Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 951
Filter
1.
PLoS One ; 19(5): e0301761, 2024.
Article in English | MEDLINE | ID: mdl-38718025

ABSTRACT

Tracking small extracellular vesicles (sEVs), such as exosomes, requires staining them with dyes that penetrate their lipid bilayer, a process that leaves excess dye that needs to be mopped up to achieve high specificity. Current methods to remove superfluous dye have limitations, among them that they are time-intensive, carry the risk of losing sample and can require specialized equipment and materials. Here we present a fast, easy-to-use, and cost-free protocol for cleaning excess dye from stained sEV samples by adding their parental cells to the mixture to absorb the extra dye much like sponges do. Since sEVs are considered a next-generation drug delivery system, we further show the success of our approach at removing excess chemotherapeutic drug, daunorubicin, from the sEV solution.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Humans , Daunorubicin/economics , Coloring Agents/chemistry , Staining and Labeling/methods , Staining and Labeling/economics
2.
Biotechnol J ; 19(5): e2400128, 2024 May.
Article in English | MEDLINE | ID: mdl-38797724

ABSTRACT

Small extracellular vesicles (sEVs) are nanosized vesicles enclosed in a lipid membrane released by nearly all cell types. sEVs have been considered as reliable biomarkers for diagnostics and effective carriers. Despite the clear importance of sEV functionality, sEV research faces challenges imposed by the small size and precise imaging of sEVs. Recent advances in live and high-resolution microscopy, combined with efficient labeling strategies, enable us to investigate the composition and behavior of EVs within living organisms. Here, a modified sEVs was generated with a near infrared fluorescence protein mKate2 using a VSVG viral pseudotyping-based approach for monitoring sEVs. An observed was made that the mKate2-tagged protein can be incorporated into the membranes of sEVs without altering their physical properties. In vivo imaging demonstrates that sEVs labeled with mKate2 exhibit excellent brightness and high photostability, allowing the acquisition of long-term investigation comparable to those achieved with mCherry labeling. Importantly, the mKate2-tagged sEVs show a low toxicity and exhibit a favorable safety profile. Furthermore, the co-expression of mKate2 and rabies virus glycoprotein (RVG) peptide on sEVs enables brain-targeted visualization, suggesting the mKate2 tag does not alter the biodistribution of sEVs. Together, the study presents the mKate2 tag as an efficient tracker for sEVs to monitor tissue-targeting and biodistribution in vivo.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Animals , Mice , Humans , Luminescent Proteins/chemistry , Luminescent Proteins/metabolism , Brain/metabolism , Brain/diagnostic imaging , Tissue Distribution
3.
Anal Chim Acta ; 1309: 342699, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772652

ABSTRACT

Extracellular vesicles (EVs) are cell-released, nucleus-free particles with a double-membrane structure that effectively prevents degradation of internal components by a variety of salivary enzymes. Saliva is an easily accessible biofluid that contains a wealth of valuable information for disease diagnosis and monitoring and especially reflect respiratory and digestive tract diseases. However, the lack of efficient and high-throughput methods for proteomic analysis of salivary biomarkers poses a significant challenge. Herein, we designed a salivary EV amphiphile-dendrimer supramolecular probe (SEASP) array which enables efficient enrichment and in situ detection of EVs protein biomarkers. Detergent Tween-20 washing of SEASP arrays removes high abundance of heteroproteins from saliva well. This array shows good analytical performance in the linear range of 10 µL-150 µL (LOD = 0.4 µg protein, or 10 µL saliva), exhibiting a good recovery (80.0 %). Compared to ultracentrifugation (UC), this procedure provides simple and convenient access to high-purity EVs (1.3 × 109 particles per mg protein) with good physiological status and structure. Coupling with mass spectrometry based proteomic analysis, differentially expressed proteins as selected asthma biomarkers have been screened. Then, we validated the proteomics primary screening results through clinical samples (100 µL each) using the SEASP array. Utilizing the dual antibody fluorescence technology, SEASP enables the simultaneous high-throughput detection of two proteins. Therefore, the EVs marker protein CD81 could be used as an internal standard to normalize the number of EVs, which was stably expressed in EVs. Proteomics and array results suggested that HNRNPU (P = 4.9 * 10-6) and MUC5B (P = 4.7 * 10-11) are promising protein biomarkers for infantile asthma. HNRNPU and MUC5B may be associated with disease onset and subtypes. The SEASP arrays provide a significant advancement in the field of salivary biomarker. The array enables high-throughput in situ protein detection for highly viscous and complex biological samples. It provides a rapid, low-cost, highly specific screening procedure and experimental basis for early disease screening and diagnosis in the field of liquid biopsy.


