Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.426
Filter
1.
Genome Biol ; 25(1): 140, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807229

ABSTRACT

RNA-binding proteins (RBPs) regulate key aspects of RNA processing including alternative splicing, mRNA degradation and localization by physically binding RNA molecules. Current methods to map these interactions, such as CLIP, rely on purifying single proteins at a time. Our new method, ePRINT, maps RBP-RNA interaction networks on a global scale without purifying individual RBPs. ePRINT uses exoribonuclease XRN1 to precisely map the 5' end of the RBP binding site and uncovers direct and indirect targets of an RBP of interest. Importantly, ePRINT can also uncover RBPs that are differentially activated between cell fate transitions, including neural progenitor differentiation into neurons.


Subject(s)
RNA-Binding Proteins , RNA-Binding Proteins/metabolism , Binding Sites , Exoribonucleases/metabolism , Humans , RNA/metabolism , Animals , Protein Binding
2.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38569554

ABSTRACT

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , DEAD-box RNA Helicases , Exoribonucleases , Genomic Instability , Methyltransferases , R-Loop Structures , RNA Polymerase II , Transcription Termination, Genetic , Humans , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Adenosine/metabolism , Adenosine/genetics , Exoribonucleases/metabolism , Exoribonucleases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , HEK293 Cells , Chromatin/metabolism , Chromatin/genetics , DNA Damage , HeLa Cells , RNA/metabolism , RNA/genetics , Transcription, Genetic , RNA Methylation
3.
Front Biosci (Elite Ed) ; 16(1): 1, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38538525

ABSTRACT

BACKGROUND: Xrn1 exoribonuclease is the major mRNA degradation enzyme in Saccharomyces cerevisiae. In exponentially growing cells, Xrn1 is localised in the yeast cells and directs the degradation of mRNA molecules. Xrn1 is gradually deposited and presumably inactivated in the processing bodies (P-bodies) as the yeast population ages. Xrn1 can also localise to the membrane compartment of the arginine permease Can1/eisosome compartment at the yeast plasma membrane. This localisation correlates with the metabolic (diauxic) shift from glucose fermentation to respiration, although the relevance of this Xrn1 localisation remains unknown. METHODS: We monitored the growth rates and morphology of Xrn1-green fluorescent protein (GFP) cells compared to wild-type and Δxrn1 cells and observed the Xrn1-GFP localisation pattern in different media types for up to 72 hours using fluorescence microscopy. RESULTS: We present the dynamic changes in the localisation of Xrn1 as a versatile tool for monitoring the growth of yeast populations at the single-cell level using fluorescence microscopy. CONCLUSIONS: The dynamic changes in the localisation of Xrn1 can be a versatile tool for monitoring the growth of yeast populations at the single-cell level. Simultaneously, Xrn1 localisation outside of P-bodies in post-diauxic cells supports its storage and cytoprotective function, yet the role of P-bodies in cell metabolism has still not yet been entirely elucidated.


Subject(s)
Exoribonucleases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Population Growth , RNA, Messenger/metabolism
4.
Cancer Lett ; 592: 216761, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38490326

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor with limited treatment options and poor prognosis. In this study, we reveal the pivotal role of Stratifin (SFN), also recognized as 14-3-3σ, in driving HCC progression. Our investigation underscores a substantial upregulation of SFN within HCC tissues, manifesting a significant association with worse prognostic outcomes among HCC patients. In vitro and in vivo experiments reveal that SFN overexpression significantly amplifies proliferation, mitigates sorafenib-induced effects on HCC cells, and enhances tumorigenesis. While SFN silencing exerts converse effects on HCC progression. Additionally, we unveil a critical interaction between SFN and AKT, where SFN boosts AKT kinase activity by disrupting the binding of PHLPP2 and AKT, thereby intensifying the malignant progression of HCC cells. In conclusion, this study identifies the oncogenic role of SFN and elucidates the regulatory mechanism of the SFN/AKT axis in HCC, which may provide valuable insights into the mechanisms of HCC progression and potential targets for therapeutic intervention.


