Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34.077
Filter
1.
Parasites Hosts Dis ; 62(2): 243-250, 2024 May.
Article in English | MEDLINE | ID: mdl-38835265

ABSTRACT

We investigated organ specific Toxocara canis larval migration in mice infected with T. canis larvae. We observed the worm burden and systemic immune responses. Three groups of BALB/c mice (n=5 each) were orally administered 1,000 T. canis 2nd stage larvae to induce larva migrans. Mice were sacrificed at 1, 3, and 5 weeks post-infection. Liver, lung, brain, and eye tissues were collected. Tissue from 2 mice per group was digested for larval count, while the remaining 3 mice underwent histological analysis. Blood hematology and serology were evaluated and compared to that in a control uninfected group (n=5) to assess the immune response. Cytokine levels in bronchoalveolar lavage (BAL) fluid were also analyzed. We found that, 1 week post-infection, the mean parasite load in the liver (72±7.1), brain (31±4.2), lungs (20±5.7), and eyes (2±0) peaked and stayed constant until the 3 weeks. By 5-week post-infection, the worm burden in the liver and lungs significantly decreased to 10±4.2 and 9±5.7, respectively, while they remained relatively stable in the brain and eyes (18±4.2 and 1±0, respectively). Interestingly, ocular larvae resided in all retinal layers, without notable inflammation in outer retina. Mice infected with T. canis exhibited elevated levels of neutrophils, monocytes, eosinophils, and immunoglobulin E. At 5 weeks post-infection, interleukin (IL)-5 and IL-13 levels were elevated in BAL fluid. Whereas IL-4, IL-10, IL-17, and interferon-γ levels in BAL fluid were similar to that in controls. Our findings demonstrate that a small portion of T. canis larvae migrate to the eyes and brain within the first week of infection. Minimal tissue inflammation was observed, probably due to increase of anti-inflammatory cytokines. This study contributes to our understanding of the histological and immunological responses to T. canis infection in mice, which may have implications to further understand human toxocariasis.


Subject(s)
Brain , Cytokines , Larva , Liver , Lung , Mice, Inbred BALB C , Toxocara canis , Toxocariasis , Animals , Toxocara canis/immunology , Toxocariasis/immunology , Toxocariasis/pathology , Toxocariasis/parasitology , Larva/immunology , Mice , Cytokines/metabolism , Lung/parasitology , Lung/immunology , Lung/pathology , Liver/parasitology , Liver/pathology , Liver/immunology , Brain/parasitology , Brain/immunology , Brain/pathology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/parasitology , Female , Parasite Load , Eye/parasitology , Eye/immunology , Eye/pathology , Disease Models, Animal
2.
Optom Vis Sci ; 101(5): 250, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38857036
3.
Sci Rep ; 14(1): 12859, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834673

ABSTRACT

External eye appearance in avian taxa has been proposed to be driven by social and ecological functions. Recent research in primates suggests, instead, that, photoprotective functions are important drivers of external eye appearance. Using similar methods, we examined the variation in external eye appearance of 132 parrot species (Psittaciformes) in relation to their ecology and sociality. Breeding systems, flock size and sexual dimorphism, as well as species' latitude and maximum living altitude, and estimated UV-B incidence in species' ranges were used to explore the contribution of social and ecological factors in driving external eye appearance. We measured the hue and brightness of visible parts of the eye and the difference in measurements of brightness between adjacent parts of the eye. We found no link between social variables and our measurements. We did, however, find a negative association between the brightness of the inner part of the iris and latitude and altitude. Darker inner irises were more prevalent farther away from the equator and for those species living at higher altitudes. We found no link between UV-B and brightness measurements of the iris, or tissue surrounding the eye. We speculate that these results are consistent with an adaptation for visual functions. While preliminary, these results suggest that external eye appearance in parrots is influenced by ecological, but not social factors.


Subject(s)
Altitude , Parrots , Animals , Parrots/physiology , Eye/anatomy & histology , Female , Male , Ultraviolet Rays
4.
BMC Genomics ; 25(1): 570, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844864

ABSTRACT

Compound eyes formation in decapod crustaceans occurs after the nauplius stage. However, the key genes and regulatory mechanisms of compound eye development during crustacean embryonic development have not yet been clarified. In this study, RNA-seq was used to investigate the gene expression profiles of Neocaridina denticulata sinensis from nauplius to zoea stage. Based on RNA-seq data analysis, the phototransduction and insect hormone biosynthesis pathways were enriched, and molting-related neuropeptides were highly expressed. There was strong cell proliferation in the embryo prior to compound eye development. The formation of the visual system and the hormonal regulation of hatching were the dominant biological events during compound eye development. The functional analysis of DEGs across all four developmental stages showed that cuticle formation, muscle growth and the establishment of immune system occurred from nauplius to zoea stage. Key genes related to eye development were discovered, including those involved in the determination and differentiation of the eye field, eye-color formation, and visual signal transduction. In conclusion, the results increase the understanding of the molecular mechanism of eye formation in crustacean embryonic stage.