Subject(s)
Extracellular Vesicles , Proteomics , Saliva , Saliva/chemistry , Humans , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Proteomics/methods , Biomarkers/analysis , High-Throughput Screening Assays , Asthma/diagnosis , Asthma/metabolism
4.
J Vis Exp ; (207)2024 May 03.
Article in English | MEDLINE | ID: mdl-38767363

ABSTRACT

Human adipose-derived mesenchymal stem cells (ADSCs) can promote the regeneration and reconstruction of various tissues and organs. Recent research suggests that their regenerative function may be attributed to cell-cell contact and cell paracrine effects. The paracrine effect is an important way for cells to interact and transfer information over short distances, in which extracellular vesicles (EVs) play a functional role as carriers. There is significant potential for ADSC EVs in regenerative medicine. Multiple studies have reported on the effectiveness of these methods. Various methods for extracting and isolating EVs are currently described based on principles such as centrifugation, precipitation, molecular size, affinity, and microfluidics. Ultracentrifugation is regarded as the gold standard for isolating EVs. Nevertheless, a meticulous protocol to highlight precautions during ultracentrifugation is still absent. This study presents the methodology and crucial steps involved in ADSC culture, supernatant collection, and EV ultracentrifugation. However, even though ultracentrifugation is cost-effective and requires no further treatment, there are still some inevitable drawbacks, such as a low recovery rate and EV aggregation.


Subject(s)
Adipose Tissue , Extracellular Vesicles , Mesenchymal Stem Cells , Ultracentrifugation , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/chemistry , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Ultracentrifugation/methods , Adipose Tissue/cytology , Cytological Techniques/methods
5.
J Nanobiotechnology ; 22(1): 274, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773614

ABSTRACT

Small extracellular vesicle-derived microRNAs (sEV-miRNAs) have emerged as promising noninvasive biomarkers for early cancer diagnosis. Herein, we developed a molecular probe based on three-dimensional (3D) multiarmed DNA tetrahedral jumpers (mDNA-Js)-assisted DNAzyme activated by Na+, combined with a disposable paper-based electrode modified with a Zr-MOF-rGO-Au NP nanocomplex (ZrGA) to fabricate a novel biosensor for sEV-miRNAs Assay. Zr-MOF tightly wrapped by rGO was prepared via a one-step method, and it effectively aids electron transfer and maximizes the effective reaction area. In addition, the mechanically rigid, and nanoscale-addressable mDNA-Js assembled from the bottom up ensure the distance and orientation between fixed biological probes as well as avoid probe entanglement, considerably improving the efficiency of molecular hybridization. The fabricated bioplatform achieved the sensitive detection of sEV-miR-21 with a detection limit of 34.6 aM and a dynamic range from100 aM to 0.2 µM. In clinical blood sample tests, the proposed bioplatform showed results highly consistent with those of qRT-PCRs and the signal increased proportionally with the NSCLC staging. The proposed biosensor with a portable wireless USB-type analyzer is promising for the fast, easy, low-cost, and highly sensitive detection of various nucleic acids and their mutation derivatives, making it ideal for POC biosensing.


