Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.376
Filter
1.
World J Microbiol Biotechnol ; 40(7): 232, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38834810

ABSTRACT

Microbially induced carbonate precipitation (MICP) has been used to cure rare earth slags (RES) containing radionuclides (e.g. Th and U) and heavy metals with favorable results. However, the role of microbial extracellular polymeric substances (EPS) in MICP curing RES remains unclear. In this study, the EPS of Lysinibacillus sphaericus K-1 was extracted for the experiments of adsorption, inducing calcium carbonate (CaCO3) precipitation and curing of RES. The role of EPS in in MICP curing RES and stabilizing radionuclides and heavy metals was analyzed by evaluating the concentration and morphological distribution of radionuclides and heavy metals, and the compressive strength of the cured body. The results indicate that the adsorption efficiencies of EPS for Th (IV), U (VI), Cu2+, Pb2+, Zn2+, and Cd2+ were 44.83%, 45.83%, 53.7%, 61.3%, 42.1%, and 77.85%, respectively. The addition of EPS solution resulted in the formation of nanoscale spherical particles on the microorganism surface, which could act as an accumulating skeleton to facilitate the formation of CaCO3. After adding 20 mL of EPS solution during the curing process (Treat group), the maximum unconfined compressive strength (UCS) of the cured body reached 1.922 MPa, which was 12.13% higher than the CK group. The contents of exchangeable Th (IV) and U (VI) in the cured bodies of the Treat group decreased by 3.35% and 4.93%, respectively, compared with the CK group. Therefore, EPS enhances the effect of MICP curing RES and reduces the potential environmental problems that may be caused by radionuclides and heavy metals during the long-term sequestration of RES.


Subject(s)
Bacillaceae , Calcium Carbonate , Extracellular Polymeric Substance Matrix , Metals, Heavy , Thorium , Uranium , Uranium/chemistry , Uranium/metabolism , Calcium Carbonate/chemistry , Thorium/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Bacillaceae/metabolism , Metals, Rare Earth/chemistry , Adsorption , Chemical Precipitation
2.
Harmful Algae ; 135: 102633, 2024 May.
Article in English | MEDLINE | ID: mdl-38830715

ABSTRACT

Nitrogen-fixing cyanobacteria not only cause severe blooms but also play an important role in the nitrogen input processes of lakes. The production of extracellular polymeric substances (EPS) and the ability to fix nitrogen from the atmosphere provide nitrogen-fixing cyanobacteria with a competitive advantage over other organisms. Temperature and nitrogen availability are key environmental factors in regulating the growth of cyanobacteria. In this study, Dolichospermum (formerly known as Anabaena) was cultivated at three different temperatures (10 °C, 20 °C, and 30 °C) to examine the impact of temperature and nitrogen availability on nitrogen fixation capacity and the release of EPS. Initially, confocal laser scanning microscopy (CLSM) and the quantification of heterocysts at different temperatures revealed that lower temperatures (10 °C) hindered the differentiation of heterocysts under nitrogen-deprived conditions. Additionally, while heterocysts inhibited the photosynthetic activity of Dolichospermum, the secretion of EPS was notably affected by nitrogen limitation, particularly at 30 °C. Finally, real-time quantitative polymerase chain reaction (qPCR) was used to measure the expression of nitrogen-utilizing genes (ntcA and nifH) and EPS synthesis-related genes (wzb and wzc). The results indicated that under nitrogen-deprived conditions, the expression of each gene was upregulated, and there was a significant correlation between the upregulation of nitrogen-utilizing and EPS synthesis genes (P < 0.05). Our findings suggested that Dolichospermum responded to temperature variation by affecting the formation of heterocysts, impacting its potential nitrogen fixation capacity. Furthermore, the quantity of EPS released was more influenced by nitrogen availability than temperature. This research enhances our comprehension of interconnections between nitrogen deprivation and EPS production under the different temperatures.


Subject(s)
Extracellular Polymeric Substance Matrix , Nitrogen Fixation , Nitrogen , Temperature , Nitrogen/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Anabaena/metabolism , Anabaena/physiology , Anabaena/genetics
3.
J Microbiol Methods ; 221: 106942, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704038

ABSTRACT

Methylation analysis was performed on methylated alditol acetate standards and Streptococcus mutans extracellular polymeric substances (EPS) produced from wild-type and Gtf knockout strains (∆GtfB, ∆GtfB, and ∆GtfD). The methylated alditol acetate standards were representative of glycosidic linkages found in S. mutans EPS and were used to calibrate the GC-MS system for an FID detector and MS (TIC) and produce molar response factor, a necessary step in quantitative analysis. FID response factors were consistent with literature values (Sweet et al., 1975) and found to be the superior option for quantitative results, although the TIC response factors now give researchers without access to an FID detector a needed option for molar response factor correction. The GC-MS analysis is then used to deliver the ratio of the linkage types within a biofilm.