Subject(s)
Compound Eye, Arthropod , Gene Expression Profiling , Animals , Compound Eye, Arthropod/metabolism , Compound Eye, Arthropod/growth & development , Transcriptome , Gene Expression Regulation, Developmental , Decapoda/genetics , Decapoda/growth & development , Eye/metabolism , Eye/embryology , Eye/growth & development
5.
Opt Express ; 32(10): 18113-18126, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858975

ABSTRACT

Hardware architectures and image interpretation can be simplified by partial polarimetry. Mueller matrix (MM) polarimetry allows the investigation of partial polarimeter designs for a given scientific task. In this work, we use MM measurements to solve for a fixed polarization illumination and analyzer state that maximize polariscopic image contrast of the human eye. The eye MM image acquisition takes place over 15 seconds which motivates the development of a partial polarimeter that has snapshot operation. Within the eye, the birefringent cornea produces spatially-varying patterns of retardance exceeding half of a wave with a fast-axis varying from linear, to circular, and elliptical states in between. Our closed-form polariscopic pairs are a general solution that maximizes contrast between two non-depolarizing pure retarder MMs. For these MMs, there is a family of polariscopic pairs that maximize contrast. This range of solutions creates an opportunity to use the distance from optimal as a criteria to adjust polarimetric hardware architecture. We demonstrate our optimization approach by performing both Mueller and polariscopic imaging of an in vivo human eye at 947 nm using a dual-rotating-retarder polarimeter. Polariscopic images are simulated from Mueller measurements of 19 other human subjects to test the robustness of this optimal solution.


Subject(s)
Eye , Humans , Eye/diagnostic imaging , Infrared Rays
6.
Proc Biol Sci ; 291(2023): 20240239, 2024 May.
Article in English | MEDLINE | ID: mdl-38808445

ABSTRACT

The ocean's midwater is a uniquely challenging yet predictable and simple visual environment. The need to see without being seen in this dim, open habitat has led to extraordinary visual adaptations. To understand these adaptations, we compared the morphological and functional differences between the eyes of three hyperiid amphipods-Hyperia galba, Streetsia challengeri and Phronima sedentaria. Combining micro-CT data with computational modelling, we mapped visual field topography and predicted detection distances for visual targets viewed in different directions through mesopelagic depths. Hyperia's eyes provide a wide visual field optimized for spatial vision over short distances, while Phronima's and Streetsia's eyes have the potential to achieve greater sensitivity and longer detection distances using spatial summation. These improvements come at the cost of smaller visual fields, but this loss is compensated for by a second pair of eyes in Phronima and by behaviour in Streetsia. The need to improve sensitivity while minimizing visible eye size to maintain crypsis has likely driven the evolution of hyperiid eye diversity. Our results provide an integrative look at how these elusive animals have adapted to the unique visual challenges of the mesopelagic.


Subject(s)
Amphipoda , Animals , Amphipoda/physiology , Amphipoda/anatomy & histology , Ecosystem , Visual Fields , Eye/anatomy & histology , Vision, Ocular , X-Ray Microtomography
7.
J Med Primatol ; 53(3): e12711, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38790083

ABSTRACT

BACKGROUND: This study used infrared thermography (IRT) for mapping the facial and ocular temperatures of howler monkeys, to determine parameters for the diagnosis of febrile processes. There are no published IRT study in this species. METHODS: Were evaluated images of a group of monkeys kept under human care at Sorocaba Zoo (São Paulo, Brazil). The images were recorded during 1 year, in all seasons. Face and eye temperatures were evaluated. RESULTS: There are statistically significant differences in face and eye temperatures. Mean values and standard deviations for facial and ocular temperature were respectively: 33.0°C (2.1) and 36.5°C (1.9) in the summer; 31.5°C (4.5) and 35.3°C (3.6) in the autumn; 30.0°C (4.3) and 35.6°C (3.9) in the winter; 30.8°C (2.9) and 35.5°C (2.1) in the spring. CONCLUSIONS: The IRT was effective to establish a parameter for facial and ocular temperatures of black-and-gold howler monkeys kept under human care.


