Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.608
Filter
1.
Sci Adv ; 10(19): eadi9156, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38718108

ABSTRACT

Exosomes are secreted vesicles of ~30 to 150 nm diameter that play important roles in human health and disease. To better understand how cells release these vesicles, we examined the biogenesis of the most highly enriched human exosome marker proteins, the exosomal tetraspanins CD81, CD9, and CD63. We show here that endocytosis inhibits their vesicular secretion and, in the case of CD9 and CD81, triggers their destruction. Furthermore, we show that syntenin, a previously described exosome biogenesis factor, drives the vesicular secretion of CD63 by blocking CD63 endocytosis and that other endocytosis inhibitors also induce the plasma membrane accumulation and vesicular secretion of CD63. Finally, we show that CD63 is an expression-dependent inhibitor of endocytosis that triggers the vesicular secretion of lysosomal proteins and the clathrin adaptor AP-2 mu2. These results suggest that the vesicular secretion of exosome marker proteins in exosome-sized vesicles occurs primarily by an endocytosis-independent pathway.


Subject(s)
Endocytosis , Exosomes , Tetraspanin 30 , Exosomes/metabolism , Humans , Tetraspanin 30/metabolism , Biomarkers/metabolism , Syntenins/metabolism , Syntenins/genetics , Tetraspanin 28/metabolism , Cell Membrane/metabolism , Adaptor Protein Complex 2/metabolism , Tetraspanin 29/metabolism
2.
Front Immunol ; 15: 1357378, 2024.
Article in English | MEDLINE | ID: mdl-38720885

ABSTRACT

Exosomes carry proteins, metabolites, nucleic acids and lipids from their parent cell of origin. They are derived from cells through exocytosis, are ingested by target cells, and can transfer biological signals between local or distant cells. Therefore, exosomes are often modified in reaction to pathological processes, including infection, cancer, cardiovascular diseases and in response to metabolic perturbations such as obesity and diabetes, all of which involve a significant inflammatory aspect. Here, we discuss how immune cell-derived exosomes origin from neutrophils, T lymphocytes, macrophages impact on the immune reprogramming of diabetes and the associated complications. Besides, exosomes derived from stem cells and their immunomodulatory properties and anti-inflammation effect in diabetes are also reviewed. Moreover, As an important addition to previous reviews, we describes promising directions involving engineered exosomes as well as current challenges of clinical applications in diabetic therapy. Further research on exosomes will explore their potential in translational medicine and provide new avenues for the development of effective clinical diagnostics and therapeutic strategies for immunoregulation of diabetes.


Subject(s)
Diabetes Mellitus , Exosomes , Immunomodulation , Exosomes/immunology , Exosomes/metabolism , Humans , Diabetes Mellitus/immunology , Diabetes Mellitus/therapy , Animals , Macrophages/immunology , Macrophages/metabolism
3.
Mol Biol Rep ; 51(1): 635, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727850

ABSTRACT

BACKGROUND: Psoriasis, a chronic inflammatory skin disease, is increasingly effectively managed with the targeted immunotherapy; however, long-term immunotherapy carries health risks, and loss of response. Therefore, we need to develop the alternative treatment strategies. Mesenchymal stem/stromal cell (M.S.C.) exosomes stand out for their remarkable immunomodulatory properties, gaining widespread recognition. This study investigated whether M.S.C. exosomes can reduce psoriasis-induced hyperplasia by inducing Transforming Growth Factor beta 2 (TGF-beta2) signaling. METHODOLOGY: Exosomes were isolated from M.S.C.s by ultracentrifugation. Then, scanning electron microscopy was used for the morphology of exosomes. To ascertain the exosome concentration, the Bradford test was used. To ascertain the cellular toxicity of exosomes in Human Umbilical Vein Endothelial Cells ( H.U.V.E.C), an MTT experiment was then conducted. Real-time PCR was used to quantify TGF beta2 expression levels, whereas an ELISA immunosorbent assay was used to determine the protein concentration of TGF beta2. RESULTS: In this study, the exosomes of 15-30 nm in size that were uniform, and cup-shaped were isolated. Moreover, the IC50 value for this Treatment was calculated to be 181.750 µg/ml. The concentration of TGF-ß2 gene in the target cells significantly increased following Treatment with the exosomes. Furthermore, the expression level of the studied gene significantly increased due to the Treatment. CONCLUSION: Upregulating the expression of TGF-ß2 in psoriatic cells via TGF-ß2 signaling is one way exosomes can help reduce hyperplasia.


