Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.412
Filter
1.
Proc Natl Acad Sci U S A ; 121(22): e2319880121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768353

ABSTRACT

Elevated interstitial fluid pressure (IFP) within pathological tissues (e.g., tumors, obstructed kidneys, and cirrhotic livers) creates a significant hindrance to the transport of nanomedicine, ultimately impairing the therapeutic efficiency. Among these tissues, solid tumors present the most challenging scenario. While several strategies through reducing tumor IFP have been devised to enhance nanoparticle delivery, few approaches focus on modulating the intrinsic properties of nanoparticles to effectively counteract IFP during extravasation and penetration, which are precisely the stages obstructed by elevated IFP. Herein, we propose an innovative solution by engineering nanoparticles with a fusiform shape of high curvature, enabling efficient surmounting of IFP barriers during extravasation and penetration within tumor tissues. Through experimental and theoretical analyses, we demonstrate that the elongated nanoparticles with the highest mean curvature outperform spherical and rod-shaped counterparts against elevated IFP, leading to superior intratumoral accumulation and antitumor efficacy. Super-resolution microscopy and molecular dynamics simulations uncover the underlying mechanisms in which the high curvature contributes to diminished drag force in surmounting high-pressure differentials during extravasation. Simultaneously, the facilitated rotational movement augments the hopping frequency during penetration. This study effectively addresses the limitations posed by high-pressure impediments, uncovers the mutual interactions between the physical properties of NPs and their environment, and presents a promising avenue for advancing cancer treatment through nanomedicine.


Subject(s)
Drug Delivery Systems , Extracellular Fluid , Nanoparticles , Pressure , Nanoparticles/chemistry , Extracellular Fluid/metabolism , Animals , Drug Delivery Systems/methods , Mice , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Cell Line, Tumor , Extravasation of Diagnostic and Therapeutic Materials , Molecular Dynamics Simulation , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry
2.
Elife ; 132024 May 24.
Article in English | MEDLINE | ID: mdl-38787918

ABSTRACT

The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer-driven tissue factors in shaping nutrient availability in these tumors.


Cancer cells convert nutrients into energy differently compared to healthy cells. This difference in metabolism allows them to grow and divide more quickly and sometimes to migrate to different areas of the body. The environment around cancer cells ­ known as the tumor microenvironment ­ contains a variety of different cells and blood vessels, which are bathed in interstitial fluid. This microenvironment provides nutrients for the cancer cells to metabolize, and therefore influences how well a tumor grows and how it might respond to treatment. Recent advances with techniques such as mass spectrometry, which can measure the chemical composition of a substance, have allowed scientists to measure nutrient levels in the tumor microenvironments of mice. However, it has been more difficult to conduct such studies in humans, as well as to compare the tumor microenvironment to the healthy tissue the tumors arose from. Abbott, Ali, Reinfeld et al. aimed to fill this gap in knowledge by using mass spectrometry to measure the nutrient levels in the tumor microenvironment of 55 patients undergoing surgery to remove kidney tumors. Comparing the type and levels of nutrients in the tumor interstitial fluid, the neighboring healthy kidney and the blood showed that nutrients in the tumor and healthy kidney were more similar to each other than those in the blood. For example, both the tumor and healthy kidney interstitial fluids contained less glucose than the blood. However, the difference between nutrient composition in the tumor and healthy kidney interstitial fluids was insignificant, suggesting that the healthy kidney and its tumor share a similar environment. Taken together, the findings indicate that kidney cancer cells must adapt to the nutrients available in the kidney, rather than changing what nutrients are available in the tissue. Future studies will be required to investigate whether this finding also applies to other types of cancer. A better understanding of how cancer cells adapt to their environments may aid the development of drugs that aim to disrupt the metabolism of tumors.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Metabolome , Nutrients , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Humans , Kidney Neoplasms/metabolism , Nutrients/metabolism , Metabolomics/methods , Tumor Microenvironment , Extracellular Fluid/metabolism , Female , Male , Lipidomics
3.
Int J Pharm ; 658: 124227, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38750979