Subject(s)
14-3-3 Proteins , Carcinoma, Hepatocellular , Cell Proliferation , Disease Progression , Exoribonucleases , Liver Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Proto-Oncogene Proteins c-akt/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Exoribonucleases/metabolism , Exoribonucleases/genetics , Animals , Cell Line, Tumor , Mice , Male , Female , Gene Expression Regulation, Neoplastic , Mice, Nude , Prognosis , Mice, Inbred BALB C
5.
Nature ; 628(8009): 887-893, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538796

ABSTRACT

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Subject(s)
Cryoelectron Microscopy , Exoribonucleases , RNA Polymerase II , RNA, Messenger , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Termination, Genetic , Exoribonucleases/chemistry , Exoribonucleases/metabolism , Exoribonucleases/ultrastructure , Models, Molecular , Protein Binding , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , RNA Polymerase II/ultrastructure , RNA, Messenger/biosynthesis , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/ultrastructure , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/ultrastructure , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/ultrastructure , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/ultrastructure , Protein Domains , RNA, Fungal/biosynthesis , RNA, Fungal/chemistry , RNA, Fungal/genetics , RNA, Fungal/ultrastructure
6.
RNA ; 30(6): 662-679, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38443115

ABSTRACT

Despite being predicted to lack coding potential, cytoplasmic long noncoding (lnc)RNAs can associate with ribosomes. However, the landscape and biological relevance of lncRNA translation remain poorly studied. In yeast, cytoplasmic Xrn1-sensitive unstable transcripts (XUTs) are targeted by nonsense-mediated mRNA decay (NMD), suggesting a translation-dependent degradation process. Here, we report that XUTs are pervasively translated, which impacts their decay. We show that XUTs globally accumulate upon translation elongation inhibition, but not when initial ribosome loading is impaired. Ribo-seq confirmed ribosomes binding to XUTs and identified ribosome-associated 5'-proximal small ORFs. Mechanistically, the NMD-sensitivity of XUTs mainly depends on the 3'-untranslated region length. Finally, we show that the peptide resulting from the translation of an NMD-sensitive XUT reporter exists in NMD-competent cells. Our work highlights the role of translation in the posttranscriptional metabolism of XUTs. We propose that XUT-derived peptides could be exposed to natural selection, while NMD restricts XUT levels.


Subject(s)
Exoribonucleases , Nonsense Mediated mRNA Decay , Protein Biosynthesis , RNA, Long Noncoding , Ribosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Exoribonucleases/metabolism , Exoribonucleases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ribosomes/metabolism , Ribosomes/genetics , 3' Untranslated Regions , Open Reading Frames , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA Stability
7.
Biochem J ; 481(7): 481-498, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38440860

ABSTRACT

The protein kinase Gcn2 and its effector protein Gcn1 are part of the general amino acid control signalling (GAAC) pathway best known in yeast for its function in maintaining amino acid homeostasis. Under amino acid limitation, Gcn2 becomes activated, subsequently increasing the levels of phosphorylated eIF2α (eIF2α-P). This leads to the increased translation of transcriptional regulators, such as Gcn4 in yeast and ATF4 in mammals, and subsequent re-programming of the cell's gene transcription profile, thereby allowing cells to cope with starvation. Xrn1 is involved in RNA decay, quality control and processing. We found that Xrn1 co-precipitates Gcn1 and Gcn2, suggesting that these three proteins are in the same complex. Growth under starvation conditions was dependent on Xrn1 but not on Xrn1-ribosome association, and this correlated with reduced eIF2α-P levels. Constitutively active Gcn2 leads to a growth defect due to eIF2α-hyperphosphorylation, and we found that this phenotype was independent of Xrn1, suggesting that xrn1 deletion does not enhance eIF2α de-phosphorylation. Our study provides evidence that Xrn1 is required for efficient Gcn2 activation, directly or indirectly. Thus, we have uncovered a potential new link between RNA metabolism and the GAAC.


Subject(s)
Eukaryotic Initiation Factor-2 , Exoribonucleases , Peptide Elongation Factors , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Amino Acids/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Mammals/metabolism , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism
8.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38418089

ABSTRACT

ISG20 is an IFN-induced 3'-5' RNA exonuclease that acts as a broad antiviral factor. At present, the features that expose RNA to ISG20 remain unclear, although recent studies have pointed to the modulatory role of epitranscriptomic modifications in the susceptibility of target RNAs to ISG20. These findings raise the question as to how cellular RNAs, on which these modifications are abundant, cope with ISG20. To obtain an unbiased perspective on this topic, we used RNA-seq and biochemical assays to identify elements that regulate the behavior of RNAs against ISG20. RNA-seq analyses not only indicate a general preservation of the cell transcriptome, but they also highlight a small, but detectable, decrease in the levels of histone mRNAs. Contrarily to all other cellular ones, histone mRNAs are non-polyadenylated and possess a short stem-loop at their 3' end, prompting us to examine the relationship between these features and ISG20 degradation. The results we have obtained indicate that poly(A)-binding protein loading on the RNA 3' tail provides a primal protection against ISG20, easily explaining the overall protection of cellular mRNAs observed by RNA-seq. Terminal stem-loop RNA structures have been associated with ISG20 protection before. Here, we re-examined this question and found that the balance between resistance and susceptibility to ISG20 depends on their thermodynamic stability. These results shed new light on the complex interplay that regulates the susceptibility of different classes of viruses against ISG20.