Subject(s)
Exosomes , Human Umbilical Vein Endothelial Cells , Hyperplasia , Mesenchymal Stem Cells , Psoriasis , Transforming Growth Factor beta2 , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Psoriasis/metabolism , Humans , Transforming Growth Factor beta2/metabolism , Hyperplasia/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Signal Transduction , Animals
4.
Commun Biol ; 7(1): 562, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734709

ABSTRACT

MiRNAs in mesenchymal stem cells (MSCs)-derived exosome (MSCs-exo) play an important role in the treatment of sepsis. We explored the mechanism through which MSCs-exo influences cognitive impairment in sepsis-associated encephalopathy (SAE). Here, we show that miR-140-3p targeted Hmgb1. MSCs-exo plus miR-140-3p mimic (Exo) and antibiotic imipenem/cilastatin (ABX) improve survival, weight, and cognitive impairment in cecal ligation and puncture (CLP) mice. Exo and ABX inhibit high mobility group box 1 (HMGB1), IBA-1, interleukin (IL)-1ß, IL-6, iNOS, TNF-α, p65/p-p65, NLRP3, Caspase 1, and GSDMD-N levels. In addition, Exo upregulates S-lactoylglutathione levels in the hippocampus of CLP mice. Our data further demonstrates that Exo and S-lactoylglutathione increase GSH levels in LPS-induced HMC3 cells and decrease LD and GLO2 levels, inhibiting inflammatory responses and pyroptosis. These findings suggest that MSCs-exo-mediated delivery of miR-140-3p ameliorates cognitive impairment in mice with SAE by HMGB1 and S-lactoylglutathione metabolism, providing potential therapeutic targets for the clinical treatment of SAE.


Subject(s)
Cognitive Dysfunction , Exosomes , HMGB1 Protein , Mesenchymal Stem Cells , MicroRNAs , Sepsis-Associated Encephalopathy , MicroRNAs/genetics , MicroRNAs/metabolism , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Animals , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/genetics , Mice , Exosomes/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Male , Mesenchymal Stem Cells/metabolism , Humans , Mice, Inbred C57BL , Sepsis/genetics , Sepsis/metabolism , Sepsis/complications , Disease Models, Animal
5.
Int J Nanomedicine ; 19: 3773-3804, 2024.
Article in English | MEDLINE | ID: mdl-38708181

ABSTRACT

Geriatric diseases are a group of diseases with unique characteristics related to senility. With the rising trend of global aging, senile diseases now mainly include endocrine, cardiovascular, neurodegenerative, skeletal, and muscular diseases and cancer. Compared with younger populations, the structure and function of various cells, tissues and organs in the body of the elderly undergo a decline as they age, rendering them more susceptible to external factors and diseases, leading to serious tissue damage. Tissue damage presents a significant obstacle to the overall health and well-being of older adults, exerting a profound impact on their quality of life. Moreover, this phenomenon places an immense burden on families, society, and the healthcare system.In recent years, stem cell-derived exosomes have become a hot topic in tissue repair research. The combination of these exosomes with biomaterials allows for the preservation of their biological activity, leading to a significant improvement in their therapeutic efficacy. Among the numerous biomaterial options available, hydrogels stand out as promising candidates for loading exosomes, owing to their exceptional properties. Due to the lack of a comprehensive review on the subject matter, this review comprehensively summarizes the application and progress of combining stem cell-derived exosomes and hydrogels in promoting tissue damage repair in geriatric diseases. In addition, the challenges encountered in the field and potential prospects are presented for future advancements.


Subject(s)
Exosomes , Hydrogels , Stem Cells , Exosomes/chemistry , Humans , Hydrogels/chemistry , Aged , Aging/physiology , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Geriatrics
6.
Int J Nanomedicine ; 19: 3943-3956, 2024.
Article in English | MEDLINE | ID: mdl-38708179

ABSTRACT

Autoimmune diseases refer to a group of conditions where the immune system produces an immune response against self-antigens, resulting in tissue damage. These diseases have profound impacts on the health of patients. In recent years, with the rapid development in the field of biomedicine, engineered exosomes have emerged as a noteworthy class of biogenic nanoparticles. By precisely manipulating the cargo and surface markers of exosomes, engineered exosomes have gained enhanced anti-inflammatory, immunomodulatory, and tissue reparative abilities, providing new prospects for the treatment of autoimmune diseases. Engineered exosomes not only facilitate the efficient delivery of bioactive molecules including nucleic acids, proteins, and cytokines, but also possess the capability to modulate immune cell functions, suppress inflammation, and restore immune homeostasis. This review mainly focuses on the applications of engineered exosomes in several typical autoimmune diseases. Additionally, this article comprehensively summarizes the current approaches for modification and engineering of exosomes and outlines their prospects in clinical applications. In conclusion, engineered exosomes, as an innovative therapeutic approach, hold promise for the management of autoimmune diseases. However, while significant progress has been made, further rigorous research is still needed to address the challenges that engineered exosomes may encounter in the therapeutic intervention process, in order to facilitate their successful translation into clinical practice and ultimately benefit a broader population of patients.