ABSTRACT

Media that mimic physiological fluids at the site of administration have proven to be valuable in vitro tools for predicting in vivo drug release, particularly for routes of administration where animal studies cannot accurately predict human performance. The objective of the present study was to develop simulated interstitial fluids (SISFs) that mimic the major components and physicochemical properties of subcutaneous interstitial fluids (ISFs) from preclinical species and humans, but that can be easily prepared in the laboratory and used in in vitro experiments to estimate in vivo drug release and absorption of subcutaneously administered formulations. Based on data from a previous characterization study of ISFs from different species, two media were developed: a simulated mouse-rat ISF and a simulated human-monkey ISF. The novel SISFs were used in initial in vitro diffusion studies with a commercial injectable preparation of liraglutide. Although the in vitro model used for this purpose still requires significant refinement, these two new media will undoubtedly contribute to a better understanding of the in vivo performance of subcutaneous injectables in different species and will help to reduce the number of unnecessary in vivo experiments in preclinical species by implementation in predictive in vitro models.


Subject(s)
Extracellular Fluid , Extracellular Fluid/metabolism , Animals , Humans , Mice , Rats , Injections, Subcutaneous , Subcutaneous Absorption , Models, Biological , Drug Liberation
4.
Int J Biol Sci ; 20(7): 2727-2747, 2024.
Article in English | MEDLINE | ID: mdl-38725857

ABSTRACT

Phenotypic switching (from contractile to synthetic) of vascular smooth muscle cells (VSMCs) is essential in the progression of atherosclerosis. The damaged endothelium in the atherosclerotic artery exposes VSMCs to increased interstitial fluid shear stress (IFSS). However, the precise mechanisms by which increased IFSS influences VSMCs phenotypic switching are unrevealed. Here, we employed advanced numerical simulations to calculate IFSS values accurately based on parameters acquired from patient samples. We then carefully investigated the phenotypic switching and extracellular vesicles (EVs) secretion of VSMCs under various IFSS conditions. By employing a comprehensive set of approaches, we found that VSMCs exhibited synthetic phenotype upon atherosclerotic IFSS. This synthetic phenotype is the upstream regulator for the enhanced secretion of pro-calcified EVs. Mechanistically, as a mechanotransducer, the epidermal growth factor receptor (EGFR) initiates the flow-based mechanical cues to MAPK signaling pathway, facilitating the nuclear accumulation of the transcription factor krüppel-like factor 5 (KLF5). Furthermore, pharmacological inhibiting either EGFR or MAPK signaling pathway blocks the nuclear accumulation of KLF5 and finally results in the maintenance of contractile VSMCs even under increased IFSS stimulation. Collectively, targeting this signaling pathway holds potential as a novel therapeutic strategy to inhibit VSMCs phenotypic switching and mitigate the progression of atherosclerosis.


Subject(s)
ErbB Receptors , Extracellular Vesicles , Kruppel-Like Transcription Factors , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Stress, Mechanical , Extracellular Vesicles/metabolism , ErbB Receptors/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Humans , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Extracellular Fluid/metabolism , Phenotype , Animals , Atherosclerosis/metabolism , MAP Kinase Signaling System , Signal Transduction
5.
J Math Biol ; 88(6): 69, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664246

ABSTRACT

Flow in a porous medium can be driven by the deformations of the boundaries of the porous domain. Such boundary deformations locally change the volume fraction accessible by the fluid, creating non-uniform porosity and permeability throughout the medium. In this work, we construct a deformation-driven porous medium transport model with spatially and temporally varying porosity and permeability that are dependent on the boundary deformations imposed on the medium. We use this model to study the transport of interstitial fluid along the basement membranes in the arterial walls of the brain. The basement membrane is modeled as a deforming annular porous channel with the compressible pore space filled with an incompressible, Newtonian fluid. The role of a forward propagating peristaltic heart pulse wave and a reverse smooth muscle contraction wave on the flow within the basement membranes is investigated. Our results identify combinations of wave amplitudes that can induce either forward or reverse transport along these transport pathways in the brain. The magnitude and direction of fluid transport predicted by our model can help in understanding the clearance of fluids and solutes along the Intramural Periarterial Drainage route and the pathology of cerebral amyloid angiopathy.