Subject(s)
Biosensing Techniques , Extracellular Vesicles , Limit of Detection , Metal-Organic Frameworks , MicroRNAs , Paper , Metal-Organic Frameworks/chemistry , Extracellular Vesicles/chemistry , Humans , Biosensing Techniques/methods , DNA, Catalytic/chemistry , Graphite/chemistry , Gold/chemistry , DNA/chemistry , Metal Nanoparticles/chemistry , Nucleic Acid Hybridization , Electrochemical Techniques/methods , Electrodes , Zirconium/chemistry
6.
Int J Nanomedicine ; 19: 4357-4375, 2024.
Article in English | MEDLINE | ID: mdl-38774027

ABSTRACT

Wound healing is a sophisticated and orderly process of cellular interactions in which the body restores tissue architecture and functionality following injury. Healing of chronic diabetic wounds is difficult due to impaired blood circulation, a reduced immune response, and disrupted cellular repair mechanisms, which are often associated with diabetes. Stem cell-derived extracellular vesicles (SC-EVs) hold the regenerative potential, encapsulating a diverse cargo of proteins, RNAs, and cytokines, presenting a safe, bioactivity, and less ethical issues than other treatments. SC-EVs orchestrate multiple regenerative processes by modulating cellular communication, increasing angiogenesis, and promoting the recruitment and differentiation of progenitor cells, thereby potentiating the reparative milieu for diabetic wound healing. Therefore, this review investigated the effects and mechanisms of EVs from various stem cells in diabetic wound healing, as well as their limitations and challenges. Continued exploration of SC-EVs has the potential to revolutionize diabetic wound care.


Subject(s)
Diabetes Mellitus , Extracellular Vesicles , Stem Cells , Wound Healing , Humans , Wound Healing/drug effects , Extracellular Vesicles/chemistry , Animals , Diabetes Mellitus/therapy , Cell Differentiation , Cell Communication/physiology , Neovascularization, Physiologic , Diabetes Complications/therapy
7.
Int J Biol Macromol ; 268(Pt 2): 131874, 2024 May.
Article in English | MEDLINE | ID: mdl-38692547

ABSTRACT

Serious orthopedic disorders resulting from myriad diseases and impairments continue to pose a considerable challenge to contemporary clinical care. Owing to its limited regenerative capacity, achieving complete bone tissue regeneration and complete functional restoration has proven challenging with existing treatments. By virtue of cellular regenerative and paracrine pathways, stem cells are extensively utilized in the restoration and regeneration of bone tissue; however, low survival and retention after transplantation severely limit their therapeutic effect. Meanwhile, biomolecule materials provide a delivery platform that improves stem cell survival, increases retention, and enhances therapeutic efficacy. In this review, we present the basic concepts of stem cells and extracellular vesicles from different sources, emphasizing the importance of using appropriate expansion methods and modification strategies. We then review different types of biomolecule materials, focusing on their design strategies. Moreover, we summarize several forms of biomaterial preparation and application strategies as well as current research on biomacromolecule materials loaded with stem cells and extracellular vesicles. Finally, we present the challenges currently impeding their clinical application for the treatment of orthopedic diseases. The article aims to provide researchers with new insights for subsequent investigations.


Subject(s)
Extracellular Vesicles , Stem Cells , Extracellular Vesicles/chemistry , Humans , Stem Cells/cytology , Animals , Biocompatible Materials/chemistry , Bone Diseases/therapy , Bone Regeneration , Stem Cell Transplantation/methods , Macromolecular Substances/chemistry , Macromolecular Substances/pharmacology
8.
J Am Chem Soc ; 146(19): 12925-12932, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691507

ABSTRACT

Technological breakthroughs in cryo-electron microscopy (cryo-EM) methods open new perspectives for highly detailed structural characterizations of extracellular vesicles (EVs) and synthetic liposome-protein assemblies. Structural characterizations of these vesicles in solution under a nearly native hydrated state are of great importance to decipher cell-to-cell communication and to improve EVs' application as markers in diagnosis and as drug carriers in disease therapy. However, difficulties in preparing holey carbon cryo-EM grids with low vesicle heterogeneities, at low concentration and with kinetic control of the chemical reactions or assembly processes, have limited cryo-EM use in the EV study. We report a straightforward membrane vesicle cryo-EM sample preparation method that assists in circumventing these limitations by using a free-standing DNA-affinity superlattice for covering holey carbon cryo-EM grids. Our approach uses DNA origami to self-assemble to a solution-stable and micrometer-sized ordered molecular template in which structure and functional properties can be rationally controlled. We engineered the template with cholesterol-binding sites to specifically trap membrane vesicles. The advantages of this DNA-cholesterol-affinity lattice (DCAL) include (1) local enrichment of artificial and biological vesicles at low concentration and (2) isolation of heterogeneous cell-derived membrane vesicles (exosomes) from a prepurified pellet of cell culture conditioned medium on the grid.


