Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 729
Filter
1.
ACS Sens ; 9(5): 2567-2574, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38696667

ABSTRACT

In vivo drug monitoring is crucial for evaluating the effectiveness and safety of drug treatment. Blood sampling and analysis is the current gold standard but needs professional skills and cannot meet the requirements of point-of-care testing. Dermal interstitial fluid (ISF) showed great potential to replace blood for in vivo drug monitoring; however, the detection was challenging, and the drug distribution behavior in ISF was still unclear until now. In this study, we proposed surface-enhanced Raman spectroscopy (SERS) microneedles (MNs) for the painless and real-time analysis of drugs in ISF after intravenous injection. Using methylene blue (MB) and mitoxantrone (MTO) as model drugs, the innovative core-satellite structured Au@Ag SERS substrate, hydrogel coating over the MNs, rendered sensitive and quantitative drug detection in ISF of mice within 10 min. Based on this technique, the pharmacokinetics of the two drugs in ISF was investigated and compared with those in blood, where the drugs were analyzed via liquid chromatography-mass spectrometry. It was found that the MB concentration in ISF and blood was comparable, whereas the concentration of MTO in ISF was 2-3 orders of magnitude lower than in blood. This work proposed an efficient tool for ISF drug monitoring. More importantly, it experimentally proved that the penetration ratio of blood to ISF was drug-dependent, providing insightful information into the potential of ISF as a blood alternative for in vivo drug detection.


Subject(s)
Drug Monitoring , Extracellular Fluid , Hydrogels , Methylene Blue , Needles , Spectrum Analysis, Raman , Animals , Spectrum Analysis, Raman/methods , Extracellular Fluid/chemistry , Methylene Blue/chemistry , Mice , Hydrogels/chemistry , Drug Monitoring/methods , Drug Monitoring/instrumentation , Silver/chemistry , Mitoxantrone/blood , Mitoxantrone/analysis , Mitoxantrone/pharmacokinetics , Gold/chemistry , Skin/metabolism , Skin/chemistry
2.
Biosens Bioelectron ; 258: 116326, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38696965

ABSTRACT

In conventional clinical disease diagnosis and screening based on biomarker detection, most analysis samples are collected from serum, blood. However, these invasive collection methods require specific instruments, professionals, and may lead to infection risks. Additionally, the diagnosis process suffers from untimely results. The identification of skin-related biomarkers plays an unprecedented role in early disease diagnosis. More importantly, these skin-mediated approaches for collecting biomarker-containing biofluid samples are noninvasive or minimally invasive, which is more preferable for point-of-care testing (POCT). Therefore, skin-based biomarker detection patches have been promoted, owing to their unique advantages, such as simple fabrication, desirable transdermal properties and no requirements for professional medical staff. Currently, the skin biomarkers extracted from sweat, interstitial fluid (ISF) and wound exudate, are achieved with wearable sweat patches, transdermal MN patches, and wound patches, respectively. In this review, we detail these three types of skin patches in biofluids collection and diseases-related biomarkers identification. Patch classification and the corresponding manufacturing as well as detection strategies are also summarized. The remaining challenges in clinical applications and current issues in accurate detection are discussed for further advancement of this technology (Scheme 1).


Subject(s)
Biomarkers , Biosensing Techniques , Skin , Sweat , Wearable Electronic Devices , Humans , Biomarkers/blood , Biomarkers/analysis , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Sweat/chemistry , Skin/chemistry , Skin/pathology , Extracellular Fluid/chemistry , Equipment Design , Point-of-Care Testing , Body Fluids/chemistry
3.
Biosens Bioelectron ; 256: 116280, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38603840

ABSTRACT

Monitoring biomarkers in human interstitial fluids (ISF) using microneedle sensors has been extensively studied. However, most of the previous studies were limited to simple in vitro demonstrations and lacked system integration and analytical performance. Here we report a miniaturized, high-precision, fully integrated wearable electrochemical microneedle sensing device that works with a customized smartphone application to wirelessly and in real-time monitor glucose in human ISF. A microneedle array fabrication method is proposed which enables multiple individually addressable, regionally separated sensing electrodes on a single microneedle system. As a demonstration, a glucose sensor and a differential sensor are integrated in a single sensing patch. The differential sensing electrodes can eliminate common-mode interference signals, thus significantly improving the detection accuracy. The basic mechanism of microneedle penetration into the skin was analyzed using the finite element method (FEM). By optimizing the structure of the microneedle, the puncture efficiency was improved while the puncture force was reduced. The electrochemical properties, biocompatibility, and system stability of the microneedle sensing device were characterized before human application. The test results were closely correlated with the gold standard (blood). The platform can be used not only for glucose detection, but also for various ISF biomarkers, and it expands the potential of microneedle technology in wearable sensing.