Subject(s)
Brain , Extracellular Fluid , Extracellular Fluid/metabolism , Extracellular Fluid/physiology , Porosity , Humans , Brain/metabolism , Brain/blood supply , Brain/physiology , Basement Membrane/metabolism , Basement Membrane/physiology , Mathematical Concepts , Biological Transport/physiology , Models, Biological , Computer Simulation , Models, Neurological , Animals , Permeability
6.
J Antimicrob Chemother ; 79(6): 1313-1319, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38573940

ABSTRACT

BACKGROUND: Knowledge regarding CNS pharmacokinetics of moxifloxacin is limited, with unknown consequences for patients with meningitis caused by bacteria resistant to beta-lactams or caused by TB. OBJECTIVE: (i) To develop a novel porcine model for continuous investigation of moxifloxacin concentrations within brain extracellular fluid (ECF), CSF and plasma using microdialysis, and (ii) to compare these findings to the pharmacokinetic/pharmacodynamic (PK/PD) target against TB. METHODS: Six female pigs received an intravenous single dose of moxifloxacin (6 mg/kg) similar to the current oral treatment against TB. Subsequently, moxifloxacin concentrations were determined by microdialysis within five compartments: brain ECF (cortical and subcortical) and CSF (ventricular, cisternal and lumbar) for the following 8 hours. Data were compared to simultaneously obtained plasma samples. Chemical analysis was performed by high pressure liquid chromatography with mass spectrometry. The applied PK/PD target was defined as a maximum drug concentration (Cmax):MIC ratio >8. RESULTS: We present a novel porcine model for continuous in vivo CNS pharmacokinetics for moxifloxacin. Cmax and AUC0-8h within brain ECF were significantly lower compared to plasma and lumbar CSF, but insignificantly different compared to ventricular and cisternal CSF. Unbound Cmax:MIC ratio across all investigated compartments ranged from 1.9 to 4.3. CONCLUSION: A single dose of weight-adjusted moxifloxacin administered intravenously did not achieve adequate target site concentrations within the uninflamed porcine brain ECF and CSF to reach the applied TB CNS target.


Subject(s)
Brain , Extracellular Fluid , Microdialysis , Moxifloxacin , Animals , Moxifloxacin/pharmacokinetics , Moxifloxacin/administration & dosage , Swine , Female , Extracellular Fluid/chemistry , Extracellular Fluid/metabolism , Brain/metabolism , Cerebrospinal Fluid/chemistry , Cerebrospinal Fluid/metabolism , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/cerebrospinal fluid , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/blood , Plasma/chemistry , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/cerebrospinal fluid , Fluoroquinolones/administration & dosage , Fluoroquinolones/blood , Models, Animal , Chromatography, High Pressure Liquid , Administration, Intravenous , Mass Spectrometry , Microbial Sensitivity Tests
7.
Int J Pharm ; 657: 124145, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38679242