Subject(s)
Cryoelectron Microscopy , DNA , Cryoelectron Microscopy/methods , DNA/chemistry , Extracellular Vesicles/chemistry , Humans , Cholesterol/chemistry , Liposomes/chemistry
9.
Anal Methods ; 16(19): 3118-3124, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38699853

ABSTRACT

Small extracellular vesicles (sEVs) are a type of extracellular vesicle that carries many types of molecular information. The identification of sEVs is essential for the non-invasive detection and treatment of illnesses. Hence, there is a significant need for the development of simple, sensitive, and precise methods for sEV detection. Herein, a DNA tweezers-based assay utilizing a "turn-on" mechanism and proximity ligation was suggested for the efficient and rapid detection of sEVs through amplified fluorescence. The target facilitates the proximity combination of the C1 probe and C2 probe, resulting in the formation of a complete extended sequence. The elongated sequence can cyclically initiate the hairpin probe (HP), leading to the activation of DNA tweezers. An excellent linear correlation was achieved, with a limit of detection of 57 particles per µL. Furthermore, it has been effectively employed to analyze sEVs under intricate experimental conditions, demonstrating a promising and pragmatic prospect for future applications. Given that the identification of sEVs was successfully accomplished using a single-step method that exhibited exceptional sensitivity and strong resistance to interference, the proposed technique has the potential to provide a beneficial platform for accurate recognition of sEVs and early detection of diseases.


Subject(s)
Extracellular Vesicles , Nucleic Acid Hybridization , Extracellular Vesicles/chemistry , Humans , DNA/chemistry , Limit of Detection , Biosensing Techniques/methods
10.
Biosens Bioelectron ; 258: 116381, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38744116

ABSTRACT

Surface proteins on the membrane of nano-sized extracellular vesicles (EVs) not only play crucial roles in cell-to-cell communication, but also are specific binding targets for EV detection, isolation and tracking. The low abundance of protein biomarkers on EV surface, the formation of clusters and the complex EV surface network impose significant challenges to the study of EVs. Employing bulky sized affinity ligands, such as antibodies, in the detection and characterization of these vesicles often result in reduced sensitivity of detection or poor quantification of proteins on the EV surface. By virtue of their small size and high specificity, Affibody molecules emerge as a potential alternative to their monoclonal antibody counterparts as robust affinity ligands in EV research. In this study, we present a theoretical framework on the superiority of anti-HER2 Affibodies over anti-HER2 antibodies in labeling and detecting HER2-positive EVs, followed by the demonstration of the advantages of HER2 Affibodies in accessing EV surface and the detection of EVs through multiple types of approaches including fluorescence intensity, colorimetry, and fluorescence polarization. HER2 Affibodies outperformed by 10-fold over three HER2 antibody clones in accessing HER2-positive EVs derived from different human cancer cell lines. Furthermore, HRP-Affibody molecules could detect EVs from cancer cells spiked into human serum with at least a 2-fold higher sensitivity compared with that of their antibody counterparts. In addition, in fluorescence polarization assays in which no separation of free from bound ligand is required, FITC-labeled HER2 Affibodies could sensitively detect HER2-positive EVs with a clinically relevant limit of detection, whilst HER2 antibodies failed to detect EVs in the same conditions. With the demonstrated superiority in accessing and detecting surface targets over bulky-sized antibodies in EVs, Affibodies may become the next-generation of affinity ligands in the precise characterization and quantification of molecular architecture on the surface of EVs.