Subject(s)
Autoimmune Diseases , Exosomes , Exosomes/immunology , Humans , Autoimmune Diseases/therapy , Autoimmune Diseases/immunology , Animals , Nanoparticles/chemistry
7.
Theriogenology ; 223: 74-88, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38692037

ABSTRACT

Mammalian embryos produced in vitro have poor embryo quality and low developmental ability compared with in vivo embryos. The main manifestations are the low number of blastocysts, the low ratio of the number of inner cell mass cells to the number of trophoblastic cells, and the high apoptosis rate of blastocysts, resulting in low embryo implantation rate. Therefore, optimizing in vitro culture conditions has become a key technology to im-prove the quality of preimplantation embryos. Oviduct Epithelial cells exosomes (OEVs) can be absorbed and internalized by embryos to improve the blastocyst rate and blastocyst quality of embryos in vitro. As a special nuclear structure, Paraspeckles are involved in the fate determination of mammalian early embryonic mammalian cells. However, the regulation of embryonic cell differentiation by OEVs remains unknown. We aimed to investigate the effects of OEVs on paraspeckle formation and cell fate determination in yak in vitro fertilization (IVF) of em-bryos. To simulate the in vivo oviduct environment after ovulation, we used follicular fluid exosomes (FEVs) to stimulate yak oviduct epithelial cells and collect OEVs. OEVs were added to the yak IVF embryo culture system. Paraspeckle formation, cell differentiation, and blastocyst quality in yak embryos were determined. Our results show that, development of yak embryos is unique compared to other bovine species, and OEVs can be used as a supplement to the in vitro culture system of yak embryos to improve embryonic development and blas-tocyst quality. And also Paraspeckles/CARM1 mediated the regulation of OEVs on cell differentiation during in vitro yak embryo production. These results provide new insights into the study of yak embryonic development and the role of OEVs in embryonic development.


Subject(s)
Cell Differentiation , Embryo Culture Techniques , Embryonic Development , Epithelial Cells , Exosomes , Animals , Female , Embryonic Development/physiology , Cattle/embryology , Epithelial Cells/physiology , Epithelial Cells/metabolism , Embryo Culture Techniques/veterinary , Exosomes/metabolism , Fertilization in Vitro/veterinary , Fallopian Tubes/cytology , Blastocyst/physiology , Oviducts
8.
Cancer Biol Ther ; 25(1): 2343450, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38742566

ABSTRACT

The potential function and mechanism of circRNAs in regulating malignant performances of Osteosarcoma (OS) cells have not been well investigated. The expression level of CircLMO7, miR-21-5p and ARHGAP24 were detected by RT-qPCR. The relationship between miR-21-5p and circ-LMO7, as well as between miR-21-5p and ARHGAP24, was predicted and examined through bioinformatics analysis and luciferase reporter gene experiments. Moreover, OS cell growth, invasion, migration, and apoptosis were detected using the cell counting kit-8 (CCK-8), transwell and flow cytometry assays, respectively. ARHGAP24 protein level was measured using western blotting. In present study, we choose to investigate the role and mechanism of circ-LOM7 on OS cell proliferation, migration and invasion. circ-LOM7 was found to be down-regulated in OS tissues and cell lines. Enforced expression of circ-LOM7 suppressed the growth, invasion, and migration of OS cells. In contrast, decreasing circ-LMO7 expression had opposite effects. Furthermore, miR-21-5p was predicted to be sponged by circ-LMO7, and had an opposite role of circ-LMO7 in OS. Moreover, ARHGAP24 served as miR-21-5p's downstream target. Mechanistically, circ-LMO7 was packed in exosomes and acted as a cancer-suppresser on OS by sponging miR-21-5p and upregulating the expression of ARHGAP24. The exosomal circ-LMO7 expression was significantly decreased in OS cell exosomes, and co-culture experiments showed that exosomal circ-LMO7 suppressed the proliferation ability of OS cells. Circ-LMO7 exerts as a tumor suppressor in OS, and the circ-LMO7/miR-21-5P/ARHGAP24 axis is involved in OS progression.


