Disease , Incidence , UK Biobank
3.
Mol Genet Genomics ; 299(1): 55, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771357

ABSTRACT

Neurodevelopmental disorders (NDDs) are a clinically and genetically heterogeneous group of early-onset pediatric disorders that affect the structure and/or function of the central or peripheral nervous system. Achieving a precise molecular diagnosis for NDDs may be challenging due to the diverse genetic underpinnings and clinical variability. In the current study, we investigated the underlying genetic cause(s) of NDDs in four unrelated Pakistani families. Using exome sequencing (ES) as a diagnostic approach, we identified disease-causing variants in established NDD-associated genes in all families, including one hitherto unreported variant in RELN and three recurrent variants in VPS13B, DEGS1, and SPG11. Overall, our study highlights the potential of ES as a tool for clinical diagnosis.


Subject(s)
Exome Sequencing , Genetic Association Studies , Neurodevelopmental Disorders , Pedigree , Vesicular Transport Proteins , Humans , Neurodevelopmental Disorders/genetics , Male , Female , Vesicular Transport Proteins/genetics , Genetic Association Studies/methods , Child , Child, Preschool , Exome/genetics , Pakistan , Genetic Predisposition to Disease , Mutation , Cell Adhesion Molecules, Neuronal/genetics
5.
JCI Insight ; 9(9)2024 May 08.
Article in English | MEDLINE | ID: mdl-38716726

ABSTRACT

Childhood-onset essential hypertension (COEH) is an uncommon form of hypertension that manifests in childhood or adolescence and, in the United States, disproportionately affects children of African ancestry. The etiology of COEH is unknown, but its childhood onset, low prevalence, high heritability, and skewed ancestral demography suggest the potential to identify rare genetic variation segregating in a Mendelian manner among affected individuals and thereby implicate genes important to disease pathogenesis. However, no COEH genes have been reported to date. Here, we identify recessive segregation of rare and putatively damaging missense variation in the spectrin domain of spectrin repeat containing nuclear envelope protein 1 (SYNE1), a cardiovascular candidate gene, in 3 of 16 families with early-onset COEH without an antecedent family history. By leveraging exome sequence data from an additional 48 COEH families, 1,700 in-house trios, and publicly available data sets, we demonstrate that compound heterozygous SYNE1 variation in these COEH individuals occurred more often than expected by chance and that this class of biallelic rare variation was significantly enriched among individuals of African genetic ancestry. Using in vitro shRNA knockdown of SYNE1, we show that reduced SYNE1 expression resulted in a substantial decrease in the elasticity of smooth muscle vascular cells that could be rescued by pharmacological inhibition of the downstream RhoA/Rho-associated protein kinase pathway. These results provide insights into the molecular genetics and underlying pathophysiology of COEH and suggest a role for precision therapeutics in the future.


Subject(s)
Cytoskeletal Proteins , Essential Hypertension , Exome Sequencing , Nerve Tissue Proteins , Adolescent , Child , Female , Humans , Male , Age of Onset , Cytoskeletal Proteins/genetics , Essential Hypertension/genetics , Exome/genetics , Genetic Predisposition to Disease , Mutation, Missense/genetics , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Pedigree , rhoA GTP-Binding Protein/genetics , United States/epidemiology , Infant, Newborn , Infant , Child, Preschool , Young Adult
6.
Orphanet J Rare Dis ; 19(1): 216, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790019

ABSTRACT

BACKGROUND: Though next-generation sequencing (NGS) tests like exome sequencing (ES), genome sequencing (GS), and panels derived from exome and genome data (EGBP) are effective for rare diseases, the ideal diagnostic approach is debated. Limited research has explored reanalyzing raw ES and GS data post-negative EGBP results for diagnostics. RESULTS: We analyzed complete ES/GS raw sequencing data from Mayo Clinic's Program for Rare and Undiagnosed Diseases (PRaUD) patients to assess whether supplementary findings could augment diagnostic yield. ES data from 80 patients (59 adults) and GS data from 20 patients (10 adults), averaging 43 years in age, were analyzed. Most patients had renal (n=44) and auto-inflammatory (n=29) phenotypes. Ninety-six cases had negative findings and in four cases additional genetic variants were found, including a variant related to a recently described disease (RRAGD-related hypomagnesemia), a variant missed due to discordant inheritance pattern (COL4A3), a variant with high allelic frequency (NPHS2) in the general population, and a variant associated with an initially untargeted phenotype (HNF1A). CONCLUSION: ES and GS show diagnostic yields comparable to EGBP for single-system diseases. However, EGBP's limitations in detecting new disease-associated genes underscore the necessity for periodic updates.