Subject(s)
Biofilms , Gas Chromatography-Mass Spectrometry , Polysaccharides, Bacterial , Streptococcus mutans , Biofilms/growth & development , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Gas Chromatography-Mass Spectrometry/methods , Polysaccharides, Bacterial/metabolism , Glycosides/metabolism , Methylation , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Polysaccharides/metabolism
4.
Front Cell Infect Microbiol ; 14: 1374817, 2024.
Article in English | MEDLINE | ID: mdl-38779563

ABSTRACT

Introduction: Periodontal diseases are known to be associated with polymicrobial biofilms and inflammasome activation. A deeper understanding of the subgingival cytological (micro) landscape, the role of extracellular DNA (eDNA) during periodontitis, and contribution of the host immune eDNA to inflammasome persistence, may improve our understanding of the mechanisms underlaying severe forms of periodontitis. Methods: In this work, subgingival biolfilms developing on biologically neutral polyethylene terephthalate films placed in gingival cavities of patients with chronic periodontitis were investigated by confocal laser scanning microscopy (CLSM). This allowed examination of realistic cytological landscapes and visualization of extracellular polymeric substances (EPS) including amyloids, total proteins, carbohydrates and eDNA, as well as comparison with several single-strain in vitro model biofilms produced by oral pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus gordonii, S. sanguinis and S. mitis. Fluorescence in situ hybridization (FISH) analysis was also used to identify eDNA derived from eubacteria, streptococci and members of the Bacteroides-Porphyromonas-Prevotella (BPP) group associated with periodontitis. Results: Analysis of subgingival biofilm EPS revealed low levels of amyloids and high levels of eDNA which appears to be the main matrix component. However, bacterial eDNA contributed less than a third of the total eDNA observed, suggesting that host-derived eDNA released in neutrophil extracellular traps may be of more importance in the development of biofilms causing periodontitis. Discussion: eDNA derived from host immunocompetent cells activated at the onset of periodontitis may therefore be a major driver of bacterial persistence and pathogenesis.


Subject(s)
Biofilms , Periodontitis , Biofilms/growth & development , Humans , Periodontitis/microbiology , Microscopy, Confocal , DNA , In Situ Hybridization, Fluorescence , Bacteria/genetics , DNA, Bacterial/genetics , Inflammasomes/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Gingiva/microbiology , Chronic Periodontitis/microbiology , Chronic Periodontitis/immunology
5.
Sci Total Environ ; 932: 173059, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723976

ABSTRACT

Microbial extracellular polymeric substances (EPS) are an important component in sediment ecology. However, most research is highly skewed towards the northern hemisphere and in more permanent systems. This paper investigates EPS (i.e., carbohydrates and proteins) dynamics in arid Austral zone temporary pans sediments. Colorimetric methods and sequence-based metagenomics techniques were employed in a series of small temporary pan ecosystems characterised by alternating wet and dry hydroperiods. Microbial community patterns of distribution were evaluated between seasons (hot-wet and cool-dry) and across depths (and inferred inundation period) based on estimated elevation. Carbohydrates generally occurred in relatively higher proportions than proteins; the carbohydrate:protein ratio was 2.8:1 and 1.6:1 for the dry and wet season respectively, suggesting that EPS found in these systems was largely diatom produced. The wet- hydroperiods (Carbohydrate mean 102 µg g-1; Protein mean 65 µg g-1) supported more EPS production as compared to the dry- hydroperiods (Carbohydrate mean 73 µg g-1; Protein mean 26 µg g-1). A total of 15,042 Unique Amplicon Sequence Variants (ASVs) were allocated to 51 bacterial phyla and 1127 genera. The most abundant genera had commonality in high temperature tolerance, with Firmicutes, Actinobacteria and Proteobacteria in high abundances. Microbial communities were more distinct between seasons compared to within seasons which further suggested that the observed metagenome functions could be seasonally driven. This study's findings implied that there were high levels of denitrification by mostly nitric oxide reductase and nitrite reductase enzymes. EPS production was high in the hot-wet season as compared to relatively lower rates of nitrification in the cool-dry season by ammonia monooxygenases. Both EPS quantities and metagenome functions were highly associated with availability of water, with high rates being mainly associated with wet- hydroperiods compared to dry- hydroperiods. These data suggest that extended dry periods threaten microbially mediated processes in temporary wetlands, with implications to loss of biodiversity by desiccation.