Subject(s)
Biosensing Techniques , Equipment Design , Extracellular Fluid , Glucose , Needles , Wearable Electronic Devices , Humans , Extracellular Fluid/chemistry , Biosensing Techniques/instrumentation , Glucose/analysis , Smartphone , Blood Glucose Self-Monitoring/instrumentation , Continuous Glucose Monitoring
4.
J Antimicrob Chemother ; 79(6): 1313-1319, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38573940

ABSTRACT

BACKGROUND: Knowledge regarding CNS pharmacokinetics of moxifloxacin is limited, with unknown consequences for patients with meningitis caused by bacteria resistant to beta-lactams or caused by TB. OBJECTIVE: (i) To develop a novel porcine model for continuous investigation of moxifloxacin concentrations within brain extracellular fluid (ECF), CSF and plasma using microdialysis, and (ii) to compare these findings to the pharmacokinetic/pharmacodynamic (PK/PD) target against TB. METHODS: Six female pigs received an intravenous single dose of moxifloxacin (6 mg/kg) similar to the current oral treatment against TB. Subsequently, moxifloxacin concentrations were determined by microdialysis within five compartments: brain ECF (cortical and subcortical) and CSF (ventricular, cisternal and lumbar) for the following 8 hours. Data were compared to simultaneously obtained plasma samples. Chemical analysis was performed by high pressure liquid chromatography with mass spectrometry. The applied PK/PD target was defined as a maximum drug concentration (Cmax):MIC ratio >8. RESULTS: We present a novel porcine model for continuous in vivo CNS pharmacokinetics for moxifloxacin. Cmax and AUC0-8h within brain ECF were significantly lower compared to plasma and lumbar CSF, but insignificantly different compared to ventricular and cisternal CSF. Unbound Cmax:MIC ratio across all investigated compartments ranged from 1.9 to 4.3. CONCLUSION: A single dose of weight-adjusted moxifloxacin administered intravenously did not achieve adequate target site concentrations within the uninflamed porcine brain ECF and CSF to reach the applied TB CNS target.


Subject(s)
Brain , Extracellular Fluid , Microdialysis , Moxifloxacin , Animals , Moxifloxacin/pharmacokinetics , Moxifloxacin/administration & dosage , Swine , Female , Extracellular Fluid/chemistry , Extracellular Fluid/metabolism , Brain/metabolism , Cerebrospinal Fluid/chemistry , Cerebrospinal Fluid/metabolism , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/cerebrospinal fluid , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/blood , Plasma/chemistry , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/cerebrospinal fluid , Fluoroquinolones/administration & dosage , Fluoroquinolones/blood , Models, Animal , Chromatography, High Pressure Liquid , Administration, Intravenous , Mass Spectrometry , Microbial Sensitivity Tests
5.
ACS Sens ; 9(3): 1149-1161, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38478049

ABSTRACT

Interstitial fluid (ISF) has attracted extensive attention in an extremely wide range of areas due to its unique advantages, such as portability, high precision, comfortable operation, and superior stability. In recent years, the microneedle (MN) technique has been considered to be an excellent tool for extracting ISF because it is painless and noninvasive. Recent reports have shown that MN has good application prospects in ISF extraction. In this review, we provide comprehensive and in-depth insight into integrated MN devices for ISF detection, covering the basic structure as well as the fabrication of integrated MN devices and various applications in ISF extraction. Challenges and prospects are highlighted, with a discussion on how to transition such MN-integrated devices toward personalized healthcare monitoring systems.