Subject(s)
Alouatta , Body Temperature , Eye , Face , Infrared Rays , Thermography , Animals , Thermography/veterinary , Thermography/methods , Alouatta/physiology , Male , Seasons , Female , Fever/veterinary , Fever/diagnosis , Animals, Zoo
8.
AAPS PharmSciTech ; 25(5): 119, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816667

ABSTRACT

Loteprednol etabonate (LE) is a topical corticosteroid for the symptomatic management of ocular conditions, encompassing both allergic and infectious etiologies. Owing to the dynamic and static barriers of the eye, LE exhibits significantly low bioavailability, necessitating an increase in the frequency of drug administration. The objective of this study is to overcome the limitations by developing niosomal systems loaded with LE. Design of Experiments (DoE) approach was used for the development of optimal niosome formulation. The optimal formulation was characterized using DLS, FT-IR, and DSC analysis. In vitro and ex vivo release studies were performed to demonstrate drug release patterns. After that HET-CAM evaluation was conducted to determine safety profile. Then, in vivo studies were carried out to determine therapeutic activity of niosomes. Zeta potential (ZP), particle size, polydispersity index (PI), and encapsulation efficacy (EE) were -33.8 mV, 89.22 nm, 0.192, and 89.6%, respectively. Medicated niosomes had a broad distribution within rabbit eye tissues and was absorbed by the aqueous humor of the bovine eye for up to 6 h after treatment. Cumulative permeated drug in the bovine eye and rabbit eye were recorded 52.45% and 54.8%, respectively. No irritation or hemorrhagic situation was observed according to the results of HET-CAM study. Thus, novel LE-loaded niosomal formulations could be considered as a promising treatment option for the dry-eye-disease (DED) due to enhanced bioavailability and decreased side effects.


Subject(s)
Delayed-Action Preparations , Dry Eye Syndromes , Liposomes , Loteprednol Etabonate , Animals , Rabbits , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Loteprednol Etabonate/administration & dosage , Loteprednol Etabonate/pharmacokinetics , Dry Eye Syndromes/drug therapy , Cattle , Drug Liberation , Particle Size , Disease Models, Animal , Administration, Ophthalmic , Biological Availability , Drug Delivery Systems/methods , Eye/metabolism , Eye/drug effects , Aqueous Humor/metabolism , Chemistry, Pharmaceutical/methods , Ophthalmic Solutions/administration & dosage , Ophthalmic Solutions/pharmacokinetics
9.
Sci Rep ; 14(1): 12508, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822021

ABSTRACT

Adult vertebrate cartilage is usually quiescent. Some vertebrates possess ocular scleral skeletons composed of cartilage or bone. The morphological characteristics of the spotted wolffish (Anarhichas minor) scleral skeleton have not been described. Here we assessed the scleral skeletons of cultured spotted wolffish, a globally threatened marine species. The healthy spotted wolffish we assessed had scleral skeletons with a low percentage of cells staining for the chondrogenesis marker sex-determining region Y-box (Sox) 9, but harboured a population of intraocular cells that co-express immunoglobulin M (IgM) and Sox9. Scleral skeletons of spotted wolffish with grossly observable eye abnormalities displayed a high degree of perochondrial activation as evidenced by cellular morphology and expression of proliferating cell nuclear antigen (PCNA) and phosphotyrosine. Cells staining for cluster of differentiation (CD) 45 and IgM accumulated around sites of active chondrogenesis, which contained cells that strongly expressed Sox9. The level of scleral chondrogenesis and the numbers of scleral cartilage PCNA positive cells increased with the temperature of the water in which spotted wolffish were cultured. Our results provide new knowledge of differing Sox9 spatial tissue expression patterns during chondrogenesis in normal control and ocular insult paradigms. Our work also provides evidence that spotted wolffish possess an inherent scleral chondrogenesis response that may be sensitive to temperature. This work also advances the fundamental knowledge of teleost ocular skeletal systems.


Subject(s)
Chondrogenesis , SOX9 Transcription Factor , Animals , SOX9 Transcription Factor/metabolism , Sclera/metabolism , Temperature , Immunoglobulin M/metabolism , Eye/metabolism , Water/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Cartilage/metabolism
10.
J Craniofac Surg ; 35(4): 1143-1145, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38709070

ABSTRACT

INTRODUCTION: It is important to generate predictable statistical models by increasing the number of variables on the human skeletal and soft tissue structures on the face to increase the accuracy of human facial reconstructions. The purpose of this study was to determine mouth width 3-dimensionally based on statistical regression model. MATERIAL AND METHODS: Cone-beam computed tomography scan data from 130 individuals were used to measure the horizontal and vertical dimensions of orbital and nasal structures and intercanine width. The correlation between these hard tissue variables and the mouth width was evaluated using the statistical regression model. RESULTS: Orbital width, nasal width, and intercanine width were found to be strong predictors of the mouth width determination and were used to generate the regression formulae to find the most approximate position of the mouth. CONCLUSION: These specific variables may contribute to improving the accuracy of mouth width determination for oral and maxillofacial reconstructions.