Subject(s)
Ecosystem , Extracellular Polymeric Substance Matrix , Microbiota , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/classification , Bacteria/genetics , Seasons , Environmental Monitoring
6.
Water Res ; 257: 121718, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723358

ABSTRACT

Extracellular polymeric substances (EPS) participate in the removal of organic micropollutants (OMPs), but the primary pathways of removal and detailed mechanisms remain elusive. We evaluated the effect of EPS on removal for 16 distinct chemical classes of OMPs during anaerobic digestion (AD). The results showed that hydrophobic OMPs (HBOMPs) could not be removed by EPS, while hydrophilic OMPs (HLOMPs) were amenable to removal via adsorption and biotransformation of EPS. The adsorption and biotransformation of HLOMPs by EPS accounted up to 19.4 ± 0.9 % and 6.0 ± 0.8 % of total removal, respectively. Further investigations into the adsorption and biotransformation mechanisms of HLOMPs by EPS were conducted utilizing spectral, molecular dynamics simulation, and electrochemical analysis. The results suggested that EPS provided abundant binding sites for the adsorption of HLOMPs. The binding of HLOMPs to tryptophan-like proteins in EPS formed nonfluorescent complexes. Hydrogen bonds, hydrophobic interactions and water bridges were key to the binding processes and helped stabilize the complexes. The biotransformation of HLOMPs by EPS may be attributed to the presence of extracellular redox active components (c-type cytochromes (c-Cyts), c-Cyts-bound flavins). This study enhanced the comprehension for the role of EPS on the OMPs removal in anaerobic wastewater treatment.


Subject(s)
Biotransformation , Extracellular Polymeric Substance Matrix , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Adsorption , Anaerobiosis , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation
7.
Water Res ; 257: 121754, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38762929

ABSTRACT

Algal-bacterial granular sludge (ABGS) system is promising in wastewater treatment for its potential in energy-neutrality and carbon-neutrality. However, traditional cultivation of ABGS poses significant challenges attributable to its long start-up period and high energy consumption. Extracellular polymeric substances (EPS), which could be stimulated as a self-defense strategy in cells under toxic contaminants stress, has been considered to contribute to the ABGS granulation process. In this study, photogranulation of ABGS by EPS regulation in response to varying loading rates of N-Methylpyrrolidone (NMP) was investigated for the first time. The results indicated the formation of ABGS with a maximum average diameter of ∼3.3 mm and an exceptionally low SVI5 value of 67 ± 2 mL g-1 under an NMP loading rate of 125 mg L-1 d-1, thereby demonstrating outstanding settleability. Besides, almost complete removal of 300 mg L-1 NMP could be achieved at hydraulic retention time of 48 h, accompanied by chemical oxygen demand (COD) and total nitrogen (TN) removal efficiencies higher than 90 % and 70 %, respectively. Moreover, possible degradation pathway and metabolism mechanism in the ABGS system for enhanced removal of NMP and nitrogen were proposed. In this ABGS system, the mycelium with network structure constituted by filamentous microorganisms was a prerequisite for photogranulation, instead of necessarily leading to granulation. Stress of 100-150 mg L-1 d-1 NMP loading rate stimulated tightly-bound EPS (TB-EPS) variation, resulting in rapid photogranulation. The crucial role of TB-EPS was revealed with the involved mechanisms being clarified. This study provides a novel insight into ABGS development based on the TB-EPS regulation by NMP, which is significant for achieving the manipulation of photogranules.