Subject(s)
Extracellular Fluid , Needles , Extracellular Fluid/chemistry
6.
Small ; 20(23): e2305838, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38258379

ABSTRACT

Interstitial fluid (ISF) is an attractive alternative to regular blood sampling for health checks and disease diagnosis. Porous microneedles (MNs) are well suited for collecting ISF in a minimally invasive manner. However, traditional methods of molding MNs from microfabricated templates involve prohibitive fabrication costs and fixed designs. To overcome these limitations, this study presents a facile and economical additive manufacturing approach to create porous MNs. Compared to traditional layerwise build sequences, direct ink drawing with nanocomposite inks can define sharp MNs with tailored shapes and achieve vastly improved fabrication efficiency. The key to this fabrication strategy is the yield-stress fluid ink that is easily formulated by dispersing silica nanoparticles into the cellulose acetate polymer solution. As-printed MNs are solidified into interconnected porous microstructure inside a coagulation bath of deionized water. The resulting MNs exhibit high mechanical strength and high porosity. This approach also allows porous MNs to be easily integrated on various substrates. In particular, MNs on filter paper substrates are highly flexible to rapidly collect ISF on non-flat skin sites. The extracted ISF is used for quantitative analysis of biomarkers, including glucose, = calcium ions, and calcium ions. Overall, the developments allow facile fabrication of porous MNs for transdermal diagnosis and therapy.


Subject(s)
Extracellular Fluid , Ink , Nanocomposites , Needles , Nanocomposites/chemistry , Porosity , Extracellular Fluid/chemistry , Animals
7.
Talanta ; 270: 125582, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38176248

ABSTRACT

Despite substantial developments in minimally invasive lactate monitoring microneedle electrodes, most such electrode developments have focused on either sensitivity or invasiveness while ignoring a wide range of detection, which is the most important factor in measuring the normal range of lactate in interstitial fluid (ISF). Herein, we present a polymer-based planar microneedle electrode fabrication using microelectromechanical and femtosecond laser technology for the continuous monitoring of lactate in ISF. The microneedle is functionalized with two-dimensional reduced graphene oxide (rGO) and electrochemically synthesized platinum nanoparticles (PtNPs). A particular quantity of Nafion (1.25 wt%) is applied on top of the lactate enzyme to create a diffusion-controlled membrane. Due to the combined effects of the planar structure of the microneedle, rGO, and membrane, the biosensor exhibited excellent linearity up to 10 mM lactate with a limit of detection of 2.04 µM, high sensitivity of 43.96 µA mM-1cm-2, a reaction time of 8 s and outstanding stability, selectivity, and repeatability. The feasibility of the microneedle is evaluated by using it to measure lactate concentrations in artificial ISF and human serum. The results demonstrate that the microneedle described here has great potential for use in real-time lactate monitoring for use in sports medicine and treatment.


Subject(s)
Biosensing Techniques , Graphite , Metal Nanoparticles , Humans , Lactic Acid/analysis , Polymers/analysis , Metal Nanoparticles/chemistry , Extracellular Fluid/chemistry , Platinum/chemistry , Biosensing Techniques/methods , Electrodes
8.
Biosens Bioelectron ; 247: 115932, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38113695

ABSTRACT

Early detection and effective blood glucose control are critical for preventing and managing diabetes-related complications. Conventional glucometers provide point-in-time measurements but are painful and cannot facilitate continuous monitoring. Continuous glucose monitoring systems are comfortable but face challenges in terms of accuracy, cost, and sensor lifespan. This study aimed to develop a microneedle-based sensor patch for minimally invasive, painless, and continuous glucose monitoring in the interstitial fluid to address these limitations. Experimental results confirm painless and minimally invasive penetration of the skin tissue with cylindrical microneedles (3 × 3 array) to a depth of approximately 520 µm with minimal loading. The microneedle sensors fabricated with precision using the complementary metal-oxide semiconductor process were immobilized with glucose oxidase, as confirmed through phase angle analysis. Long-term tests confirmed the effective operation of the sensor for up to seven days. Glucose concentrations determined from the fitted concentration-impedance curves correlated well with those measured using commercial glucometers, indicating the reliability and precision of the microneedle sensor. The flexible and minimally invasive sensor developed in this study facilitates painless and continuous glucose monitoring.