Subject(s)
Biosensing Techniques , Extracellular Vesicles , Receptor, ErbB-2 , Extracellular Vesicles/chemistry , Humans , Ligands , Biosensing Techniques/methods , Cell Line, Tumor , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology
11.
Anal Methods ; 16(20): 3179-3191, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38738644

ABSTRACT

Extracellular vesicles (EVs) are nanoparticles secreted by cells with a closed phospholipid bilayer structure, which can participate in various physiological and pathological processes and have significant clinical value in disease diagnosis, targeted therapy and prognosis assessment. EV isolation methods currently include differential ultracentrifugation, ultrafiltration, size exclusion chromatography, immunoaffinity, polymer co-precipitation and microfluidics. In addition, material-based biochemical or biophysical approaches relying on intrinsic properties of the material or its surface-modified functionalized monomers, demonstrated unique advantages in the efficient isolation of EVs. In order to provide new ideas for the subsequent development of material-based EV isolation methods, this review will focus on the principle, research status and application prospects of material-based EV isolation methods based on different material carriers and functional monomers.


Subject(s)
Extracellular Vesicles , Ultracentrifugation , Extracellular Vesicles/chemistry , Humans , Ultracentrifugation/methods , Chromatography, Gel/methods , Animals , Ultrafiltration/methods
12.
PLoS One ; 19(5): e0295849, 2024.
Article in English | MEDLINE | ID: mdl-38696491

ABSTRACT

INTRODUCTION: Microfluidic resistive pulse sensing (MRPS) can determine the concentration and size distribution of extracellular vesicles (EVs) by measuring the electrical resistance of single EVs passing through a pore. To ensure that the sample flows through the pore, the sample needs to contain a wetting agent, such as bovine serum albumin (BSA). BSA leaves EVs intact but occasionally results in unstable MRPS measurements. Here, we aim to find a new wetting agent by evaluating Poloxamer-188 and Tween-20. METHODS: An EV test sample was prepared using an outdated erythrocyte blood bank concentrate. The EV test sample was diluted in Dulbecco's phosphate-buffered saline (DPBS) or DPBS containing 0.10% BSA (w/v), 0.050% Poloxamer-188 (v/v) or 1.00% Tween-20 (v/v). The effect of the wetting agents on the concentration and size distribution of EVs was determined by flow cytometry. To evaluate the precision of sample volume determination with MRPS, the interquartile range (IQR) of the particles transit time through the pore was examined. To validate that DPBS containing Poloxamer-188 yields reliable MRPS measurements, the repeatability of MRPS in measuring blood plasma samples was examined. RESULTS: Flow cytometry results show that the size distribution of EVs in Tween 20, in contrast to Poloxamer-188, differs from the control measurements (DPBS and DPBS containing BSA). MRPS results show that Poloxamer-188 improves the precision of sample volume determination compared to BSA and Tween-20, because the IQR of the transit time of EVs in the test sample is 11 µs, which is lower than 56 µs for BSA and 16 µs for Tween-20. Furthermore, the IQR of the transit time of particles in blood samples with Poloxamer-188 are 14, 16, and 14 µs, which confirms the reliability of MRPS measurements. CONCLUSION: The solution of 0.050% Poloxamer-188 in DPBS does not lyse EVs and results in repeatable and unimpeded MRPS measurements.


Subject(s)
Extracellular Vesicles , Poloxamer , Poloxamer/chemistry , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Humans , Polysorbates/chemistry , Serum Albumin, Bovine/chemistry , Microfluidics/methods , Wettability , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Animals
13.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791583

ABSTRACT

Milk is a fundamental component of the human diet, owing to its substantial nutritional content. In addition, milk contains nanoparticles called extracellular vesicles (EVs), which have indicated their potential beneficial roles such as cell-to-cell communication, disease biomarkers, and therapeutics agents. Amidst other types of EVs, milk EVs (MEVs) have their significance due to their high abundance, easy access, and stability in harsh environmental conditions, such as low pH in the gut. There have been plenty of studies conducted to evaluate the therapeutic potential of bovine MEVs over the past few years, and attention has been given to their engineering for drug delivery and targeted therapy. However, there is a gap between the experimental findings available and clinical trials due to the many challenges related to EV isolation, cargo, and the uniformity of the material. This review aims to provide a comprehensive comparison of various techniques for the isolation of MEVs and offers a summary of the therapeutic potential of bovine MEVs described over the last decade, analyzing potential challenges and further applications. Although a number of aspects still need to be further elucidated, the available data point to the role of MEVs as a potential candidate with therapeutics potential, and the supplementation of MEVs would pave the way to understanding their in-depth effects.