ABSTRACT

In this study, we have developed an innovative pH-triggered nanomedicine delivery system, targeting HER2-positive breast cancer cells for effective low-cost, imaging-guided drug delivery and precise therapy. The key feature of this system lies in its unique tumor interstitial fluid microenvironment-responsive drug release behavior which achieved tumor site-specific drug delivery. Our in vitro experiments demonstrated that the carbon dot-integrated material achieves more efficient DTX release (96.13 % at 72 h) in the tumor interstitial fluid microenvironment (pH 6.5), thereby boosting drug concentration at the tumor site and enhancing therapeutic efficacy. Further cell experiments confirmed the system's significant inhibitory effect on HER2-positive tumor cells SKBR3 in a pH 6.5 environment, and apoptosis assays indicating a notable increase in early cell apoptosis (from 8.39 % to 24.61 % compared with pH 7.4). Furthermore, the integration of HER2 aptamer within the carbon dot-based system enables targeted recognition and binding to tumor cells, ensuring more precise delivery of DTX while minimizing potential side effects. Crucially, the carbon dots in this system emit superior red fluorescence (the QY = 47.64 % excited at 535 nm compared with Rodamine 6G), enabling real-time visualization of the drug delivery process. This feature provides valuable feedback on treatment effectiveness, facilitating necessary adjustments. The small size (1.88 ± 0.48 nm) of carbon dots significantly improved their ability to penetrate biological barriers, while their low toxicity (no significant cell toxicity under 350 µg/mL) contributed to the formulation's outstanding biocompatibility. Overall, this carbon dot-enhanced drug delivery system offers immense potential for enhancing drug efficacy, minimizing side effects, and providing real-time treatment monitoring, thus proposing a innovate strategy for breast cancer therapy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Carbon , Docetaxel , Drug Delivery Systems , Drug Liberation , Receptor, ErbB-2 , Breast Neoplasms/drug therapy , Humans , Receptor, ErbB-2/metabolism , Carbon/chemistry , Carbon/administration & dosage , Female , Cell Line, Tumor , Docetaxel/administration & dosage , Docetaxel/pharmacology , Drug Delivery Systems/methods , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Hydrogen-Ion Concentration , Apoptosis/drug effects , Extracellular Fluid/metabolism , Tumor Microenvironment/drug effects , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Animals , Quantum Dots/chemistry , Quantum Dots/administration & dosage
8.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38573803

ABSTRACT

Chloride is a key anion involved in cellular physiology by regulating its homeostasis and rheostatic processes. Changes in cellular Cl- concentration result in differential regulation of cellular functions such as transcription and translation, post-translation modifications, cell cycle and proliferation, cell volume, and pH levels. In intracellular compartments, Cl- modulates the function of lysosomes, mitochondria, endosomes, phagosomes, the nucleus, and the endoplasmic reticulum. In extracellular fluid (ECF), Cl- is present in blood/plasma and interstitial fluid compartments. A reduction in Cl- levels in ECF can result in cell volume contraction. Cl- is the key physiological anion and is a principal compensatory ion for the movement of the major cations such as Na+, K+, and Ca2+. Over the past 25 years, we have increased our understanding of cellular signaling mediated by Cl-, which has helped in understanding the molecular and metabolic changes observed in pathologies with altered Cl- levels. Here, we review the concentration of Cl- in various organs and cellular compartments, ion channels responsible for its transportation, and recent information on its physiological roles.


Subject(s)
Chlorides , Humans , Chlorides/metabolism , Animals , Homeostasis , Chloride Channels/metabolism , Chloride Channels/genetics , Signal Transduction , Extracellular Fluid/metabolism , Ion Transport
9.
Methods Mol Biol ; 2754: 343-349, 2024.
Article in English | MEDLINE | ID: mdl-38512675

ABSTRACT

Despite being a cytoplasmic protein abundant in neurons, tau is detectable in various extracellular fluids. In addition to being passively released from dying/degenerating neurons, tau is also actively released from living neurons in a neuronal activity-dependent mechanism. In vivo, tau released from neurons first appears in brain interstitial fluid (ISF) and subsequently drains into cerebrospinal fluid (CSF) by glymphatic system. Changes in CSF tau levels alter during the course of AD pathogenesis and are considered to predict the disease-progression of AD. A method to collect CSF from various mouse models of AD will serve as a valuable tool to investigate the dynamics of physiological/pathological tau released from neurons. In this chapter, we describe and characterize a method that reliably collects a relatively large volume of CSF from anesthetized mice.


Subject(s)
Alzheimer Disease , Glymphatic System , Mice , Animals , tau Proteins/metabolism , Cisterna Magna/metabolism , Brain/metabolism , Extracellular Fluid/metabolism , Alzheimer Disease/metabolism , Biomarkers/metabolism , Amyloid beta-Peptides/metabolism
10.
Methods Mol Biol ; 2754: 351-359, 2024.
Article in English | MEDLINE | ID: mdl-38512676