Subject(s)
Biosensing Techniques , Blood Glucose Self-Monitoring , Blood Glucose , Polymers , Extracellular Fluid/chemistry , Electric Impedance , Reproducibility of Results , Needles , Glucose/analysis
9.
Biosens Bioelectron ; 237: 115515, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37481866

ABSTRACT

Interstitial fluid glucose sensors have promising prospects in noninvasive glucose monitoring. However, the commonly used method of extracting interstitial fluid, reverse iontophoresis (RI), still remains to be optimized to solve problems such as insufficient extraction flux and skin irritation. To find the optimal RI conditions, in this study we explored the effects of multiple factors such as current frequency, duration, duty cycle and their interactions on extraction with the design of experiments (DOE) method. A multifunctional extraction and detection device was designed to control extraction conditions and measure the surface water content of the extraction electrode in situ and real time. A micro glucose monitoring device (MicroTED) combined with a cheap and flexible paper-based electrode was developed under the determined optimal extraction conditions. In on-body continuous glucose monitoring tests carried out to verify the performance of the device, the optimized conditions can facilitate stable extraction of up to 1.0 mg without any skin discomfort. The mean Pearson correlation coefficient between the measurement results of MicroTED and commercial glucometer is above 0.9. In the Clarke error grid analysis, all data points fell within Clarke error grid areas A and B, demonstrating the feasibility of further clinical application of the device.


Subject(s)
Biosensing Techniques , Blood Glucose , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Extracellular Fluid/chemistry , Skin/chemistry , Glucose/analysis
10.
Lab Chip ; 23(14): 3289-3299, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37395135

ABSTRACT

The ability to continually collect diagnostic information from the body during daily activity has revolutionized the monitoring of health and disease. Much of this monitoring, however, has been of physical "vital signs", with the monitoring of molecular markers having been limited to glucose, primarily due to the lack of other medically relevant molecules for which continuous measurements are possible in bodily fluids. Electrochemical aptamer sensors, however, have a recent history of successful in vivo demonstrations in rat animal models. Herein, we present the first report of real-time human molecular data collected using such sensors, successfully demonstrating their ability to measure the concentration of phenylalanine in dermal interstitial fluid after an oral bolus. To achieve this, we used a device that employs three hollow microneedles to couple the interstitial fluid to an ex vivo, phenylalanine-detecting sensor. The resulting architecture achieves good precision over the physiological concentration range and clinically relevant, 20 min lag times. By also demonstrating 90 days dry room-temperature shelf storage, the reported work also reaches another important milestone in moving such sensors to the clinic. While the devices demonstrated are not without remaining challenges, the results at minimum provide a simple method by which aptamer sensors can be quickly moved into human subjects for testing.


Subject(s)
Biosensing Techniques , Humans , Rats , Animals , Extracellular Fluid/chemistry , Skin , Glucose/analysis , Needles , Oligonucleotides/analysis
11.
Biosensors (Basel) ; 13(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37232898

ABSTRACT

Though monitoring blood glucose (BG) is indispensable for regulating diabetes, the frequent pricking of the finger by the commonly used fingertip blood collection causes discomfort and poses an infection risk. Since glucose levels in skin interstitial fluid (ISF) correlate with blood glucose levels, monitoring glucose in the skin ISF can be a viable alternative. With this rationale, the present study developed a biocompatible porous microneedle capable of rapid sampling, sensing, and glucose analysis in ISF in a minimally invasive manner, which can improve patient compliance and detection efficiency. The microneedles contain glucose oxidase (GOx) and horseradish peroxidase (HRP), and a colorimetric sensing layer containing 3,3',5,5'-tetramethylbenzidine (TMB) is on the back of the microneedles. After penetrating rat skin, porous microneedles harvest ISF rapidly and smoothly via capillary action, triggering the production of hydrogen peroxide (H2O2) from glucose. In the presence of H2O2, HRP reacts with TMB contained in the filter paper on the back of microneedles, causing an easily visible color shift. Further, a smartphone analysis of the images quickly quantifies glucose levels in the 50-400 mg/dL range using the correlation between color intensity and glucose concentration. The developed microneedle-based sensing technique with minimally invasive sampling will have great implications for point-of-care clinical diagnosis and diabetic health management.