Subject(s)
Extracellular Vesicles , Milk , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Cattle , Milk/chemistry , Milk/metabolism , Humans , Drug Delivery Systems/methods
14.
Nat Commun ; 15(1): 4109, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750038

ABSTRACT

Label-free detection of multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. First, we characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles are required.


Subject(s)
Nanoparticles , Humans , Nanoparticles/chemistry , Lipid Bilayers/chemistry , Holography/methods , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Microfluidics/methods , Microfluidics/instrumentation , Female , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Cell Line, Tumor , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Biomarkers/analysis
15.
Cell Biochem Funct ; 42(4): e4035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38715180

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a chronic lymphoproliferative disorder characterized by monoclonal B cell proliferation. Studies carried out in recent years suggest that extracellular vesicles (EVs) may be a potential biomarker in cancer. Tyro3-Axl-Mertk (TAM) Receptor Tyrosine Kinases (RTKs) and Phosphatidylserine (PS) have crucial roles in macrophage-mediated immune response under normal conditions. In the tumor microenvironment, these molecules contribute to immunosuppressive signals and prevent the formation of local and systemic antitumor immune responses. Based on this, we aimed to evaluate the amount of PS and TAM RTK in plasma and on the surface of EVs in CLL patients and healthy volunteers in this study. In this study, 25 CLL (11 F/14 M) patients in the Rai (O-I) stage, newly diagnosed or followed up without treatment, and 15 healthy volunteers (11 F/4 M) as a control group were included. For all samples, PS and TAM RTK levels were examined first in the plasma and then in the EVs obtained from the plasma. We detected a significant decrease in plasma PS, and TAM RTK levels in CLL patients compared to the control. Besides, we determined a significant increase in TAM RTK levels on the EV surface in CLL, except for PS. In conclusion, these receptor levels measured by ELISA in plasma may not be effective for the preliminary detection of CLL. However, especially TAM RTKs on the surface of EVs may be good biomarkers and potential targets for CLL therapies.


Subject(s)
Extracellular Vesicles , Leukemia, Lymphocytic, Chronic, B-Cell , Phosphatidylserines , Receptor Protein-Tyrosine Kinases , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Female , Phosphatidylserines/metabolism , Phosphatidylserines/blood , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/blood , Male , Middle Aged , Aged , Axl Receptor Tyrosine Kinase , Proto-Oncogene Proteins/blood , Proto-Oncogene Proteins/metabolism , Adult , c-Mer Tyrosine Kinase/metabolism , Aged, 80 and over
16.
ACS Nano ; 18(21): 13696-13713, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751164

ABSTRACT

The potential of human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hucMSC-EVs) in wound healing is promising, yet a comprehensive understanding of how fibroblasts and keratinocytes respond to this treatment remains limited. This study utilizes single-cell RNA sequencing (scRNA-seq) to investigate the impact of hucMSC-EVs on the cutaneous wound microenvironment in mice. Through rigorous single-cell analyses, we unveil the emergence of hucMSC-EV-induced hematopoietic fibroblasts and MMP13+ fibroblasts. Notably, MMP13+ fibroblasts exhibit fetal-like expressions of MMP13, MMP9, and HAS1, accompanied by heightened migrasome activity. Activation of MMP13+ fibroblasts is orchestrated by a distinctive PIEZO1-calcium-HIF1α-VEGF-MMP13 pathway, validated through murine models and dermal fibroblast assays. Organotypic culture assays further affirm that these activated fibroblasts induce keratinocyte migration via MMP13-LRP1 interactions. This study significantly contributes to our understanding of fibroblast heterogeneities as well as intercellular interactions in wound healing and identifies hucMSC-EV-induced hematopoietic fibroblasts as potential targets for reprogramming. The therapeutic targets presented by these fibroblasts offer exciting prospects for advancing wound healing strategies.