Subject(s)
Disease Progression , Exosomes , GTPase-Activating Proteins , MicroRNAs , Osteosarcoma , RNA, Circular , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Exosomes/metabolism , Exosomes/genetics , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Cell Proliferation , Mice , Animals , Cell Line, Tumor , Cell Movement/genetics , Apoptosis/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Male , Female
9.
J Transl Med ; 22(1): 427, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711144

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs), one of the major contents of exosomes, have been shown to participate in the occurrence and progression of cancers. The role and the diagnostic potential of exosome-transported circRNAs in non-small-cell lung cancer (NSCLC) remain largely unknown. METHODS: The NSCLC-associated exosomal circ_0061407 and circ_0008103 were screened by circRNA microarray. The role of circ_0061407 and circ_0008103 in NSCLC was examined in vitro and in vivo. The encapsulation of the two circRNAs into exosomes and the transport to recipient cells were observed by confocal microscopy. The effects of exosome-transported circ_0061407 and circ_0008103 on recipient cells were investigated using a co-culture device. Bioinformatics analyses were performed to predict the mechanisms by which circ_0061407 and circ_0008103 affected NSCLC. The quantitative polymerase chain reaction was used to quantify the exosome-containing circ_0061407 and circ_0008103 in the serum samples of healthy, pneumonia, benign lung tumours, and NSCLC. The diagnostic efficacy was evaluated using receiver operating characteristic curves. RESULTS: The levels of circ_0061407 and circ_0008103 within exosomes were down-regulated in the serum of patients with NSCLC. The up-regulation of circ_0061407 and circ_0008103 inhibited the proliferation, migration/invasion, cloning formation of NSCLC cells in vitro and inhibited lung tumour growth in vivo. Circ_0061407 and circ_0008103 were observed to be packaged in exosomes and transported to recipient cells, where they inhibited the proliferation, migration/invasion, and cloning formation abilities of the recipient cells. Moreover, circ_0061407 and circ_0008103 might be involved in the progression of NSCLC by interacting with microRNAs and proteins. Additionally, lower serum exosomal circ_0061407 and circ_0008103 levels were associated with advanced pathological staging and distant metastasis. CONCLUSIONS: This study identified two novel exosome-transported circRNAs (circ_0061407 and circ_0008103) associated with NSCLC. These findings may provide additional insights into the development of NSCLC and potential diagnostic biomarkers for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Exosomes , Lung Neoplasms , RNA, Circular , Exosomes/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/blood , RNA, Circular/genetics , RNA, Circular/blood , RNA, Circular/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/blood , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Male , Gene Expression Regulation, Neoplastic , Female , Mice, Nude , Middle Aged , Mice, Inbred BALB C , ROC Curve , Mice
10.
J Extracell Vesicles ; 13(5): e12431, 2024 May.
Article in English | MEDLINE | ID: mdl-38711329

ABSTRACT

The budding yeast Saccharomyces cerevisiae is a proven model organism for elucidating conserved eukaryotic biology, but to date its extracellular vesicle (EV) biology is understudied. Here, we show yeast transmit information through the extracellular medium that increases survival when confronted with heat stress and demonstrate the EV-enriched samples mediate this thermotolerance transfer. These samples contain vesicle-like particles that are exosome-sized and disrupting exosome biogenesis by targeting endosomal sorting complexes required for transport (ESCRT) machinery inhibits thermotolerance transfer. We find that Bro1, the yeast ortholog of the human exosome biomarker ALIX, is present in EV samples, and use Bro1 tagged with green fluorescent protein (GFP) to track EV release and uptake by endocytosis. Proteomics analysis reveals that heat shock protein 70 (HSP70) family proteins are enriched in EV samples that provide thermotolerance. We confirm the presence of the HSP70 ortholog stress-seventy subunit A2 (Ssa2) in EV samples and find that mutant yeast cells lacking SSA2 produce EVs but they fail to transfer thermotolerance. We conclude that Ssa2 within exosomes shared between yeast cells contributes to thermotolerance. Through this work, we advance Saccharomyces cerevisiae as an emerging model organism for elucidating molecular details of eukaryotic EV biology and establish a role for exosomes in heat stress and proteostasis that seems to be evolutionarily conserved.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Exosomes , Extracellular Vesicles , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Thermotolerance , Saccharomyces cerevisiae/metabolism , Extracellular Vesicles/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Exosomes/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response , Proteomics/methods
11.
J Nanobiotechnology ; 22(1): 236, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724995

ABSTRACT

Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.