Subject(s)
Extracellular Polymeric Substance Matrix , Pyrrolidinones , Sewage , Sewage/microbiology , Extracellular Polymeric Substance Matrix/metabolism , Pyrrolidinones/metabolism , Waste Disposal, Fluid , Nitrogen , Bacteria/metabolism , Biological Oxygen Demand Analysis , Wastewater/chemistry
8.
PeerJ ; 12: e16973, 2024.
Article in English | MEDLINE | ID: mdl-38560449

ABSTRACT

The discovery of plant-derived compounds that are able to combat antibiotic-resistant pathogens is an urgent demand. Over years, Centaurea hyalolepis attracted considerable attention because of its beneficial medical properties. Phytochemical analyses revealed that Centaurea plant species contain several metabolites, such as sesquiterpene lactones (STLs), essential oils, flavonoids, alkaloids, and lignans.The organic extract of C. hyalolepis plant, collected in Palestine, showed significant antimicrobial properties towards a panel of Gram-negative and Gram-positive bacterial strains when the Minimal Inhibitory Concentration (MIC) values were evaluated by broth microdilution assays. A bio-guided fractionation of the active extract via multiple steps of column and thin layer chromatography allowed us to obtain three main compounds. The isolated metabolites were identified as the STLs cnicin, 11ß,13-dihydrosalonitenolide and salonitenolide by spectroscopic and spectrometric analyses. Cnicin conferred the strongest antimicrobial activity among the identified compounds. Moreover, the evaluation of its antibiofilm activity by biomass assays through crystal violet staining revealed almost 30% inhibition of biofilm formation in the case of A. baumannii ATCC 17878 strain. Furthermore, the quantification of carbohydrates and proteins present in the extracellular polymeric substance (EPS) revealed the ability of cnicin to significantly perturb biofilm structure. Based on these promising results, further investigations might open interesting perspectives to its applicability in biomedical field to counteract multidrug resistant infections.


Subject(s)
Anti-Infective Agents , Centaurea , Sesquiterpenes , Centaurea/chemistry , Extracellular Polymeric Substance Matrix , Anti-Infective Agents/metabolism , Anti-Bacterial Agents/pharmacology , Phytochemicals/pharmacology
9.
NPJ Biofilms Microbiomes ; 10(1): 36, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561371

ABSTRACT

Marine ecosystems are influenced by phytoplankton aggregation, which affects processes like marine snow formation and harmful events such as marine mucilage outbreaks. Phytoplankton secrete exopolymers, creating an extracellular matrix (ECM) that promotes particle aggregation. This ECM attracts heterotrophic bacteria, providing a nutrient-rich and protective environment. In terrestrial environments, bacterial colonization near primary producers relies on attachment and the formation of multidimensional structures like biofilms. Bacteria were observed attaching and aggregating within algal-derived exopolymers, but it is unclear if bacteria produce an ECM that contributes to this colonization. This study, using Emiliania huxleyi algae and Phaeobacter inhibens bacteria in an environmentally relevant model system, reveals a shared algal-bacterial ECM scaffold that promotes algal-bacterial aggregation. Algal exudates play a pivotal role in promoting bacterial colonization, stimulating bacterial exopolysaccharide (EPS) production, and facilitating a joint ECM formation. A bacterial biosynthetic pathway responsible for producing a specific EPS contributing to bacterial ECM formation is identified. Genes from this pathway show increased expression in algal-rich environments. These findings highlight the underestimated role of bacteria in aggregate-mediated processes in marine environments, offering insights into algal-bacterial interactions and ECM formation, with implications for understanding and managing natural and perturbed aggregation events.


Subject(s)
Ecosystem , Phytoplankton , Phytoplankton/metabolism , Phytoplankton/microbiology , Extracellular Matrix , Extracellular Polymeric Substance Matrix
10.
J Hazard Mater ; 470: 134182, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583202

ABSTRACT

Establishing an economic and sustained Fenton oxidation system to enhance sludge dewaterability and carbamazepine (CBZ) removal rate is a crucial path to simultaneously achieve sludge reduction and harmless. Leveraging the principles akin to "tea making", we harnessed tea waste to continually release tea polyphenols (TP), thus effectively maintaining high level of oxidation efficiency through the sustained Fenton reaction. The results illustrated that the incorporation of tea waste yielded more favorable outcomes in terms of water content reduction and CBZ removal compared to direct TP addition within the Fe(III)/hydrogen peroxide (H2O2) system. Concomitantly, this process mainly generated hydroxyl radical (•OH) via three oxidation pathways, effectively altering the properties of extracellular polymeric substances (EPS) and promoting the degradation of CBZ from the sludge mixture. The interval addition of Fe(III) and H2O2 heightened extracellular oxidation efficacy, promoting the desorption and removal of CBZ. The degradation of EPS prompted the transformation of bound water to free water, while the formation of larger channels drove the discharge of water. This work achieved the concept of treating waste with waste through using tea waste to treat sludge, meanwhile, can provide ideas for subsequent sludge harmless disposal.