Subject(s)
Exonucleases , Exoribonucleases , Exonucleases/genetics , Exonucleases/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Histones , Virus Replication/physiology
9.
Genome Biol ; 25(1): 54, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388963

ABSTRACT

BACKGROUND: RNA secondary structure (RSS) can influence the regulation of transcription, RNA processing, and protein synthesis, among other processes. 3' untranslated regions (3' UTRs) of mRNA also hold the key for many aspects of gene regulation. However, there are often contradictory results regarding the roles of RSS in 3' UTRs in gene expression in different organisms and/or contexts. RESULTS: Here, we incidentally observe that the primary substrate of miR159a (pri-miR159a), when embedded in a 3' UTR, could promote mRNA accumulation. The enhanced expression is attributed to the earlier polyadenylation of the transcript within the hybrid pri-miR159a-3' UTR and, resultantly, a poorly structured 3' UTR. RNA decay assays indicate that poorly structured 3' UTRs could promote mRNA stability, whereas highly structured 3' UTRs destabilize mRNA in vivo. Genome-wide DMS-MaPseq also reveals the prevailing inverse relationship between 3' UTRs' RSS and transcript accumulation in the transcriptomes of Arabidopsis, rice, and even human. Mechanistically, transcripts with highly structured 3' UTRs are preferentially degraded by 3'-5' exoribonuclease SOV and 5'-3' exoribonuclease XRN4, leading to decreased expression in Arabidopsis. Finally, we engineer different structured 3' UTRs to an endogenous FT gene and alter the FT-regulated flowering time in Arabidopsis. CONCLUSIONS: We conclude that highly structured 3' UTRs typically cause reduced accumulation of the harbored transcripts in Arabidopsis. This pattern extends to rice and even mammals. Furthermore, our study provides a new strategy of engineering the 3' UTRs' RSS to modify plant traits in agricultural production and mRNA stability in biotechnology.


Subject(s)
Arabidopsis , Exoribonucleases , Animals , Humans , 3' Untranslated Regions , RNA, Messenger/genetics , RNA, Messenger/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation , Mammals/genetics
10.
Nature ; 626(8001): 1133-1140, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326618

ABSTRACT

Protein synthesis is a major energy-consuming process of the cell that requires the controlled production1-3 and turnover4,5 of ribosomes. Although the past few years have seen major advances in our understanding of ribosome biogenesis, structural insight into the degradation of ribosomes has been lacking. Here we present native structures of two distinct small ribosomal 30S subunit degradation intermediates associated with the 3' to 5' exonuclease ribonuclease R (RNase R). The structures reveal that RNase R binds at first to the 30S platform to facilitate the degradation of the functionally important anti-Shine-Dalgarno sequence and the decoding-site helix 44. RNase R then encounters a roadblock when it reaches the neck region of the 30S subunit, and this is overcome by a major structural rearrangement of the 30S head, involving the loss of ribosomal proteins. RNase R parallels this movement and relocates to the decoding site by using its N-terminal helix-turn-helix domain as an anchor. In vitro degradation assays suggest that head rearrangement poses a major kinetic barrier for RNase R, but also indicate that the enzyme alone is sufficient for complete degradation of 30S subunits. Collectively, our results provide a mechanistic basis for the degradation of 30S mediated by RNase R, and reveal that RNase R targets orphaned 30S subunits using a dynamic mechanism involving an anchored switching of binding sites.