Subject(s)
High-Throughput Nucleotide Sequencing , Humans , Adult , Female , Male , Middle Aged , High-Throughput Nucleotide Sequencing/methods , Exome Sequencing/methods , Exome/genetics , Young Adult , Rare Diseases/genetics , Rare Diseases/diagnosis , Aged , Adolescent , Whole Genome Sequencing/methods
7.
Genes (Basel) ; 15(5)2024 May 04.
Article in English | MEDLINE | ID: mdl-38790214

ABSTRACT

Large-scale genomic studies have significantly increased our knowledge of genetic variability across populations. Regional genetic profiling is essential for distinguishing common benign variants from disease-causing ones. To this end, we conducted a comprehensive characterization of exonic variants in the population of Navarre (Spain), utilizing whole genome sequencing data from 358 unrelated individuals of Spanish origin. Our analysis revealed 61,410 biallelic single nucleotide variants (SNV) within the Navarrese cohort, with 35% classified as common (MAF > 1%). By comparing allele frequency data from 1000 Genome Project (excluding the Iberian cohort of Spain, IBS), Genome Aggregation Database, and a Spanish cohort (including IBS individuals and data from Medical Genome Project), we identified 1069 SNVs common in Navarre but rare (MAF ≤ 1%) in all other populations. We further corroborated this observation with a second regional cohort of 239 unrelated exomes, which confirmed 676 of the 1069 SNVs as common in Navarre. In conclusion, this study highlights the importance of population-specific characterization of genetic variation to improve allele frequency filtering in sequencing data analysis to identify disease-causing variants.


Subject(s)
Gene Frequency , Polymorphism, Single Nucleotide , Humans , Spain , Polymorphism, Single Nucleotide/genetics , Whole Genome Sequencing , Male , Female , Genetics, Population , Genetic Variation , Genome, Human , Exome/genetics , Cohort Studies
8.
Nat Med ; 30(5): 1395-1405, 2024 May.
Article in English | MEDLINE | ID: mdl-38693247

ABSTRACT

Cerebral palsy (CP) is the most common motor disability in children. To ascertain the role of major genetic variants in the etiology of CP, we conducted exome sequencing on a large-scale cohort with clinical manifestations of CP. The study cohort comprised 505 girls and 1,073 boys. Utilizing the current gold standard in genetic diagnostics, 387 of these 1,578 children (24.5%) received genetic diagnoses. We identified 412 pathogenic and likely pathogenic (P/LP) variants across 219 genes associated with neurodevelopmental disorders, and 59 P/LP copy number variants. The genetic diagnostic rate of children with CP labeled at birth with perinatal asphyxia was higher than the rate in children without asphyxia (P = 0.0033). Also, 33 children with CP manifestations (8.5%, 33 of 387) had findings that were clinically actionable. These results highlight the need for early genetic testing in children with CP, especially those with risk factors like perinatal asphyxia, to enable evidence-based medical decision-making.


Subject(s)
Cerebral Palsy , DNA Copy Number Variations , Exome Sequencing , Genetic Heterogeneity , Humans , Cerebral Palsy/genetics , Female , Male , Child , Child, Preschool , DNA Copy Number Variations/genetics , Exome/genetics , Infant , Genetic Testing , Cohort Studies , Genetic Predisposition to Disease , Infant, Newborn
9.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731892

ABSTRACT

With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.


Subject(s)
Antigens, Neoplasm , Epitopes , Immunotherapy , Neoplasms , Humans , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Immunotherapy/methods , Epitopes/immunology , Epitopes/genetics , Exome/genetics , Mutation
10.
Nat Commun ; 15(1): 2632, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565598

ABSTRACT

Handedness is a manifestation of brain hemispheric specialization. Left-handedness occurs at increased rates in neurodevelopmental disorders. Genome-wide association studies have identified common genetic effects on handedness or brain asymmetry, which mostly involve variants outside protein-coding regions and may affect gene expression. Implicated genes include several that encode tubulins (microtubule components) or microtubule-associated proteins. Here we examine whether left-handedness is also influenced by rare coding variants (frequencies ≤ 1%), using exome data from 38,043 left-handed and 313,271 right-handed individuals from the UK Biobank. The beta-tubulin gene TUBB4B shows exome-wide significant association, with a rate of rare coding variants 2.7 times higher in left-handers than right-handers. The TUBB4B variants are mostly heterozygous missense changes, but include two frameshifts found only in left-handers. Other TUBB4B variants have been linked to sensorineural and/or ciliopathic disorders, but not the variants found here. Among genes previously implicated in autism or schizophrenia by exome screening, DSCAM and FOXP1 show evidence for rare coding variant association with left-handedness. The exome-wide heritability of left-handedness due to rare coding variants was 0.91%. This study reveals a role for rare, protein-altering variants in left-handedness, providing further evidence for the involvement of microtubules and disorder-relevant genes.