Subject(s)
Carbamazepine , Hydrogen Peroxide , Iron , Oxidation-Reduction , Sewage , Tea , Water Pollutants, Chemical , Carbamazepine/chemistry , Hydrogen Peroxide/chemistry , Tea/chemistry , Sewage/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Waste Disposal, Fluid/methods , Ferric Compounds/chemistry , Polyphenols/chemistry
11.
J Hazard Mater ; 470: 134244, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38598879

ABSTRACT

Spirulina platensis can secrete extracellular polymeric substances (EPS) helping to protect damage from stress environment, such as cadmium (Cd2+) exposure. However, the responding mechanism of S. platensis and the secreted EPS to exposure of Cd2+ is still unclear. This research focuses on the effects of Cd2+ on the composition and structure of the EPS and the response mechanism of EPS secretion from S. platensis for Cd2+ exposure. S. platensis can produce 261.37 mg·g-1 EPS when exposing to 20 mg·L-1 CdCl2, which was 2.5 times higher than the control group. The S. platensis EPS with and without Cd2+ treatment presented similar and stable irregularly fibrous structure. The monosaccharides composition of EPS in Cd2+ treated group are similar with control group but with different monosaccharides molar ratios, especially for Rha, Gal, Glc and Glc-UA. And the Cd2+ treatment resulted in a remarkable decline of humic acid and fulvic acid content. The antioxidant ability of S. platensis EPS increased significantly when exposed to 20 mg·L-1 CdCl2, which could be helpful for S. platensis protecting damage from high concentration of Cd2+. The transcriptome analysis showed that sulfur related metabolic pathways were up-regulated significantly, which promoted the synthesis of sulfur-containing amino acids and the secretion of large amounts of EPS.


Subject(s)
Cadmium , Spirulina , Spirulina/drug effects , Spirulina/metabolism , Cadmium/toxicity , Humic Substances , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/drug effects , Benzopyrans/pharmacology , Antioxidants/metabolism , Monosaccharides
12.
Appl Microbiol Biotechnol ; 108(1): 286, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578301

ABSTRACT

Ultraviolet-C light-emitting diodes (UV-C LEDs) are an emerging technology for decontamination applications in different sectors. In this study, the inactivation of bacterial biofilms was investigated by applying an UV-C LED emitting at 280 nm and by measuring both the influence of the initial cell density (load) and presence of an extracellular matrix (biofilm). Two bacterial strains exposing diverging matrix structures and biochemical compositions were used: Pseudomonas aeruginosa and Leuconostoc citreum. UV-C LED irradiation was applied at three UV doses (171 to 684 mJ/cm2) on both surface-spread cells and on 24-h biofilms and under controlled cell loads, and bacterial survival was determined. All surface-spread bacteria, between 105 and 109 CFU/cm2, and biofilms at 108 CFU/cm2 showed that bacterial response to irradiation was dose-dependent. The treatment efficacy decreased significantly for L. citreum surface-spread cells when the initial cell load was high, while no load effect was observed for P. aeruginosa. Inactivation was also reduced when bacteria were grown under a biofilm form, especially for P. aeruginosa: a protective effect could be attributed to abundant extracellular DNA and proteins in the matrix of P. aeruginosa biofilms, as revealed by Confocal Laser Scanning Microscopy observations. This study showed that initial cell load and exopolymeric substances are major factors influencing UV-C LED antibiofilm treatment efficacy. KEY POINTS: • Bacterial cell load (CFU/cm2) could impact UV-C LED irradiation efficiency • Characteristics of the biofilm matrix have a paramount importance on inactivation • The dose to be applied can be predicted based on biofilm properties.


Subject(s)
Biofilms , Disinfection , Extracellular Matrix , Bacteria , Extracellular Polymeric Substance Matrix , Pseudomonas aeruginosa
13.
Water Environ Res ; 96(4): e11015, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38599573