Subject(s)
Diabetes Mellitus , Glucose , Rats , Animals , Glucose/analysis , Blood Glucose/analysis , Extracellular Fluid/chemistry , Colorimetry/methods , Hydrogen Peroxide , Porosity , Skin/chemistry
12.
J Mater Chem B ; 11(26): 6075-6081, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37254923

ABSTRACT

The development of a straightforward, economical, portable, and highly sensitive sensing platform for the rapid detection of cholesterol is desirable for the early diagnosis of several pathologic conditions. In this work, we present a fascinating skin-worn microneedle sensor for monitoring cholesterol in interstitial fluid samples. The microneedle sensor was developed by incorporating platinum (Pt) and silver (Ag) wires within pyramidal microneedles containing a microcavity opening; cholesterol oxidase (ChOx) was coupled on the Pt transducer surface using bovine serum albumin and Nafion. Under optimal conditions, the enzymatic microneedle sensor exhibited high sensitivity (0.201 µA µM-1) towards cholesterol in buffer solution, with good linearity over the 1-20 µM range and a correlation coefficient of 0.9910. The analytical performance of the microneedle sensor was also investigated in artificial interstitial fluid and a skin-mimicking phantom gel; the sensor showed great potential for skin-worn/wearable applications with excellent linearity and a low detection limit. In addition, the developed microneedle sensor showed satisfactory stability and good selectivity towards cholesterol in the presence of potential interfering biomolecules, including glucose, lactic acid, uric acid, and ascorbic acid. This sensor exhibits enormous promise for straightforward, sensitive, and minimally invasive monitoring of cholesterol.


Subject(s)
Biosensing Techniques , Humans , Needles , Glucose/analysis , Skin , Extracellular Fluid/chemistry , Platinum/chemistry
13.
Biosens Bioelectron ; 235: 115406, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37210841

ABSTRACT

Reverse iontophoresis (RI) is a promising technology in the field of continuous glucose monitoring (CGM), offering significant advantages such as finger-stick-free operation, wearability, and non-invasiveness. In the glucose extraction process based on RI, the pH of the interstitial fluid (ISF) is a critical factor that needs further investigation, as it directly influences the accuracy of transdermal glucose monitoring. In this study, a theoretical analysis was conducted to investigate the mechanism by which pH affects the glucose extraction flux. Modeling and numerical simulations performed at different pH conditions indicated that the zeta potential was significantly impacted by the pH, thereby altering the direction and flux of the glucose iontophoretic extraction. A screen-printed glucose biosensor integrated with RI extraction electrodes was developed for ISF extraction and glucose monitoring. The accuracy and stability of the ISF extraction and glucose detection device were demonstrated with extraction experiments using different subdermal glucose concentrations ranging from 0 to 20 mM. The extraction results for different ISF pH values exhibited that at 5 mM and 10 mM subcutaneous glucose, the extracted glucose concentration was increased by 0.08212 mM and 0.14639 mM for every 1 pH unit increase, respectively. Furthermore, the normalized results for 5 mM and 10 mM glucose demonstrated a linear correlation, indicating considerable potential for incorporating a pH correction factor in the blood glucose prediction model used to calibrate glucose monitoring.


Subject(s)
Biosensing Techniques , Glucose , Glucose/analysis , Blood Glucose/analysis , Iontophoresis/methods , Blood Glucose Self-Monitoring , Extracellular Fluid/chemistry , Hydrogen-Ion Concentration
14.
Anal Chim Acta ; 1255: 341101, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37032050

ABSTRACT

The interstitial fluid (ISF) contains rich bioinformation for disease diagnosis and healthcare monitoring. However, the efficient sampling and detection of the biomolecules in ISF is still challenging. Herein, we develop a facile but versatile ISF analysis platform by combining controllable hollow microneedles (HMNs) and elaborate microfluidic paper-based analytical devices (µPADs). The HMNs and µPADs was fixed in a bottom PDMS layer. A top PDMS layer containing a cylindrical cavity to produce negative pressure for sampling was packaged on the bottom PDMS layer. The HMNs enable efficient and swift sampling of sufficient ISF to the µPADs through one-touch finger operation without extra manipulations. The µPADs realized to simultaneously detect glucose and lactic acid in the detection area to produce chromogenic agents and analyzed by the self-programed RGB application (APP) in smartphones. The HMN microfluidic paper-based chip provides a point-of-care platform for accurate detection of biomolecules in ISF, holding great promise in the development of wearable device.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Extracellular Fluid/chemistry , Colorimetry , Glucose/analysis , Needles , Paper
15.
Nat Biomed Eng ; 7(12): 1541-1555, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36658344