Subject(s)
Functional Laterality , Genome-Wide Association Study , Humans , Exome/genetics , Brain , Repressor Proteins/genetics , Forkhead Transcription Factors/genetics
11.
Am J Hum Genet ; 111(5): 863-876, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38565148

ABSTRACT

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.


Subject(s)
DNA Copy Number Variations , Exome Sequencing , Exome , Rare Diseases , Humans , DNA Copy Number Variations/genetics , Rare Diseases/genetics , Rare Diseases/diagnosis , Exome/genetics , Male , Female , Cohort Studies , Genetic Testing/methods
13.
Cell Rep Med ; 5(5): 101518, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38642551

ABSTRACT

Population-based genomic screening may help diagnose individuals with disease-risk variants. Here, we perform a genome-first evaluation for nine disorders in 29,039 participants with linked exome sequences and electronic health records (EHRs). We identify 614 individuals with 303 pathogenic/likely pathogenic or predicted loss-of-function (P/LP/LoF) variants, yielding 644 observations; 487 observations (76%) lack a corresponding clinical diagnosis in the EHR. Upon further investigation, 75 clinically undiagnosed observations (15%) have evidence of symptomatic untreated disease, including familial hypercholesterolemia (3 of 6 [50%] undiagnosed observations with disease evidence) and breast cancer (23 of 106 [22%]). These genetic findings enable targeted phenotyping that reveals new diagnoses in previously undiagnosed individuals. Disease yield is greater with variants in penetrant genes for which disease is observed in carriers in an independent cohort. The prevalence of P/LP/LoF variants exceeds that of clinical diagnoses, and some clinically undiagnosed carriers are discovered to have disease. These results highlight the potential of population-based genomic screening.


Subject(s)
Exome Sequencing , Exome , Humans , Female , Male , Exome/genetics , Exome Sequencing/methods , Middle Aged , Adult , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/epidemiology , Genetic Predisposition to Disease , Electronic Health Records , Genetic Testing/methods , Genome, Human , Aged , Delivery of Health Care , Adolescent , Genomics/methods , Young Adult
14.
J Mol Diagn ; 26(6): 510-519, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582400

ABSTRACT

The genetically isolated yet heterogeneous and highly consanguineous Indian population has shown a higher prevalence of rare genetic disorders. However, there is a significant socioeconomic burden for genetic testing to be accessible to the general population. In the current study, we analyzed next-generation sequencing data generated through focused exome sequencing from individuals with different phenotypic manifestations referred for genetic testing to achieve a molecular diagnosis. Pathogenic or likely pathogenic variants are reported in 280 of 833 cases with a diagnostic yield of 33.6%. Homozygous sequence and copy number variants were found as positive diagnostic findings in 131 cases (15.7%) because of the high consanguinity in the Indian population. No relevant findings related to reported phenotype were identified in 6.2% of the cases. Patients referred for testing due to metabolic disorder and neuromuscular disorder had higher diagnostic yields. Carrier testing of asymptomatic individuals with a family history of the disease, through focused exome sequencing, achieved positive diagnosis in 54 of 118 cases tested. Copy number variants were also found in trans with single-nucleotide variants and mitochondrial variants in a few of the cases. The diagnostic yield and the findings from this study signify that a focused exome test is a good lower-cost alternative for whole-exome and whole-genome sequencing and as a first-tier approach to genetic testing.