ABSTRACT

The recent SARS-CoV-2 outbreak yielded substantial data regarding virus fate and prevalence at water reclamation facilities (WRFs), identifying influential factors as natural decay, adsorption, light, pH, salinity, and antagonistic microorganisms. However, no studies have quantified the impact of these factors in full scale WRFs. Utilizing a mass balance approach, we assessed the impact of natural decay and other fate mechanisms on genetic marker removal during water reclamation, through the use of sludge and wastewater genetic marker loading estimates. Results indicated negligible removal of genetic markers during P/PT (primary effluent (PE) p value: 0.267; preliminary and primary treatment (P/PT) accumulation p value: 0.904; and thickened primary sludge (TPS) p value: 0.076) indicating no contribution of natural decay and other fate mechanisms toward removal in P/PT. Comparably, adsorption and decomposition was found to be the dominant pathway for genetic marker removal (thickened waste activated sludge (TWAS) log loading 9.75 log10 GC/day); however, no estimation of log genetic marker accumulation could be carried out due to high detections in TWAS. PRACTITIONER POINTS: The mass balance approach suggested that the contribution of natural decay and other fate mechanisms to virus removal during wastewater treatment are negligible compared with adsorption and decomposition in P/PT (p value: 0.904). During (P/PT), a higher viral load remained in the (PE) (14.16 log10 GC/day) compared with TPS (13.83 log10 GC/day); however, no statistical difference was observed (p value: 0.280) indicting that adsorption/decomposition most probably did not occur. In secondary treatment (ST), viral genetic markers in TWAS were consistently detected (13.41 log10 GC/day) compared with secondary effluent (SE), indicating that longer HRT and the potential presence of extracellular polymeric substance-containing enriched biomass enabled adsorption/decomposition. Estimations of total solids and volatile solids for TPS and TWAS indicated that adsorption affinity was different between solids sampling locations (p value: <0.0001).


Subject(s)
COVID-19 , Water Purification , Humans , Sewage/chemistry , SARS-CoV-2/genetics , Genetic Markers , Water , Extracellular Polymeric Substance Matrix , Waste Disposal, Fluid/methods
14.
Environ Sci Technol ; 58(15): 6552-6563, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38571383

ABSTRACT

Extracellular polymeric substances (EPS) ubiquitously encapsulate microbes and play crucial roles in various environmental processes. However, understanding their complex interactions with dynamic bacterial behaviors, especially during the disinfection process, remains very limited. In this work, we investigated the impact of EPS on bacterial disinfection kinetics by developing a permanent EPS removal strategy. We genetically disrupted the synthesis of exopolysaccharides, the structural components of EPS, in Pseudomonas aeruginosa, a well-known EPS-producing opportunistic pathogen found in diverse environments, creating an EPS-deficient strain. This method ensured a lasting absence of EPS while maintaining bacterial integrity and viability, allowing for real-time in situ investigations of the roles of EPS in disinfection. Our findings indicate that removing EPS from bacteria substantially lowered their susceptibility threshold to disinfectants such as ozone, chloramine B, and free chlorine. This removal also substantially accelerated disinfection kinetics, shortened the resistance time, and increased disinfection efficiency, thereby enhancing the overall bactericidal effect. The absence of EPS was found to enhance bacterial motility and increase bacterial cell vulnerability to disinfectants, resulting in greater membrane damage and intensified reactive oxygen species (ROS) production upon exposure to disinfectants. These insights highlight the central role of EPS in bacterial defenses and offer promising implications for developing more effective disinfection strategies.


Subject(s)
Disinfectants , Disinfection , Disinfection/methods , Extracellular Polymeric Substance Matrix , Disinfectants/pharmacology , Chlorine/pharmacology , Kinetics
15.
Chemosphere ; 358: 142110, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657688

ABSTRACT

Biofouling is inevitable in the membrane process, particularly in membrane bioreactors (MBR) combined with activated sludge processes. Regulating microbial signaling systems with diffusible signal factors such as cis-2-Decenoic acid (CDA) can control biofilm formation without microbial death or growth inhibition. This study assessed the effectiveness of CDA in controlling biofouling in membrane bioreactors (MBRs), essential for wastewater treatment. By modulating microbial signaling, CDA mitigated biofilm formation without hindering microbial growth. Analysis using Confocal Laser Scanning Microscopy (CLSM) revealed structural alterations in the biofilm, reducing biomass and thickness upon CDA application. Moreover, examination of extracellular polymeric substances (EPS) highlighted a decrease in total EPS, particularly effective polysaccharides. In addition, the possibility of shifting from high molecular weight EPS to low molecular weight EPS was revealed through the change in dispersion activity. The 56% extension of MBR operational lifespan resulting from the reduction in EPS is anticipated to offer potential cost savings and improved performance. Despite these results, further investigation is crucial to validate any potential environmental risks associated with CDA and to comprehend its long-term effects at various conditions.