ABSTRACT

Glymphatic system denotes a brain-wide pathway that eliminates extracellular solutes from brain. It is driven by the flow of brain interstitial fluid (ISF) and cerebrospinal fluid (CSF) via perivascular spaces. Glymphatic convective flow is driven by cerebral arterial pulsation, which is facilitated by a water channel, aquaporin-4 (AQP4) expressed in astrocytic end-foot processes. Since its discovery, the glymphatic system receives a considerable scientific attention due to its pivotal role in clearing metabolic waste as well as neurotoxic substances such as amyloid b peptide. Tau is a microtubule binding protein, however it is also physiologically released into extracellular fluids. The presence of tau in the blood stream indicates that it is eventually cleared from the brain to the periphery, however, the detailed mechanisms that eliminate extracellular tau from the central nervous system remained to be elucidated. Recently, we and others have reported that extracellular tau is eliminated from the brain to CSF by an AQP4 dependent mechanism, suggesting the involvement of the glymphatic system. In this chapter, we describe the detailed protocol of how we can assess glymphatic outflow of tau protein from brain to CSF in mice.


Subject(s)
Glymphatic System , tau Proteins , Mice , Animals , tau Proteins/metabolism , Brain/metabolism , Extracellular Fluid/metabolism , Aquaporin 4/metabolism , Cerebrospinal Fluid/metabolism
11.
Nature ; 627(8002): 149-156, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418876

ABSTRACT

The glymphatic movement of fluid through the brain removes metabolic waste1-4. Noninvasive 40 Hz stimulation promotes 40 Hz neural activity in multiple brain regions and attenuates pathology in mouse models of Alzheimer's disease5-8. Here we show that multisensory gamma stimulation promotes the influx of cerebrospinal fluid and the efflux of interstitial fluid in the cortex of the 5XFAD mouse model of Alzheimer's disease. Influx of cerebrospinal fluid was associated with increased aquaporin-4 polarization along astrocytic endfeet and dilated meningeal lymphatic vessels. Inhibiting glymphatic clearance abolished the removal of amyloid by multisensory 40 Hz stimulation. Using chemogenetic manipulation and a genetically encoded sensor for neuropeptide signalling, we found that vasoactive intestinal peptide interneurons facilitate glymphatic clearance by regulating arterial pulsatility. Our findings establish novel mechanisms that recruit the glymphatic system to remove brain amyloid.


Subject(s)
Alzheimer Disease , Amyloid , Brain , Cerebrospinal Fluid , Extracellular Fluid , Gamma Rhythm , Glymphatic System , Animals , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/prevention & control , Amyloid/metabolism , Aquaporin 4/metabolism , Astrocytes/metabolism , Brain/cytology , Brain/metabolism , Brain/pathology , Cerebrospinal Fluid/metabolism , Disease Models, Animal , Extracellular Fluid/metabolism , Glymphatic System/physiology , Interneurons/metabolism , Vasoactive Intestinal Peptide/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Electric Stimulation
12.
Adv Sci (Weinh) ; 11(16): e2306188, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417122

ABSTRACT

Malignant melanoma (MM) is the most aggressive form of skin cancer. The delay in treatment will induce metastasis, resulting in a poor prognosis and even death. Here, a two-step strategy for on-site diagnosis of MM is developed based on the extraction and direct visual quantification of S100A1, a biomarker for melanoma. First, a swellable microneedle is utilized to extract S100A1 in skin interstitial fluid (ISF) with minimal invasion. After elution, antibody-conjugated magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) are introduced. A high expression level of S100A1 gives rise to a robust binding between MMPs and PMPs and reduces the number of free PMPs. By loading the reacted solution into the device with a microfluidic particle dam, the quantity of free PMPs after magnetic separation is displayed with their accumulation length inversely proportional to S100A1 levels. A limit of detection of 18.7 ng mL-1 for S100A1 is achieved. The animal experiment indicates that ISF-based S100A1 quantification using the proposed strategy exhibits a significantly higher sensitivity compared with conventional serum-based detection. In addition, the result is highly comparable with the gold standard enzyme-linked immunosorbent assay based on Lin's concordance correlation coefficient, suggesting the high practicality for routine monitoring of melanoma.