Subject(s)
Exoribonucleases , Ribosomal Proteins , Ribosomes , Exoribonucleases/metabolism , Ribosomal Proteins/metabolism , Ribosomes/chemistry , Ribosomes/metabolism , Kinetics , Binding Sites
11.
Nat Struct Mol Biol ; 31(5): 826-834, 2024 May.
Article in English | MEDLINE | ID: mdl-38374449

ABSTRACT

Shortening of messenger RNA poly(A) tails, or deadenylation, is a rate-limiting step in mRNA decay and is highly regulated during gene expression. The incorporation of non-adenosines in poly(A) tails, or 'mixed tailing', has been observed in vertebrates and viruses. Here, to quantitate the effect of mixed tails, we mathematically modeled deadenylation reactions at single-nucleotide resolution using an in vitro deadenylation system reconstituted with the complete human CCR4-NOT complex. Applying this model, we assessed the disrupting impact of single guanosine, uridine or cytosine to be equivalent to approximately 6, 8 or 11 adenosines, respectively. CCR4-NOT stalls at the 0, -1 and -2 positions relative to the non-adenosine residue. CAF1 and CCR4 enzyme subunits commonly prefer adenosine but exhibit distinct sequence selectivities and stalling positions. Our study provides an analytical framework to monitor deadenylation and reveals the molecular basis of tail sequence-dependent regulation of mRNA stability.


Subject(s)
Poly A , RNA Stability , RNA, Messenger , Humans , Kinetics , Poly A/metabolism , Poly A/chemistry , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA, Messenger/chemistry , Adenosine/metabolism , Receptors, CCR4/metabolism , Receptors, CCR4/genetics , Exoribonucleases/metabolism , Exoribonucleases/chemistry , RNA Nucleotidyltransferases
12.
Cell Mol Life Sci ; 81(1): 58, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279024

ABSTRACT

Reduced oxygen availability (hypoxia) triggers adaptive cellular responses via hypoxia-inducible factor (HIF)-dependent transcriptional activation. Adaptation to hypoxia also involves transcription-independent processes like post-translational modifications; however, these mechanisms are poorly characterized. Investigating the involvement of protein SUMOylation in response to hypoxia, we discovered that hypoxia strongly decreases the SUMOylation of Exosome subunit 10 (EXOSC10), the catalytic subunit of the RNA exosome, in an HIF-independent manner. EXOSC10 is a multifunctional exoribonuclease enriched in the nucleolus that mediates the processing and degradation of various RNA species. We demonstrate that the ubiquitin-specific protease 36 (USP36) SUMOylates EXOSC10 and we reveal SUMO1/sentrin-specific peptidase 3 (SENP3) as the enzyme-mediating deSUMOylation of EXOSC10. Under hypoxia, EXOSC10 dissociates from USP36 and translocates from the nucleolus to the nucleoplasm concomitant with its deSUMOylation. Loss of EXOSC10 SUMOylation does not detectably affect rRNA maturation but affects the mRNA transcriptome by modulating the expression levels of hypoxia-related genes. Our data suggest that dynamic modulation of EXOSC10 SUMOylation and localization under hypoxia regulates the RNA degradation machinery to facilitate cellular adaptation to low oxygen conditions.


Subject(s)
Exosomes , Transcriptome , Humans , Exosomes/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Transcriptional Activation , Oxygen/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Sumoylation , Exoribonucleases/genetics , Exoribonucleases/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Cysteine Endopeptidases/metabolism , Ubiquitin Thiolesterase/metabolism
13.
Comput Biol Med ; 170: 107899, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232455

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the rapidly evolving RNA virus behind the COVID-19 pandemic, has spawned numerous variants since its 2019 emergence. The multifunctional Nonstructural protein 14 (NSP14) enzyme, possessing exonuclease and messenger RNA (mRNA) capping capabilities, serves as a key player. Notably, single and co-occurring mutations within NSP14 significantly influence replication fidelity and drive variant diversification. This study comprehensively examines 120 co-mutations, 68 unique mutations, and 160 conserved residues across NSP14 homologs, shedding light on their implications for phylogenetic patterns, pathogenicity, and residue interactions. Quantitative physicochemical analysis categorizes 3953 NSP14 variants into three clusters, revealing genetic diversity. This research underscoresthe dynamic nature of SARS-CoV-2 evolution, primarily governed by NSP14 mutations. Understanding these genetic dynamics provides valuable insights for therapeutic and vaccine development.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Pandemics , Phylogeny , COVID-19/genetics , Virus Replication/genetics , Exoribonucleases/chemistry , Exoribonucleases/genetics , Exoribonucleases/metabolism , Mutation/genetics
14.
Cell Rep ; 43(2): 113600, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38261514