Subject(s)
Biofilms , Biofouling , Bioreactors , Fatty Acids, Monounsaturated , Membranes, Artificial , Wastewater , Biofouling/prevention & control , Biofilms/drug effects , Wastewater/chemistry , Waste Disposal, Fluid/methods , Extracellular Polymeric Substance Matrix , Sewage/chemistry
16.
Chemosphere ; 358: 142115, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657689

ABSTRACT

Extracellular polymeric substance (EPS) with highly hydrophilic groups and sludge with high compressibility are determined sludge dewaterability. Herein, Fe2+ catalyzed calcium peroxide (CaO2) assisted by oxalic acid (OA) Fenton-like process combined with coal slime was applied to improve sludge dewaterability. Results demonstrated that the sludge treated by 0.45/1/1.1-OA/Fe2+/CaO2 mM/g DS, the water content (WC), specific resistance to filtration and capillary suction time dropped to 53.01%, 24.3 s and 1.2 × 1012 m/kg, respectively. Under coal slime ratio as 0.6, WC and compressibility were further reduced to 42.72% and 0.66, respectively. The hydroxyl radicals generated by OA/Fe2+/CaO2 under near-neutral pH layer by layer collapsed EPS, resulting in the degradation and migration of inner releasing components and the exposure of inner sludge flocs skeleton. The hydrophilic tryptophan-like protein of TB-EPS were degraded into aromatic protein of S-EPS and exposed inner hydrophobic sites. The protein secondary structures were transformed by destroying hydrophilic functional groups, which were attributed to the reducing α-helix ratio and reconstructing ß-sheet. Moreover, coal slime as the skeleton builder lowered compressibility and formed more macropores to increase the filterability of pre-oxidized sludge for the higher intensity of rigid substances. This study deepened the understanding of OA enhanced Fenton-like system effects on sludge dewaterability and proposed a cost-effective and synergistic waste treatment strategy in sludge dewatering.


Subject(s)
Oxalic Acid , Sewage , Waste Disposal, Fluid , Sewage/chemistry , Oxalic Acid/chemistry , Waste Disposal, Fluid/methods , Iron/chemistry , Peroxides/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Hydrogen Peroxide/chemistry , Hydrophobic and Hydrophilic Interactions , Water/chemistry , Coal
17.
Sci Total Environ ; 927: 172376, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38604376

ABSTRACT

Biofilms are widely used and play important roles in biological processes. Low temperature of wastewater inhibits the development of biofilms derived from wastewater activated sludge. However, the specific mechanism of temperature on biofilm development is still unclear. This study explored the mechanism of temperature on biofilm development and found a feasible method to enhance biofilm development at low temperature. The amount of biofilm development decreased by approximately 66 % and 55 % at 4 °C and 15 °C, respectively, as compared to 28 °C. The cyclic dimeric guanosine monophosphate (c-di-GMP) concentration also decreased at low temperature and was positively correlated with extracellular polymeric substance (EPS) content, formation, and adhesion strength. Microbial community results showed that low temperature inhibited the normal survival of most microorganisms, but promoted the growth of some psychrophile bacteria like Sporosarcina, Caldilineaceae, Gemmataceae, Anaerolineaceae and Acidobacteriota. Further analysis of functional genes demonstrated that the abundance of functional genes related to the synthesis of c-di-GMP (K18968, K18967 and K13590) decreased at low temperature. Subsequently, the addition of exogenous spermidine increased the level of intracellular c-di-GMP and alleviated the inhibition effect of low temperature on biofilm development. Therefore, the possible mechanism of low temperature on biofilm development could be the inhibition of the microorganism activity and reduction of the communication level between cells, which is the closely related to the EPS content, formation, and adhesion strength. The enhancement of c-di-GMP level through the exogenous addition of spermidine provides an alternative strategy to enhance biofilm development at low temperatures. The results of this study enhance the understanding of the influence of temperature on biofilm development and provide possible strategies for enhancing biofilm development at low temperatures.