Subject(s)
Extracellular Fluid , Melanoma , Needles , S100 Proteins , Skin Neoplasms , Melanoma/diagnosis , Melanoma/metabolism , Melanoma/pathology , Animals , S100 Proteins/metabolism , Extracellular Fluid/metabolism , Mice , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Disease Models, Animal , Humans , Microfluidics/methods , Skin/metabolism , Skin/pathology
13.
Nature ; 627(8002): 157-164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418877

ABSTRACT

The accumulation of metabolic waste is a leading cause of numerous neurological disorders, yet we still have only limited knowledge of how the brain performs self-cleansing. Here we demonstrate that neural networks synchronize individual action potentials to create large-amplitude, rhythmic and self-perpetuating ionic waves in the interstitial fluid of the brain. These waves are a plausible mechanism to explain the correlated potentiation of the glymphatic flow1,2 through the brain parenchyma. Chemogenetic flattening of these high-energy ionic waves largely impeded cerebrospinal fluid infiltration into and clearance of molecules from the brain parenchyma. Notably, synthesized waves generated through transcranial optogenetic stimulation substantially potentiated cerebrospinal fluid-to-interstitial fluid perfusion. Our study demonstrates that neurons serve as master organizers for brain clearance. This fundamental principle introduces a new theoretical framework for the functioning of macroscopic brain waves.


Subject(s)
Brain , Cerebrospinal Fluid , Extracellular Fluid , Neurons , Action Potentials , Brain/cytology , Brain/metabolism , Brain Waves/physiology , Cerebrospinal Fluid/metabolism , Extracellular Fluid/metabolism , Glymphatic System/metabolism , Kinetics , Nerve Net/physiology , Neurons/metabolism , Optogenetics , Parenchymal Tissue/metabolism , Ions/metabolism
14.
Microvasc Res ; 151: 104597, 2024 01.
Article in English | MEDLINE | ID: mdl-37619888

ABSTRACT

Recently, the enhanced penetration and retention (EPR) effect of nano-preparations has been questioned. Whether the vascular endothelial cell gap (VECG) is the main transport pathway of nano-preparations has become a hot issue at present. Therefore, we propose an in vitro biomimetic experimental system that demonstrates the transvascular transport of nano-preparation. Based on the tumor growth process, the experimental system was used to simulate the change process of abnormal factors (vascular endothelial cell gap and interstitial fluid pressure (IFP)) in the tumor microenvironment. The influence of change in the abnormal factors on the enhanced penetration and retention effect of nano-preparation was explored, and simulation verification was performed. The results show that when the interstitial fluid pressure is close to the vascular fluid pressure (VFP), the transport of nano-preparation is obstructed, resulting in the disappearance of enhanced penetration and retention effect of the nano-preparation. This indicates that the pressure gradient between vascular fluid pressure and interstitial fluid pressure determines whether the enhanced penetration and retention effect of nano-preparations can exist.


Subject(s)
Biomimetics , Neoplasms , Humans , Models, Biological , Neoplasms/blood supply , Computer Simulation , Extracellular Fluid/metabolism , Tumor Microenvironment
15.
Anal Chem ; 96(1): 204-211, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38148285

ABSTRACT

There are many flow behaviors in solid tumors, including intravascular, bloodstream, and interstitial convection. Studies have shown that tumor interstitial fluid (TIF) is an important part of tumor microenvironment regulation and affects drug delivery and metabolism between tumor cells. Magnetic resonance imaging (MRI) is suitable for detecting the flow rates of liquids in tissues. Clinical phase contrast PC-MRI technology has been designed to observe the blood flow in large vessels such as arteries and veins; however, it is not sensitive enough to deal with slow flow velocity. Our previously developed vertical plane echo PC-MRI technology, the Velocity Mapping sequence, improved the signal-to-noise ratio (SNR) for measuring slow interstitial fluid rate. In this study, this sequence was used to determine the TIF flow rate in MDA-MB-231 human breast tumor cells used in BALB/c nude male mice. Two different sizes of contrast agents were intravenously injected, and the relationship between their distribution and the TIF flow rate was studied for the first time. Combining the results of clinical scanning showed that small-molecule DTPA-Gd (diethylenetriaminepentaacetic acid-gadolinium) was distributed immediately around the tumor margin after the injection. This distribution was positively correlated to the high flow rate area of the TIF before administration. In contrast, nanoparticles NaGdF4-PEG (polyethylene glycol) entered the tumor and reached their peak at 3 h. Drug distribution was negatively correlated with the high-flow-rate region of the TIF. Investigation of the TIF velocity can help better understand the fluid behavior in tumors and its role in drug delivery.