Subject(s)
Epithelial Cells , Exosomes , MicroRNAs , Prostatitis , Stromal Cells , Male , Exosomes/metabolism , Prostatitis/genetics , Prostatitis/pathology , Prostatitis/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Stromal Cells/metabolism , Stromal Cells/pathology , Animals , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Prostate/pathology , Prostate/metabolism , Pelvic Pain , Inflammation/genetics , Inflammation/pathology , Mice , MAP Kinase Signaling System
12.
Cells ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38727297

ABSTRACT

Spinal fusion, a common surgery performed for degenerative lumbar conditions, often uses recombinant human bone morphogenetic protein 2 (rhBMP-2) that is associated with adverse effects. Mesenchymal stromal/stem cells (MSCs) and their extracellular vesicles (EVs), particularly exosomes, have demonstrated efficacy in bone and cartilage repair. However, the efficacy of MSC exosomes in spinal fusion remains to be ascertained. This study investigates the fusion efficacy of MSC exosomes delivered via an absorbable collagen sponge packed in a poly Ɛ-caprolactone tricalcium phosphate (PCL-TCP) scaffold in a rat posterolateral spinal fusion model. Herein, it is shown that a single implantation of exosome-supplemented collagen sponge packed in PCL-TCP scaffold enhanced spinal fusion and improved mechanical stability by inducing bone formation and bridging between the transverse processes, as evidenced by significant improvements in fusion score and rate, bone structural parameters, histology, stiffness, and range of motion. This study demonstrates for the first time that MSC exosomes promote bone formation to enhance spinal fusion and mechanical stability in a rat model, supporting its translational potential for application in spinal fusion.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Rats, Sprague-Dawley , Spinal Fusion , Animals , Exosomes/metabolism , Exosomes/transplantation , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Spinal Fusion/methods , Rats , Osteogenesis/drug effects , Calcium Phosphates/pharmacology , Male , Humans , Tissue Scaffolds/chemistry , Bone Morphogenetic Protein 2/metabolism , Mesenchymal Stem Cell Transplantation/methods
13.
Mol Genet Genomics ; 299(1): 50, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734849

ABSTRACT

Intracerebral hemorrhage (ICH) is one of the major causes of death and disability, and hypertensive ICH (HICH) is the most common type of ICH. Currently, the outcomes of HICH patients remain poor after treatment, and early prognosis prediction of HICH is important. However, there are limited effective clinical treatments and biomarkers for HICH patients. Although circRNA has been widely studied in diseases, the role of plasma exosomal circRNAs in HICH remains unknown. The present study was conducted to investigate the characteristics and function of plasma exosomal circRNAs in six HICH patients using circRNA microarray and bioinformatics analysis. The results showed that there were 499 differentially expressed exosomal circRNAs between the HICH patients and control subjects. According to GO annotation and KEGG pathway analyses, the targets regulated by differentially expressed exosomal circRNAs were tightly related to the development of HICH via nerve/neuronal growth, neuroinflammation and endothelial homeostasis. And the differentially expressed exosomal circRNAs could mainly bind to four RNA-binding proteins (EIF4A3, FMRP, AGO2 and HUR). Moreover, of differentially expressed exosomal circRNAs, hsa_circ_00054843, hsa_circ_0010493 and hsa_circ_00090516 were significantly associated with bleeding volume and Glasgow Coma Scale score of the subjects. Our findings firstly revealed that the plasma exosomal circRNAs are significantly involved in the progression of HICH, and could be potent biomarkers for HICH. This provides the basis for further research to pinpoint the best biomarkers and illustrate the mechanism of exosomal circRNAs in HICH.


Subject(s)
Exosomes , RNA, Circular , Humans , RNA, Circular/genetics , RNA, Circular/blood , Exosomes/genetics , Exosomes/metabolism , Male , Female , Middle Aged , Aged , Intracranial Hemorrhage, Hypertensive/genetics , Intracranial Hemorrhage, Hypertensive/blood , Biomarkers/blood , Computational Biology/methods , Gene Expression Profiling , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/blood , Gene Regulatory Networks
14.
Int J Biol Sci ; 20(7): 2440-2453, 2024.
Article in English | MEDLINE | ID: mdl-38725860

ABSTRACT

Glioblastoma is the prevailing and highly malignant form of primary brain neoplasm with poor prognosis. Exosomes derived from glioblastoma cells act a vital role in malignant progression via regulating tumor microenvironment (TME), exosomal tetraspanin protein family members (TSPANs) are important actors of cell communication in TME. Among all the TSPANs, TSPAN6 exhibited predominantly higher expression levels in comparison to normal tissues. Meanwhile, glioblastoma patients with high level of TSPAN6 had shorter overall survival compared with low level of TSPAN6. Furthermore, TSPAN6 promoted the malignant progression of glioblastoma via promoting the proliferation and metastatic potential of glioblastoma cells. More interestingly, TSPAN6 overexpression in glioblastoma cells promoted the migration of vascular endothelial cell, and exosome secretion inhibitor reversed the migrative ability of vascular endothelial cells enhanced by TSPAN6 overexpressing glioblastoma cells, indicating that TSPAN6 might reinforce angiogenesis via exosomes in TME. Mechanistically, TSPAN6 enhanced the malignant progression of glioblastoma by interacting with CDK5RAP3 and regulating STAT3 signaling pathway. In addition, TSPAN6 overexpression in glioblastoma cells enhanced angiogenesis via regulating TME and STAT3 signaling pathway. Collectively, TSPAN6 has the potential to serve as both a therapeutic target and a prognostic biomarker for the treatment of glioblastoma.