Subject(s)
Extracellular Vesicles , Fibroblasts , Mesenchymal Stem Cells , Single-Cell Analysis , Umbilical Cord , Wound Healing , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Umbilical Cord/cytology , Umbilical Cord/metabolism , Animals , Mice , Fibroblasts/metabolism , Sequence Analysis, RNA , Cells, Cultured , Cell Movement , Matrix Metalloproteinase 13/metabolism , Fetus
17.
Anal Chem ; 96(19): 7651-7660, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38690989

ABSTRACT

Development of molecular diagnostics for lung cancer stratification and monitoring is crucial for the rational planning and timely adjustment of treatments to improve clinical outcomes. In this regard, we propose a nanocavity architecture to sensitively profile the protein signature on small extracellular vesicles (sEVs) to enable accurate, noninvasive staging and treatment monitoring of lung cancer. The nanocavity architecture is formed by molecular recognition through the binding of sEVs with the nanobox-based core-shell surface-enhanced Raman scattering (SERS) barcodes and mirrorlike, asymmetric gold microelectrodes. By imposing an alternating current on the gold microelectrodes, a nanofluidic shear force was stimulated that supported the binding of sEVs and the efficient assembly of the nanoboxes. The binding of sEVs further induced a nanocavity between the nanobox and the gold microelectrode that significantly amplified the electromagnetic field to enable the simultaneous enhancement of Raman signals from four SERS barcodes and generate patient-specific molecular sEV signatures. Importantly, evaluated on a cohort of clinical samples (n = 76) on the nanocavity architecture, the acquired patient-specific sEV molecular signatures achieved accurate identification, stratification, and treatment monitoring of lung cancer patients, highlighting its potential for transition to clinical utility.


Subject(s)
Extracellular Vesicles , Gold , Lung Neoplasms , Spectrum Analysis, Raman , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Lung Neoplasms/metabolism , Humans , Gold/chemistry , Microelectrodes
18.
Methods Mol Biol ; 2804: 77-89, 2024.
Article in English | MEDLINE | ID: mdl-38753141

ABSTRACT

Extracellular vesicles (EVs) are secreted by cells and found in biological fluids such as blood, with concentration correlated with oncogenic signals, making them attractive biomarkers for liquid biopsy. The current gold-standard method for EVs isolation requires an ultracentrifugation (UC) step among others. The cost and complexity of this technique are forbiddingly high for many researchers, as well as for routine use in biological laboratories and hospitals. This chapter reports on a simple microfluidic method for EVs isolation, based on a microfluidic size sorting technique named Deterministic Lateral Displacement (DLD). With the design of micrometric DLD array, we demonstrated the potential of our DLD devices for the isolation of nano-biological objects such as EVs, with main population size distribution consistent with UC technique.


Subject(s)
Extracellular Vesicles , Lab-On-A-Chip Devices , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Humans , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Cell Culture Techniques/methods , Ultracentrifugation/methods
19.
ACS Nano ; 18(21): 13885-13898, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38757565

ABSTRACT

Severe acute pancreatitis (SAP), characterized by pancreatic acinar cell death, currently lacks effective targeted therapies. Ellagic acid (EA), rich in pomegranate, shows promising anti-inflammatory and antioxidant effects in SAP treatment. However, the roles of other forms of EA, such as plant extracellular vesicles (EVs) extracted from pomegranate, and Urolithin A (UA), converted from EA through gut microbiota metabolism in vivo, have not been definitively elucidated. Our research aimed to compare the effects of pomegranate-derived EVs (P-EVs) and UA in the treatment of SAP to screen an effective formulation and to explore its mechanisms in protecting acinar cells in SAP. By comparing the protective effects of P-EVs and UA on injured acinar cells, UA showed superior therapeutic effects than P-EVs. Subsequently, we further discussed the mechanism of UA in alleviating SAP inflammation. In vivo animal experiments found that UA could not only improve the inflammatory environment of pancreatic tissue and peripheral blood circulation in SAP mice but also revealed that the mechanism of UA in improving SAP might be related to mitochondria and endoplasmic reticulum (ER) through the results including pancreatic tissue transcriptomics and transmission electron microscopy. Further research found that UA could regulate ER-mitochondrial calcium channels and reduce pancreatic tissue necroptosis. In vitro experiments of mouse pancreatic organoids and acinar cells also confirmed that UA could improve pancreatic inflammation by regulating the ER-mitochondrial calcium channel and necroptosis pathway proteins. This study not only explored the therapeutic effect of plant EVs on SAP but also revealed that UA could alleviate SAP by regulating ER-mitochondrial calcium channel and reducing acinar cell necroptosis, providing insights into the pathogenesis and potential treatment of SAP.