ABSTRACT

Emerging data suggest that induction of viral mimicry responses through activation of double-stranded RNA (dsRNA) sensors in cancer cells is a promising therapeutic strategy. One approach to induce viral mimicry is to target molecular regulators of dsRNA sensing pathways. Here, we show that the exoribonuclease XRN1 is a negative regulator of the dsRNA sensor protein kinase R (PKR) in cancer cells with high interferon-stimulated gene expression. XRN1 deletion causes PKR pathway activation and consequent cancer cell lethality. Disruption of interferon signaling with the JAK1/2 inhibitor ruxolitinib can decrease cellular PKR levels and rescue sensitivity to XRN1 deletion. Conversely, interferon-ß stimulation can increase PKR levels and induce sensitivity to XRN1 inactivation. Lastly, XRN1 deletion causes accumulation of endogenous complementary sense/anti-sense RNAs, which may represent candidate PKR ligands. Our data demonstrate how XRN1 regulates PKR and how this interaction creates a vulnerability in cancer cells with an activated interferon cell state.


Subject(s)
Interferons , Neoplasms , Interferon-beta , Exoribonucleases/metabolism , Protein Kinases , Neoplasms/genetics
15.
Biochimie ; 216: 56-70, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37806617

ABSTRACT

Ribonucleases are in charge of the processing, degradation and quality control of all cellular transcripts, which makes them crucial factors in RNA regulation. This post-transcriptional regulation allows bacteria to promptly react to different stress conditions and growth phase transitions, and also to produce the required virulence factors in pathogenic bacteria. Campylobacter jejuni is the main responsible for human gastroenteritis in the world. In this foodborne pathogen, exoribonuclease PNPase (CjPNP) is essential for low-temperature cell survival, affects the synthesis of proteins involved in virulence and has an important role in swimming, cell adhesion/invasion ability, and chick colonization. Here we report the crystallographic structure of CjPNP, complemented with SAXS, which confirms the characteristic doughnut-shaped trimeric arrangement and evaluates domain arrangement and flexibility. Mutations in highly conserved residues were constructed to access their role in RNA degradation and polymerization. Surprisingly, we found two mutations that altered CjPNP into a protein that is only capable of degrading RNA even in conditions that favour polymerization. These findings will be important to develop new strategies to combat C. jejuni infections.


Subject(s)
Campylobacter jejuni , Polyribonucleotide Nucleotidyltransferase , Humans , Virulence , Polyribonucleotide Nucleotidyltransferase/genetics , Polyribonucleotide Nucleotidyltransferase/chemistry , Polyribonucleotide Nucleotidyltransferase/metabolism , Scattering, Small Angle , X-Ray Diffraction , Endoribonucleases , RNA , Exoribonucleases/metabolism , Ribonuclease, Pancreatic
16.
New Phytol ; 241(2): 861-877, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37897070

ABSTRACT

In plants, exoribonuclease-resistant RNAs (xrRNAs) are produced by many viruses. Whereas xrRNAs contribute to the pathogenicity of these viruses, the role of xrRNAs in the virus infectious cycle remains elusive. Here, we show that xrRNAs produced by a benyvirus (a multipartite RNA virus with four genomic segments) in plants are involved in the formation of monocistronic coat protein (CP)-encoding chimeric RNAs. Naturally occurring chimeric RNAs, we discovered, are composed of 5'-end of RNA 2 and 3'-end of either RNA 3 or RNA 4 bearing conservative exoribonuclease-resistant 'coremin' region. Using computational tools and site-directed mutagenesis, we show that de novo formation of chimeric RNAs requires intermolecular base-pairing interaction between 'coremin' and 3'-proximal part of the CP gene of RNA 2 as well as a stem-loop structure immediately adjacent to the CP gene. Moreover, knockdown of the expression of the XRN4 gene, encoding 5'→3' exoribonuclease, inhibits biogenesis of both xrRNAs and chimeric RNAs. Our findings suggest a novel mechanism involving a unique tropology of the intermolecular base-pairing complex between xrRNAs and RNA2 to promote formation of chimeric RNAs in plants. XrRNAs, essential for chimeric RNA biogenesis, are generated through the action of cytoplasmic Xrn 4 5'→3' exoribonuclease conserved in all plant species.


Subject(s)
Exoribonucleases , RNA, Viral , RNA, Viral/genetics , RNA, Viral/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , RNA, Untranslated/genetics
17.
Appl Environ Microbiol ; 89(11): e0116823, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37905926

ABSTRACT

IMPORTANCE: Bacterial exoribonucleases play a crucial role in RNA maturation, degradation, quality control, and turnover. In this study, we have uncovered a previously unknown role of 3'-5' exoribonuclease RNase R of Pseudomonas syringae Lz4W in DNA damage and oxidative stress response. Here, we show that neither the exoribonuclease function of RNase R nor its association with the RNA degradosome complex is essential for this function. Interestingly, in P. syringae Lz4W, hydrolytic RNase R exhibits physiological roles similar to phosphorolytic 3'-5' exoribonuclease PNPase of E. coli. Our data suggest that during the course of evolution, mesophilic E. coli and psychrotrophic P. syringae have apparently swapped these exoribonucleases to adapt to their respective environmental growth conditions.