Subject(s)
Glioblastoma , STAT3 Transcription Factor , Signal Transduction , Tetraspanins , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Humans , STAT3 Transcription Factor/metabolism , Tetraspanins/metabolism , Tetraspanins/genetics , Cell Line, Tumor , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Animals , Cell Proliferation/genetics , Exosomes/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Movement/genetics , Disease Progression , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice
15.
J Nanobiotechnology ; 22(1): 220, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698449

ABSTRACT

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can differentiate into Schwann cells (SCs) during peripheral nerve injury; in our previous research, we showed that SC-derived exosomes (SC-exos) played a direct induction role while fibroblast-derived exosomes (Fb-exos) had no obvious induction role. The induction role of neural stem cell (NSC)-derived exosomes (NSC-exos) has also been widely confirmed. However, no studies have compared the induction effects of these three types of cells at the same time. Therefore, by investigating the effect of these three cell-derived exosomes upon the induction of BMSCs to differentiate into SCs, this study explored the role of different exosomes in promoting the differentiation of stem cells into SCs cells, and conducted a comparison between the two groups by RNA sequencing to further narrow the range of target genes and related gene pathways in order to study their related mechanisms. MATERIALS AND METHODS: We extracted exosomes from SCs, fibroblasts (Fb) and neural stem cells (NSC) and then investigated the ability of these exosomes to induce differentiation into BMSCs under different culture conditions. The expression levels of key proteins and gene markers were detected in induced cells by fluorescence immunoassays, western blotting and polymerase chain reaction (PCR); then, we statistically compared the relative induction effects under different conditions. Finally, we analyzed the three types of exosomes by RNA-seq to predict target genes and related gene pathways. RESULTS: BMSCs were cultured by three media: conventional (no induction), pre-induction or pre-induction + original induction medium (ODM) with exosomes of the same cell origin under different culture conditions. When adding the three different types of exosomes separately, the overall induction of BMSCs to differentiate into SCs was significantly increased (P < 0.05). The induction ability was ranked as follows: pre-induction + ODM + exosome group > pre-induction + exosome group > non-induction + exosome group. Using exosomes from different cell sources under the same culture conditions, we observed the following trends under the three culture conditions: RSC96-exos group ≥ NSC-exos group > Fb-exos group. The overall ability to induce BMSCs into SCs was significantly greater in the RSC96-exos group and the NSC-exos group. Although there was no significant difference in induction efficiency when comparing these two groups, the overall induction ability of the RSC96-exos group was slightly higher than that of the NSC-exos group. By combining the differentiation induction results with the RNA-seq data, the three types of exosomes were divided into three comparative groups: RSC vs. NSC, RSC vs. Fb and NSC vs. Fb. We identified 203 differentially expressed mRNA target genes in these three groups. Two differentially expressed genes were upregulated simultaneously, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). We did not identify any co-upregulated target genes for the miRNAs, but did identify one target gene of the lncRNAs, namely ENSRNOG00000065005. Analysis identified 90 GO terms related to nerves and axons in the mRNAs; in addition, KEGG enrichment and GASA analysis identified 13 common differential expression pathways in the three groups. CONCLUSIONS: Our analysis found that pre-induction + ODM + RSC96/NSC-exos culture conditions were most conducive with regards to induction and differentiation. RSC96-exos and NSC-exos exhibited significantly greater differentiation efficiency of BMSCs into SCs. Although there was no statistical difference, the data indicated a trend for RSC96-exos to be advantageous We identified 203 differentially expressed mRNAs between the three groups and two differentially expressed target mRNAs were upregulated, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). 90 GO terms were related to nerves and axons. Finally, we identified 13 common differentially expressed pathways across our three types of exosomes. It is hoped that the efficiency of BMSCs induction differentiation into SCs can be improved, bringing hope to patients and more options for clinical treatment.