Subject(s)
Coumarins , Endoplasmic Reticulum , Mitochondria , Pancreatitis , Animals , Coumarins/pharmacology , Coumarins/chemistry , Pancreatitis/drug therapy , Pancreatitis/metabolism , Pancreatitis/pathology , Mice , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Calcium Channels/metabolism , Male , Mice, Inbred C57BL , Pomegranate/chemistry , Acinar Cells/drug effects , Acinar Cells/metabolism , Acinar Cells/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry
20.
J Nanobiotechnology ; 22(1): 265, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760763

ABSTRACT

BACKGROUND: Pulp regeneration is a novel approach for the treatment of immature permanent teeth with pulp necrosis. This technique includes the combination of stem cells, scaffolds, and growth factors. Recently, stem cell-derived extracellular vesicles (EVs) have emerged as a new methodology for pulp regeneration. Emerging evidence has proven that preconditioning is an effective scheme to modify EVs for better therapeutic potency. Meanwhile, proper scaffolding is of great significance to protect EVs from rapid clearance and destruction. This investigation aims to fabricate an injectable hydrogel loaded with EVs from pre-differentiated stem cells from human exfoliated deciduous teeth (SHEDs) and examine their effects on pulp regeneration. RESULTS: We successfully employed the odontogenic induction medium (OM) of SHEDs to generate functional EV (OM-EV). The OM-EV at a concentration of 20 µg/mL was demonstrated to promote the proliferation and migration of dental pulp stem cells (DPSCs). The results revealed that OM-EV has a better potential to promote odontogenic differentiation of DPSCs than common EVs (CM-EV) in vitro through Alizarin red phalloidin, alkaline phosphatase staining, and assessment of the expression of odontogenic-related markers. High-throughput sequencing suggests that the superior effects of OM-EV may be attributed to activation of the AMPK/mTOR pathway. Simultaneously, we prepared a photocrosslinkable gelatin methacryloyl (GelMA) to construct an OM-EV-encapsulated hydrogel. The hydrogel exhibited sustained release of OM-EV and good biocompatibility for DPSCs. The released OM-EV from the hydrogel could be internalized by DPSCs, thereby enhancing their survival and migration. In tooth root slices that were subcutaneously transplanted in nude mice, the OM-EV-encapsulated hydrogel was found to facilitate dentinogenesis. After 8 weeks, there was more formation of mineralized tissue, as well as higher levels of dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1). CONCLUSIONS: The effects of EV can be substantially enhanced by preconditioning of SHEDs. The functional EVs from SHEDs combined with GelMA are capable of effectively promoting dentinogenesis through upregulating the odontogenic differentiation of DPSCs, which provides a promising therapeutic approach for pulp regeneration.


Subject(s)
Cell Differentiation , Dental Pulp , Extracellular Vesicles , Gelatin , Methacrylates , Odontogenesis , Regeneration , Stem Cells , Tooth, Deciduous , Dental Pulp/cytology , Humans , Extracellular Vesicles/chemistry , Gelatin/chemistry , Gelatin/pharmacology , Cell Differentiation/drug effects , Odontogenesis/drug effects , Animals , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Regeneration/drug effects , Tooth, Deciduous/cytology , Methacrylates/chemistry , Methacrylates/pharmacology , Mice , Cell Proliferation/drug effects , Mice, Nude , Cells, Cultured , Hydrogels/chemistry , Hydrogels/pharmacology , Cell Movement/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...