ABSTRACT

The volume of interstitial fluid (ISF) in the human body is three times that of blood. Yet, collecting diagnostically useful ISF is more challenging than collecting blood because the extraction of dermal ISF disrupts the delicate balance of pressure between ISF, blood and lymph, and because the triggered local inflammation further skews the concentrations of many analytes in the extracted fluid. In this Perspective, we overview the most meaningful differences in the make-up of ISF and blood, and discuss why ISF cannot be viewed generally as a diagnostically useful proxy for blood. We also argue that continuous sensing of small-molecule analytes in dermal ISF via rapid assays compatible with nanolitre sample volumes or via miniaturized sensors inserted into the dermis can offer clinically advantageous utility, particularly for the monitoring of therapeutic drugs and of the status of the immune system.


Subject(s)
Blood Glucose , Extracellular Fluid , Humans , Extracellular Fluid/chemistry , Blood Glucose/analysis , Needles
16.
Talanta ; 254: 124122, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36459870

ABSTRACT

The development of a non-invasive sensing technology that allows collection of interstitial fluid (ISF) lactate and its subsequent analysis without exertion requirement, could enable lactate monitoring from rested individuals. Here, we describe a wearable, soft epidermal adhesive patch that integrates a reverse iontophoretic (RI) system, and an amperometric lactate biosensor placed on the anodic electrode with a porous hydrogel reservoir, for simultaneous ISF lactate extraction and quantification via electrochemical sensing, respectively. The iontophoretic system includes agarose hydrogels for preventing skin electrocution, while a porous polyvinyl alcohol-based hydrogel facilitates the effective transport of lactate from skin to the biosensor. The flexible skin-worn device tested on healthy individuals at rest showed rapid lactate collection from the ISF after 10 min of reverse iontophoresis with no evidence of discomfort or irritation to the skin. Detailed characterization of the enzymatic biosensor before and during on-body trials along with relevant control experiments confirmed the efficient extraction and selective detection of ISF lactate. Such an epidermal technology represents the first demonstration of an all-in-one platform that integrates non-invasive collection and subsequent analysis of lactate from iontophoretically extracted ISF toward point-of-care operation.


Subject(s)
Biosensing Techniques , Lactic Acid , Humans , Lactic Acid/analysis , Iontophoresis , Extracellular Fluid/chemistry , Epidermis/chemistry , Hydrogels
17.
J Neural Eng ; 20(1)2023 01 18.
Article in English | MEDLINE | ID: mdl-36538815

ABSTRACT

Objective. To modify off-the-shelf components to build a device for collecting electroencephalography (EEG) from macroelectrodes surrounded by large fluid access ports sampled by an integrated microperfusion system in order to establish a method for sampling brain interstitial fluid (ISF) at the site of stimulation or seizure activity with no bias for molecular size.Approach. Twenty-four 560µm diameter holes were ablated through the sheath surrounding one platinum-iridium macroelectrode of a standard Spencer depth electrode using a femtosecond UV laser. A syringe pump was converted to push-pull configuration and connected to the fluidics catheter of a commercially available microdialysis system. The fluidics were inserted into the lumen of the modified Spencer electrode with the microdialysis membrane removed, converting the system to open flow microperfusion. Electrical performance and analyte recovery were measured and parameters were systematically altered to improve performance. An optimized device was tested in the pig brain and unbiased quantitative mass spectrometry was used to characterize the perfusate collected from the peri-electrode brain in response to stimulation.Main results. Optimized parameters resulted in >70% recovery of 70 kDa dextran from a tissue analog. The optimized device was implanted in the cortex of a pig and perfusate was collected during four 60 min epochs. Following a baseline epoch, the macroelectrode surrounded by microperfusion ports was stimulated at 2 Hz (0.7 mA, 200µs pulse width). Following a post-stimulation epoch, the cortex near the electrode was stimulated with benzylpenicillin to induce epileptiform activity. Proteomic analysis of the perfusates revealed a unique inflammatory signature induced by electrical stimulation. This signature was not detected in bulk tissue ISF.Significance. A modified dual-sensing electrode that permits coincident detection of EEG and ISF at the site of epileptiform neural activity may reveal novel pathogenic mechanisms and therapeutic targets that are otherwise undetectable at the bulk tissue level.