Subject(s)
Cell Differentiation , Exosomes , Mesenchymal Stem Cells , Schwann Cells , Exosomes/metabolism , Schwann Cells/cytology , Schwann Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Animals , Rats , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Rats, Sprague-Dawley , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism
16.
Cell Biol Toxicol ; 40(1): 27, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693223

ABSTRACT

Small membranes known as exosomes surround them and are released by several cell types both in vitro and in vivo. These membranes are packed with a variety of biomolecules, including proteins, lipids, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and non-coding RNA (ncRNA). As a source of biological nanomaterials, exosomes play a role in information and substance transmission between cells and have been identified as a general method of facilitating communication during interactions between the body, target organs, and toxins.. In order to understand the changes and mechanism of the composition and level of exosomes after biotoxin infection, this review focuses on current findings on the exosomes and highlights their novel uses in the toxicity mechanism. Exosomes are mainly used as a delivery carrier or mediated by receptors, and play an immune role after the toxin enters the body. This review expounds on the importance of exosomes in the toxicological mechanism of biotoxins and provides new insights for further diagnosis of toxic biomarkers, detoxification, and treatment development.


Subject(s)
Exosomes , Exosomes/metabolism , Humans , Animals , Toxins, Biological/toxicity , Toxins, Biological/metabolism , Signal Transduction/drug effects , Biomarkers/metabolism
17.
Stem Cell Res Ther ; 15(1): 129, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693588

ABSTRACT

BACKGROUND: Human bone marrow-derived stem cells (hBMDSCs) are well characterized mediators of tissue repair and regeneration. An increasing body of evidence indicates that these cells exert their therapeutic effects largely through their paracrine actions rather than clonal expansion and differentiation. Here we studied the role of microRNAs (miRNAs) present in extracellular vesicles (EVs) from hBMDSCs in tissue regeneration and cell differentiation targeting endometrial stromal fibroblasts (eSF). METHODS: Extracellular vesicles (EVs) are isolated from hBMDSCs, characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) techniques. Extracted total RNA from EVs was subjected to RNA seq analysis. Transfection and decidualization studies were carried out in endometrial stromal fibroblasts (eSF). Gene expression was analyzed by qRTPCR. Unpaired t-test with Welch's correction was used for data analysis between two groups. RESULTS: We identified several microRNAs (miRNAs) that were highly expressed, including miR-21-5p, miR-100-5p, miR-143-3p and let7. MiR-21 is associated with several signaling pathways involved in tissue regeneration, quiescence, cellular senescence, and fibrosis. Both miR-100-5p and miR-143-3p promoted cell proliferation. MiR-100-5p specifically promoted regenerative processes by upregulating TGF-ß3, VEGFA, MMP7, and HGF. MiR-100-5p blocked differentiation or decidualization as evidenced by morphologic changes and downregulation of decidualization mediators including HOXA10, IGFBP1, PRL, PR-B, and PR. CONCLUSION: EVs delivered to tissues by hBMDSCs contain specific miRNAs that prevent terminal differentiation and drive repair and regeneration. Delivery of microRNAs is a novel treatment paradigm with the potential to replace BMDSCs in cell-free regenerative therapies.


Subject(s)
Cell Differentiation , Cell Proliferation , Endometrium , Exosomes , Fibroblasts , Mesenchymal Stem Cells , MicroRNAs , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Female , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Exosomes/metabolism , Endometrium/metabolism , Endometrium/cytology , Fibroblasts/metabolism , Fibroblasts/cytology , Regeneration/genetics , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology
18.
Biomed Eng Online ; 23(1): 44, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705993

ABSTRACT

BACKGROUND: Osteocytes are critical mechanosensory cells in bone, and mechanically stimulated osteocytes produce exosomes that can induce osteogenesis. MicroRNAs (miRNAs) are important constituents of exosomes, and some miRNAs in osteocytes regulate osteogenic differentiation; previous studies have indicated that some differentially expressed miRNAs in mechanically strained osteocytes likely influence osteoblastic differentiation. Therefore, screening and selection of miRNAs that regulate osteogenic differentiation in exosomes of mechanically stimulated osteocytes are important. RESULTS: A mechanical tensile strain of 2500 µÎµ at 0.5 Hz 1 h per day for 3 days, elevated prostaglandin E2 (PGE2) and insulin-like growth factor-1 (IGF-1) levels and nitric oxide synthase (NOS) activity of MLO-Y4 osteocytes, and promoted osteogenic differentiation of MC3T3-E1 osteoblasts. Fourteen miRNAs differentially expressed only in MLO-Y4 osteocytes which were stimulated with mechanical tensile strain, were screened, and the miRNAs related to osteogenesis were identified. Four differentially expressed miRNAs (miR-1930-3p, miR-3110-5p, miR-3090-3p, and miR-3058-3p) were found only in mechanically strained osteocytes, and the four miRNAs, eight targeted mRNAs which were differentially expressed only in mechanically strained osteoblasts, were also identified. In addition, the mechanically strained osteocyte-derived exosomes promoted the osteoblastic differentiation of MC3T3-E1 cells in vitro, the exosomes were internalized by osteoblasts, and the up-regulated miR-3110-5p and miR-3058-3p in mechanically strained osteocytes, were both increased in the exosomes, which was verified via reverse transcription quantitative polymerase chain reaction (RT-qPCR). CONCLUSIONS: In osteocytes, a mechanical tensile strain of 2500 µÎµ at 0.5 Hz induced the fourteen differentially expressed miRNAs which probably were in exosomes of osteocytes and involved in osteogenesis. The mechanically strained osteocyte-derived exosomes which contained increased miR-3110-5p and miR-3058-3p (two of the 14 miRNAs), promoted osteoblastic differentiation.