Subject(s)
Breast Neoplasms , Extracellular Fluid , Mice , Animals , Male , Humans , Extracellular Fluid/metabolism , Magnetic Resonance Imaging/methods , Drug Delivery Systems , Pentetic Acid , Breast Neoplasms/metabolism , Contrast Media/metabolism , Gadolinium DTPA/metabolism , Tumor Microenvironment
16.
Fluids Barriers CNS ; 20(1): 94, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38115038

ABSTRACT

BACKGROUND: Microdialysis is a technique that can be utilized to sample the interstitial fluid of the central nervous system (CNS), including in primary malignant brain tumors known as gliomas. Gliomas are mainly accessible at the time of surgery, but have rarely been analyzed via interstitial fluid collected via microdialysis. To that end, we obtained an investigational device exemption for high molecular weight catheters (HMW, 100 kDa) and a variable flow rate pump to perform microdialysis at flow rates amenable to an intra-operative setting. We herein report on the lessons and insights obtained during our intra-operative HMW microdialysis trial, both in regard to methodological and analytical considerations. METHODS: Intra-operative HMW microdialysis was performed during 15 clinically indicated glioma resections in fourteen patients, across three radiographically diverse regions in each patient. Microdialysates were analyzed via targeted and untargeted metabolomics via ultra-performance liquid chromatography tandem mass spectrometry. RESULTS: Use of albumin and lactate-containing perfusates impacted subsets of metabolites evaluated via global metabolomics. Additionally, focal delivery of lactate via a lactate-containing perfusate, induced local metabolic changes, suggesting the potential for intra-operative pharmacodynamic studies via reverse microdialysis of candidate drugs. Multiple peri-operatively administered drugs, including levetiracetam, cefazolin, caffeine, mannitol and acetaminophen, could be detected from one microdialysate aliquot representing 10 min worth of intra-operative sampling. Moreover, clinical, radiographic, and methodological considerations for performing intra-operative microdialysis are discussed. CONCLUSIONS: Intra-operative HMW microdialysis can feasibly be utilized to sample the live human CNS microenvironment, including both metabolites and drugs, within one surgery. Certain variables, such as perfusate type, must be considered during and after analysis. Trial registration NCT04047264.


Subject(s)
Glioma , Humans , Microdialysis , Glioma/surgery , Extracellular Fluid/metabolism , Lactic Acid/metabolism , Catheters , Tumor Microenvironment
17.
Curr Opin Biotechnol ; 83: 102970, 2023 10.
Article in English | MEDLINE | ID: mdl-37494818

ABSTRACT

The tumor microenvironment (TME) plays a crucial role in regulating the state and function of all cell types residing in the tumor and thus impacts many aspects of tumor biology. The importance of the TME has led to an interest in characterizing the composition of the TME and how TME components regulate cancer and stromal cell biology. Tumor interstitial fluid (TIF) is the local perfusate of the TME that carries metabolites, electrolytes, and soluble macromolecules to tumor-resident cells. Recently, techniques to isolate TIF have been coupled with analytical techniques to interrogate the composition of TIF, providing new insight into TME composition. In this review, we will discuss what TIF studies indicate about TME composition and new avenues TIF analysis provides to delineate how the TME regulates tumor biology.