Subject(s)
Extracellular Fluid , Proteomics , Animals , Swine , Extracellular Fluid/chemistry , Brain , Electrodes , Electroencephalography
18.
Anal Chem ; 94(23): 8335-8345, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35653647

ABSTRACT

The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models.


Subject(s)
Drug Monitoring , Needles , Animals , Biomarkers/analysis , Drug Monitoring/methods , Extracellular Fluid/chemistry , Oligonucleotides/analysis
19.
Talanta ; 249: 123695, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35728453

ABSTRACT

According to the World Health Organization, about 422 million people worldwide have diabetes, with 1.5 million deaths directly attributed each year. Therefore, there is still a need to effectively monitor glucose in diabetic patients for proper management. Recently, wearable patches based on microneedle (MN) sensors provide minimally invasive analysis of glucose through the interstitial fluid (ISF) while exhibiting excellent correlation with blood glucose. Despite many advances in wearable electrochemical sensors, long-term stability and continuous monitoring remain unsolved challenges. Herein, we present a highly stable electrochemical biosensor based on a redox mediator bilayer consisting of Prussian blue and iron-nickel hexacyanoferrate to increase the long-term stability of the readout coupled with a hollow MN array as a sampling unit for ISF uptake. First, the enzymatic biosensor is developed by using affordable screen-printed electrodes (SPE) and optimized for long-term stability fitting the physiological range of glucose in ISF (i.e., 2.5-22.5 mM). In parallel, the MN array is assessed for minimally invasive piercing of the skin. Subsequently, the biosensor is integrated with the MN array leaving a microfluidic spacer that works as the electrochemical cell. Interestingly, a microfluidic channel connects the cell with an external syringe to actively and rapidly withdraw ISF toward the cell. Finally, the robust MN sensing patch is characterized during in vitro and ex vivo tests. Overall, affordable wearable MN-based patches for the continuous monitoring of glucose in ISF are providing an advent in wearable devices for rapid and life-threatening decision-making processes.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Extracellular Fluid/chemistry , Glucose/analysis , Humans , Needles
20.
Anal Chem ; 94(9): 3767-3773, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35201754

ABSTRACT

The development of methods to generate quantitative chemical content information from precise tissue locations is needed to understand fundamental cellular and tissue physiology. This work describes a method to perfuse the extracellular fluid of fly brains in vivo using µ-low-flow push-pull perfusion (µLFPP) for quantitative chemical content determinations. Miniaturization of push-pull perfusion probe designs allowed the development of methods for probe tip placement into and sampling from the fruit fly's brain. Perfusate analysis identified and quantified arginine, octopamine, histidine, taurine, glycine, glutamate, and aspartate. The perfusate data did not exhibit any statistical differences based on sex. The perfusate analysis was compared to hemolymph samples to confirm probe placement in fly brain tissues. The appearance of probe placement into the brain space was confirmed with the following observations. Hemolymph and perfusate samples were found to contain analytes unique to each sample type. Quantitated levels of perfusate were not a simple dilution of hemolymph content. Further, the discovery of perfusates with composition similar to both hemolymph and brain perfusate when damage was intentionally inflicted supports the observation that perfusates are distinct from hemolymph. The analysis of perfusate collected for greater than an hour of sampling exhibits the possibility of monitoring applications. Altogether, this work demonstrates the viability of performing µ-low-flow push-pull perfusion for in vivo studies of fly brain tissues to identify and quantitate neurotransmitter content.


Subject(s)
Drosophila melanogaster , Extracellular Fluid , Animals , Brain/physiology , Extracellular Fluid/chemistry , Neurotransmitter Agents/analysis , Perfusion/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...