Subject(s)
Bacteria , Biofilms , Cyclic GMP , Bacterial Physiological Phenomena , Cold Temperature , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Extracellular Polymeric Substance Matrix , Wastewater/microbiology
18.
J Hazard Mater ; 471: 134335, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38657504

ABSTRACT

The over-dosing use of chloroquine phosphate (CQ) poses severe threats to human beings and ecosystem due to the high persistence and biotoxicity. The discharge of CQ into wastewater would affect the biomass activity and process stability during the biological processes, e.g., anammox. However, the response mechanism of anammox consortia to CQ remain unknown. In this study, the accurate role of extracellular polymeric substances barrier in attenuating the negative effects of CQ, and the mechanism on cytotoxic behavior were dissected by molecular spectroscopy and computational chemistry. Low concentrations (≤6.0 mg/L) of CQ hardly affected the nitrogen removal performance due to the adaptive evolution of EPS barrier and anammox bacteria. Compact protein of EPS barrier can bind more CQ (0.24 mg) by hydrogen bond and van der Waals force, among which O-H and amide II region respond CQ binding preferentially. Importantly, EPS contributes to the microbiota reshape with selectively enriching Candidatus_Kuenenia for self-protection. Furthermore, the macroscopical cytotoxic behavior was dissected at a molecular level by CQ fate/distribution and computational chemistry, suggesting that the toxicity was ascribed to attack of CQ on functional proteins of anammox bacteria with atom N17 (f-=0.1209) and C2 (f+=0.1034) as the most active electrophilic and nucleophilic sites. This work would shed the light on the fate and risk of non-antibiotics in anammox process.


Subject(s)
Chloroquine , Extracellular Polymeric Substance Matrix , Chloroquine/pharmacology , Chloroquine/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Bacteria/metabolism , Bacteria/drug effects , Wastewater/chemistry , Microbial Consortia/drug effects
19.
J Hazard Mater ; 471: 134255, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38669934

ABSTRACT

In recent years, large quantities of pharmaceuticals and personal care products (PPCPs) have been discharged into sewers, while the mechanisms of PPCPs enrichment in sewer sediments have rarely been revealed. In this study, three PPCPs (tetracycline, sulfamethoxazole, and triclocarban) were added consecutively over a 90-day experimental period to reveal the mechanisms of PPCPs enrichment and the transmission of resistance genes in sewer sediments. The results showed that tetracycline (TC) and triclocarban (TCC) have higher adsorption concentration in sediments compared to sulfamethoxazole (SMX). The absolute abundance of Tets and suls genes increased in sediments under PPCPs pressure. The increase in secretion of extracellular polymeric substances (EPS) and the loosening of the structure exposed a large number of hydrophobic functional groups, which promoted the adsorption of PPCPs. The absolute abundance of antibiotic resistance genes (ARGs), EPS and the content of PPCPs in sediments exhibited significant correlations. The enrichment of PPCPs in sediments was attributed to the accumulation of EPS, which led to the proliferation of ARGs. These findings contributed to further understanding of the fate of PPCPs in sewer sediments and opened a new perspective for consideration of controlling the proliferation of resistance genes.


Subject(s)
Cosmetics , Sewage , Sulfamethoxazole , Tetracycline , Water Pollutants, Chemical , Sulfamethoxazole/analysis , Adsorption , Tetracycline/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Carbanilides/analysis , Drug Resistance, Microbial/genetics , Genes, Bacterial , Anti-Bacterial Agents , Pharmaceutical Preparations/analysis , Extracellular Polymeric Substance Matrix
20.
J Hazard Mater ; 471: 134352, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38677120

ABSTRACT

Microcystis typically forms colonies under natural conditions, which contributes to occurrence and prevalence of algal blooms. The colonies consist of Microcystis and associated bacteria (AB), embedded in extracellular polymeric substances (EPS). Previous studies indicate that AB can induce Microcystis to form colonies, however the efficiency is generally low and results in a uniform morphotype. In this study, by using filtrated natural water, several AB strains induced unicellular M. aeruginosa to form colonies resembling several Microcystis morphotypes. The mechanisms were investigated with Methylobacterium sp. Z5. Ca2+ was necessary for Z5 to induce Microcystis to form colonies, while dissolved organic matters (DOM) facilitated AB to agglomerate Microcystis to form large colonies. EPS of living Z5, mainly the aromatic protein components, played a key role in colony induction. Z5 initially aggregated Microcystis via the bridging effects of Ca2+ and DOM, followed by the induction of EPS synthesis and secretion in Microcystis. In this process, the colony forming mode shifted from cell adhesion to a combination of cell adhesion and cell division. Intriguingly, Z5 drove the genomic rearrangement of Microcystis by upregulating some transposase genes. This study unveiled a novel mechanism about Microcystis colony formation and identified a new driver of Microcystis genomic evolution.


Subject(s)
Calcium , Extracellular Polymeric Substance Matrix , Microcystis , Microcystis/metabolism , Calcium/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Methylobacterium/metabolism , Methylobacterium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...