Subject(s)
Extracellular Fluid , Neoplasms , Humans , Extracellular Fluid/metabolism , Neoplasms/metabolism , Tumor Microenvironment/physiology , Cell Communication
18.
PLoS Comput Biol ; 19(7): e1010996, 2023 07.
Article in English | MEDLINE | ID: mdl-37478153

ABSTRACT

The complex interplay between chemical, electrical, and mechanical factors is fundamental to the function and homeostasis of the brain, but the effect of electrochemical gradients on brain interstitial fluid flow, solute transport, and clearance remains poorly quantified. Here, via in-silico experiments based on biophysical modeling, we estimate water movement across astrocyte cell membranes, within astrocyte networks, and within the extracellular space (ECS) induced by neuronal activity, and quantify the relative role of different forces (osmotic, hydrostatic, and electrical) on transport and fluid flow under such conditions. We find that neuronal activity alone may induce intracellular fluid velocities in astrocyte networks of up to 14µm/min, and fluid velocities in the ECS of similar magnitude. These velocities are dominated by an osmotic contribution in the intracellular compartment; without it, the estimated fluid velocities drop by a factor of ×34-45. Further, the compartmental fluid flow has a pronounced effect on transport: advection accelerates ionic transport within astrocytic networks by a factor of ×1-5 compared to diffusion alone.


Subject(s)
Astrocytes , Extracellular Space , Astrocytes/metabolism , Extracellular Space/metabolism , Brain/metabolism , Extracellular Fluid/metabolism , Diffusion
19.
J Neurochem ; 166(3): 560-571, 2023 08.
Article in English | MEDLINE | ID: mdl-37282785

ABSTRACT

The glymphatic system is a newly discovered perivascular network where cerebrospinal fluid mixes with interstitial fluid, facilitating clearance of protein solutes and metabolic waste from the parenchyma. The process is strictly dependent on water channel aquaporin-4 (AQP4) expressed on the perivascular astrocytic end-feet. Various factors, such as noradrenaline levels related to the arousal state, influence clearance efficiency, highlighting the possibility that other neurotransmitters additionally modulate this process. To date, the specific role of γ-aminobutyric acid (GABA) in the glymphatic system remains unknown. We used C57BL/6J mice to observe the regulatory effect of GABA on glymphatic pathway by administering a cerebrospinal fluid tracer containing GABA or its GABAA receptor (GABAA R) antagonist through cisterna magna injection. Then, we employed an AQP4 knockout mouse model to explore the regulatory effects of GABA on glymphatic drainage and further study whether transcranial magnetic stimulation-continuous theta burst stimulation (cTBS) could regulate the glymphatic pathway through the GABA system. Our data showed that GABA promotes glymphatic clearance in an AQP4-dependent manner by activating the GABAA R. Furthermore, cTBS was found to modulate the glymphatic pathway by activating the GABA system. Accordingly, we propose that regulating the GABA system by cTBS could modulate glymphatic clearance and provide new insight for clinical prevention and treatment of abnormal protein deposition-related diseases.


Subject(s)
Brain , Glymphatic System , Animals , Mice , Aquaporin 4/metabolism , Brain/metabolism , Extracellular Fluid/metabolism , gamma-Aminobutyric Acid/metabolism , Mice, Inbred C57BL , Mice, Knockout
20.
Int J Mol Sci ; 24(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37373027

ABSTRACT

Skin interstitial fluid (ISF) has emerged as a fungible biofluid sample for blood serum and plasma for disease diagnosis and therapy. The sampling of skin ISF is highly desirable considering its easy accessibility, no damage to blood vessels, and reduced risk of infection. Particularly, skin ISF can be sampled using microneedle (MN)-based platforms in the skin tissues, which exhibit multiple advantages including minimal invasion of the skin tissues, less pain, ease of carrying, capacity for continuous monitoring, etc. In this review, we focus on the current development of microneedle-integrated transdermal sensors for collecting ISF and detecting specific disease biomarkers. Firstly, we discussed and classified microneedles according to their structural design, including solid MNs, hollow MNs, porous MNs, and coated MNs. Subsequently, we elaborate on the construction of MN-integrated sensors for metabolic analysis with highlights on the electrochemical, fluorescent, chemical chromogenic, immunodiagnostic, and molecular diagnostic MN-integrated sensors. Finally, we discuss the current challenges and future direction for developing MN-based platforms for ISF extraction and sensing applications.


Subject(s)
Extracellular Fluid , Skin , Extracellular Fluid/metabolism , Skin/metabolism , Needles , Administration, Cutaneous , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...