Subject(s)
Exosomes , MicroRNAs , Osteocytes , Osteogenesis , Stress, Mechanical , Animals , Mice , Cell Line , Exosomes/metabolism , Gene Expression Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Osteocytes/cytology , Osteocytes/metabolism , Osteogenesis/genetics
19.
Cell Biol Toxicol ; 40(1): 32, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767703

ABSTRACT

BACKGROUND: Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS: We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS: Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS: Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.


Subject(s)
Exosomes , Integrin beta1 , MicroRNAs , Telocytes , rac1 GTP-Binding Protein , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Exosomes/metabolism , Exosomes/genetics , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Integrin beta1/metabolism , Integrin beta1/genetics , Mice , Telocytes/metabolism , Male , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Mice, Inbred C57BL , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Hypoxia/metabolism , Hypoxia/genetics , Hypoxia/complications , Cell Proliferation/genetics , Cell Movement/genetics , Humans , Vascular Remodeling/genetics , Neuropeptides
20.
J Nanobiotechnology ; 22(1): 271, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769545

ABSTRACT

BACKGROUND AND AIMS: Osteoarthritis (OA) is a prevalent degenerative joint disorder, marked by the progressive degeneration of joint cartilage, synovial inflammation, and subchondral bone hyperplasia. The synovial tissue plays a pivotal role in cartilage regulation. Exosomes (EXOs), small membrane-bound vesicles released by cells into the extracellular space, are crucial in mediating intercellular communication and facilitating the exchange of information between tissues. Our study aimed to devise a hydrogel microsphere infused with SOD3-enriched exosomes (S-EXOs) to protect cartilage and introduce a novel, effective approach for OA treatment. MATERIALS AND METHODS: We analyzed single-cell sequencing data from 4247 cells obtained from the GEO database. Techniques such as PCR, Western Blot, immunofluorescence (IF), and assays to measure oxidative stress levels were employed to validate the cartilage-protective properties of the identified key protein, SOD3. In vivo, OA mice received intra-articular injections of S-EXOs bearing hydrogel microspheres, and the effectiveness was assessed using safranine O (S.O) staining and IF. RESULTS: Single-cell sequencing data analysis suggested that the synovium influences cartilage via the exocrine release of SOD3. Our findings revealed that purified S-EXOs enhanced antioxidant capacity of chondrocytes, and maintained extracellular matrix metabolism stability. The S-EXO group showed a significant reduction in mitoROS and ROS levels by 164.2% (P < 0.0001) and 142.7% (P < 0.0001), respectively, compared to the IL-1ß group. Furthermore, the S-EXO group exhibited increased COL II and ACAN levels, with increments of 2.1-fold (P < 0.0001) and 3.1-fold (P < 0.0001), respectively, over the IL-1ß group. Additionally, the S-EXO group showed a decrease in MMP13 and ADAMTS5 protein expression by 42.3% (P < 0.0001) and 44.4% (P < 0.0001), respectively. It was found that S-EXO-containing hydrogel microspheres could effectively deliver SOD3 to cartilage and significantly mitigate OA progression. The OARSI score in the S-EXO microsphere group markedly decreased (P < 0.0001) compared to the OA group. CONCLUSION: The study demonstrated that the S-EXOs secreted by synovial fibroblasts exert a protective effect on chondrocytes, and microspheres laden with S-EXOs offer a promising therapeutic alternative for OA treatment.


Subject(s)
Chondrocytes , Exosomes , Osteoarthritis , Oxidative Stress , Superoxide Dismutase , Synovial Membrane , Animals , Osteoarthritis/therapy , Osteoarthritis/metabolism , Exosomes/metabolism , Mice , Oxidative Stress/drug effects , Chondrocytes/metabolism , Humans , Superoxide Dismutase/metabolism , Synovial Membrane/metabolism , Male , Disease Progression , Nanoparticles/chemistry , Mice, Inbred C57BL , Hydrogels/chemistry , Microspheres , Cartilage, Articular/metabolism , Extracellular Matrix/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...