Subject(s)
DNA Copy Number Variations , Exome Sequencing , Genetic Testing , Humans , Exome Sequencing/methods , India/epidemiology , Male , Genetic Testing/methods , Genetic Testing/economics , Female , High-Throughput Nucleotide Sequencing/methods , Exome/genetics , Consanguinity , Child , Adult , Adolescent , Child, Preschool , Phenotype , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/epidemiology , Infant , Young Adult
15.
Pharmacogenomics ; 25(4): 197-206, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38511470

ABSTRACT

Whole-exome sequencing (WES) is widely used in clinical settings; however, the exploration of its use in pharmacogenomic analysis remains limited. Our study compared the variant callings for 28 core absorption, distribution, metabolism and elimination genes by WES and array-based technology using clinical trials samples. The results revealed that WES had a positive predictive value of 0.71-0.92 and a sensitivity of single-nucleotide variants between 0.68 and 0.95, compared with array-based technology, for the variants in the commonly targeted regions of the WES and PhamacoScan™ assay. Besides the common variants detected by both assays, WES identified 200-300 exclusive variants per sample, totalling 55 annotated exclusive variants, including important modulators of metabolism such as rs2032582 (ABCB1) and rs72547527 (SULT1A1). This study highlights the potential clinical advantages of using WES to identify a wider range of genetic variations and enabling precision medicine.


Subject(s)
Exome , Pharmacogenetics , Humans , Exome Sequencing , Exome/genetics , High-Throughput Nucleotide Sequencing/methods
16.
J Agric Food Chem ; 72(13): 7089-7099, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38512774

ABSTRACT

Breast cancer patients undergoing chemotherapy often experience muscle wasting and weakness, which impact their quality of life. A potential solution lies in customizing amino acid compositions based on exome-derived formulations (ExAAs). The study hypothesized that tailoring dietary amino acids using ExAAs could enhance muscle health. Theoretical amino acid requirements were calculated from the genome's exome region, and a breast cancer mouse model undergoing paclitaxel treatment was established. The mice were supplemented with a cancer-specific nutritional formula (QJS), and the effects of QJS and amino acid-adjusted QJS (adjQJS) were compared. Both formulations improved the nutritional status without compromising tumor growth. Notably, adjQJS significantly enhanced muscle strength compared to QJS (1.51 ± 0.25 vs. 1.30 ± 0.08 fold change, p < 0.05). Transcriptome analysis revealed alterations in complement and coagulation cascades, with an observed upregulation of C3 gene expression in adjQJS. Immune regulation also changed, showing a decrease in B cells and an increase in monocytes in skeletal muscle with adjQJS. Importantly, adjQJS resulted in a notable increase in Alistipes abundance compared to QJS (10.19 ± 0.04% vs. 5.03 ± 1.75%). This study highlights the potential of ExAAs as valuable guide for optimizing amino acid composition in diets for breast cancer patients undergoing chemotherapy.


Subject(s)
Breast Neoplasms , Exome , Humans , Animals , Mice , Female , Exome/genetics , Quality of Life , Amino Acids/metabolism , Diet , Muscle Strength , Muscle, Skeletal/metabolism , Dietary Supplements , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism
17.
J Hum Genet ; 69(6): 255-262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38454133

ABSTRACT

A previous study of 200,000 exome-sequenced UK Biobank participants investigating the association between rare coding variants and hyperlipidaemia had implicated four genes, LDLR, PCSK9, APOC3 and IFITM5, at exome-wide significance. In addition, a further 43 protein-coding genes were significant with an uncorrected p value of <0.001. Exome sequence data has become available for a further 270,000 participants and weighted burden analysis to test for association with hyperlipidaemia was carried out in this sample for the 47 genes highlighted by the previous study. There was no evidence to implicate IFITM5 but LDLR, PCSK9, APOC3, ANGPTL3, ABCG5 and NPC1L1 were all statistically significant after correction for multiple testing. These six genes were also all exome-wide significant in the combined sample of 470,000 participants. Variants impairing function of LDLR and ABCG5 were associated with increased risk whereas variants in the other genes were protective. Variant categories associated with large effect sizes are cumulatively very rare and the main benefit of this kind of study seems to be to throw light on the molecular mechanisms impacting hyperlipidaemia risk, hopefully supporting attempts to develop improved therapies.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5 , Biological Specimen Banks , Exome Sequencing , Genetic Predisposition to Disease , Hyperlipidemias , Receptors, LDL , Humans , Hyperlipidemias/genetics , United Kingdom/epidemiology , Receptors, LDL/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Proprotein Convertase 9/genetics , Exome/genetics , Genetic Variation , Angiopoietin-Like Protein 3 , Female , Male , UK Biobank , Lipoproteins , Apolipoprotein C-III
18.
J Hum Genet ; 69(6): 287-290, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38448605