Subject(s)
Escherichia coli , Exoribonucleases , Exoribonucleases/genetics , Exoribonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Pseudomonas syringae/genetics , Pseudomonas syringae/metabolism , Antarctic Regions , DNA Damage , Oxidative Stress , RNA, Bacterial/genetics
18.
Development ; 150(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37767629

ABSTRACT

Control of mRNA poly(A) tails is essential for regulation of mRNA metabolism, specifically translation efficiency and mRNA stability. Gene expression in maturing oocytes relies largely on post-transcriptional regulation, as genes are transcriptionally silent during oocyte maturation. The CCR4-NOT complex is a major mammalian deadenylase, which regulates poly(A) tails of maternal mRNAs; however, the function of the CCR4-NOT complex in translational regulation has not been well understood. Here, we show that this complex suppresses translational activity of maternal mRNAs during oocyte maturation. Oocytes lacking all CCR4-NOT deadenylase activity owing to genetic deletion of its catalytic subunits, Cnot7 and Cnot8, showed a large-scale gene expression change caused by increased translational activity during oocyte maturation. Developmental arrest during meiosis I in these oocytes resulted in sterility of oocyte-specific Cnot7 and Cnot8 knockout female mice. We further showed that recruitment of CCR4-NOT to maternal mRNAs is mediated by the 3'UTR element CPE, which suppresses translational activation of maternal mRNAs. We propose that suppression of untimely translational activation of maternal mRNAs via deadenylation by CCR4-NOT is essential for proper oocyte maturation.


Subject(s)
Oocytes , RNA, Messenger, Stored , Animals , Mice , Female , RNA, Messenger, Stored/metabolism , Oocytes/metabolism , Oogenesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Meiosis , Mice, Knockout , Mammals/genetics , Exoribonucleases/genetics , Exoribonucleases/metabolism , Repressor Proteins/metabolism
19.
Sci Rep ; 13(1): 15987, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749116

ABSTRACT

RNAs that are able to prevent degradation by the 5'-3' exoribonuclease Xrn1 have emerged as crucial structures during infection by an increasing number of RNA viruses. Several plant viruses employ the so-called coremin motif, an Xrn1-resistant RNA that is usually located in 3' untranslated regions. Investigation of its structural and sequence requirements has led to its identification in plant virus families beyond those in which the coremin motif was initially discovered. In this study, we identified coremin-like motifs that deviate from the original in the number of nucleotides present in the loop region of the 5' proximal hairpin. They are present in a number of viral families that previously did not have an Xrn1-resistant RNA identified yet, including the double-stranded RNA virus families Hypoviridae and Chrysoviridae. Through systematic mutational analysis, we demonstrated that a coremin motif carrying a 6-nucleotide loop in the 5' proximal hairpin generally requires a YGNNAD consensus for stalling Xrn1, similar to the previously determined YGAD consensus required for Xrn1 resistance of the original coremin motif. Furthermore, we determined the minimal requirements for the 3' proximal hairpin. Since some putative coremin motifs were found in intergenic regions or coding sequences, we demonstrated their capacity for inhibiting translation through an in vitro ribosomal scanning inhibition assay. Consequently, this study provides a further expansion on the number of viral families with known Xrn1-resistant elements, while adding a novel, potentially regulatory function for this structure.


Subject(s)
Plant Viruses , RNA, Viral , Nucleotide Motifs/genetics , RNA, Viral/metabolism , Exoribonucleases/metabolism , Virome , Ribosomes/metabolism , Nucleotides , Plant Viruses/genetics , Plant Viruses/metabolism , Nucleic Acid Conformation , RNA Stability
20.
EMBO J ; 42(21): e115310, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37750488

ABSTRACT

RNA turnover regulates the quality and quantity of cellular gene expression through a coordinated cavalcade of enzymes, factors, and phase transitions. In this issue, Brothers et al reveal the importance of balanced communication between the Xrn1 exonuclease and the EDC4 decapping factor to coordinate P-body dynamics and maintain cellular fitness.


Subject(s)
Endoribonucleases , Processing Bodies , Endoribonucleases/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , RNA Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...