ABSTRACT

Rare heterozygous variants in exons 33-34 of the SRCAP gene are associated with Floating-Harbor syndrome and have a dominant-negative mechanism of action. At variance, heterozygous null alleles falling in other parts of the same gene cause developmental delay, hypotonia, musculoskeletal defects, and behavioral abnormalities (DEHMBA) syndrome. We report an 18-year-old man with DEHMBA syndrome and obstructive sleep apnea, who underwent exome sequencing (ES) and whole transcriptome sequencing (WTS) on peripheral blood. Trio analysis prioritized the de novo heterozygous c.5658+5 G > A variant. WTS promptly demostrated four different abnormal transcripts affecting >40% of the reads, three of which leading to a frameshift. This study demonstrated the efficacy of a combined ES-WTS approach in solving undiagnosed cases. We also speculated that sleep respiratory disorder may be an underdiagnosed complication of DEHMBA syndrome.


Subject(s)
Exome Sequencing , Humans , Male , Adolescent , Introns/genetics , Exome/genetics , Muscle Hypotonia/genetics , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Transcriptome/genetics , Abnormalities, Multiple/genetics , Sleep Wake Disorders/genetics , Sleep Apnea, Obstructive/genetics , Heterozygote
19.
Hum Genet ; 143(5): 649-666, 2024 May.
Article in English | MEDLINE | ID: mdl-38538918

ABSTRACT

Most rare disease patients (75-50%) undergoing genomic sequencing remain unsolved, often due to lack of information about variants identified. Data review over time can leverage novel information regarding disease-causing variants and genes, increasing this diagnostic yield. However, time and resource constraints have limited reanalysis of genetic data in clinical laboratories setting. We developed RENEW, (REannotation of NEgative WES/WGS) an automated reannotation procedure that uses relevant new information in on-line genomic databases to enable rapid review of genomic findings. We tested RENEW in an unselected cohort of 1066 undiagnosed cases with a broad spectrum of phenotypes from the Mayo Clinic Center for Individualized Medicine using new information in ClinVar, HGMD and OMIM between the date of previous analysis/testing and April of 2022. 5741 variants prioritized by RENEW were rapidly reviewed by variant interpretation specialists. Mean analysis time was approximately 20 s per variant (32 h total time). Reviewed cases were classified as: 879 (93.0%) undiagnosed, 63 (6.6%) putatively diagnosed, and 4 (0.4%) definitively diagnosed. New strategies are needed to enable efficient review of genomic findings in unsolved cases. We report on a fast and practical approach to address this need and improve overall diagnostic success in patient testing through a recurrent reannotation process.


Subject(s)
Genomics , Humans , Genomics/methods , Exome/genetics , Exome Sequencing/methods , Databases, Genetic , Genetic Testing/methods , Genome, Human , Whole Genome Sequencing/methods , Phenotype
20.
Clin Genet ; 106(1): 95-101, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38545656

ABSTRACT

Hypoxic-ischemic encephalopathy (HIE) occurs in up to 7 out of 1000 births and accounts for almost a quarter of neonatal deaths worldwide. Despite the name, many newborns with HIE have little evidence of perinatal hypoxia. We hypothesized that some infants with HIE have genetic disorders that resemble encephalopathy. We reviewed genetic results for newborns with HIE undergoing exome or genome sequencing at a clinical laboratory (2014-2022). Neonates were included if they had a diagnosis of HIE and were delivered ≥35 weeks. Neonates were excluded for cardiopulmonary pathology resulting in hypoxemia or if neuroimaging suggested postnatal hypoxic-ischemic injury. Of 24 patients meeting inclusion criteria, six (25%) were diagnosed with a genetic condition. Four neonates had variants at loci linked to conditions with phenotypic features resembling HIE, including KIF1A, GBE1, ACTA1, and a 15q13.3 deletion. Two additional neonates had variants in genes not previously associated with encephalopathy, including DUOX2 and PTPN11. Of the six neonates with a molecular diagnosis, two had isolated HIE without apparent comorbidities to suggest a genetic disorder. Genetic diagnoses were identified among neonates with and without sentinel labor events, abnormal umbilical cord gasses, and low Apgar scores. These results suggest that genetic evaluation is clinically relevant for patients with perinatal HIE.


Subject(s)
Exome Sequencing , Hypoxia-Ischemia, Brain , Humans , Hypoxia-Ischemia, Brain/genetics , Hypoxia-Ischemia, Brain/diagnosis , Hypoxia-Ischemia, Brain/diagnostic imaging , Infant, Newborn , Female , Male , Retrospective Studies , Genetic Predisposition to Disease , Exome/genetics , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...