Subject(s)
Face , Mandibular Reconstruction , Mouth , Regression Analysis , Mouth/anatomy & histology , Mouth/diagnostic imaging , Face/anatomy & histology , Face/diagnostic imaging , Tooth/anatomy & histology , Tooth/diagnostic imaging , Eye/anatomy & histology , Eye/diagnostic imaging , Nose/anatomy & histology , Nose/diagnostic imaging , Cone-Beam Computed Tomography , Humans
11.
J Radiol Prot ; 44(2)2024 May 17.
Article in English | MEDLINE | ID: mdl-38701771

ABSTRACT

Given the new recommendations for occupational eye lens doses, various lead glasses have been used to reduce irradiation of interventional radiologists. However, the protection afforded by lead glasses over prescription glasses (thus over-glasses-type eyewear) has not been considered in detail. We used a phantom to compare the protective effects of such eyewear and regular eyewear of 0.07 mm lead-equivalent thickness. The shielding rates behind the eyewear and on the surface of the left eye of an anthropomorphic phantom were calculated. The left eye of the phantom was irradiated at various angles and the shielding effects were evaluated. We measured the radiation dose to the left side of the phantom using RPLDs attached to the left eye and to the surface/back of the left eyewear. Over-glasses-type eyewear afforded good protection against x-rays from the left and below; the average shielding rates on the surface of the left eye ranged from 0.70-0.72. In clinical settings, scattered radiation is incident on physicians' eyes from the left and below, and through any gap in lead glasses. Over-glasses-type eyewear afforded better protection than regular eyewear of the same lead-equivalent thickness at the irradiation angles of concern in clinical settings. Although clinical evaluation is needed, we suggest over-glasses-type Pb eyewear even for physicians who do not wear prescription glasses.


Subject(s)
Eye Protective Devices , Eyeglasses , Occupational Exposure , Radiation Dosage , Radiation Protection , Humans , Occupational Exposure/prevention & control , Occupational Exposure/analysis , Phantoms, Imaging , Eye/radiation effects , Radiation Injuries/prevention & control
12.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731972

ABSTRACT

Vaccination is a public health cornerstone that protects against numerous infectious diseases. Despite its benefits, immunization implications on ocular health warrant thorough investigation, particularly in the context of vaccine-induced ocular inflammation. This review aimed to elucidate the complex interplay between vaccination and the eye, focusing on the molecular and immunological pathways implicated in vaccine-associated ocular adverse effects. Through an in-depth analysis of recent advancements and the existing literature, we explored various mechanisms of vaccine-induced ocular inflammation, such as direct infection by live attenuated vaccines, immune complex formation, adjuvant-induced autoimmunity, molecular mimicry, hypersensitivity reactions, PEG-induced allergic reactions, Type 1 IFN activation, free extracellular RNA, and specific components. We further examined the specific ocular conditions associated with vaccination, such as uveitis, optic neuritis, and retinitis, and discussed the potential impact of novel vaccines, including those against SARS-CoV-2. This review sheds light on the intricate relationships between vaccination, the immune system, and ocular tissues, offering insights into informed discussions and future research directions aimed at optimizing vaccine safety and ophthalmological care. Our analysis underscores the importance of vigilance and further research to understand and mitigate the ocular side effects of vaccines, thereby ensuring the continued success of vaccination programs, while preserving ocular health.


Subject(s)
Vaccination , Humans , Vaccination/adverse effects , Vaccination/methods , COVID-19 Vaccines/immunology , COVID-19 Vaccines/adverse effects , Eye/immunology , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Vaccines/adverse effects , Vaccines/immunology , Animals , Eye Diseases/immunology , Eye Diseases/prevention & control
13.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732804

ABSTRACT

In general, it is difficult to visualize internal ocular structure and detect a lesion such as a cataract or glaucoma using the current ultrasound brightness-mode (B-mode) imaging. This is because the internal structure of the eye is rich in moisture, resulting in a lack of contrast between tissues in the B-mode image, and the penetration depth is low due to the attenuation of the ultrasound wave. In this study, the entire internal ocular structure of a bovine eye was visualized in an ex vivo environment using the compound acoustic radiation force impulse (CARFI) imaging scheme based on the phase-inverted ultrasound transducer (PIUT). In the proposed method, the aperture of the PIUT is divided into four sections, and the PIUT is driven by the out-of-phase input signal capable of generating split-focusing at the same time. Subsequently, the compound imaging technique was employed to increase signal-to-noise ratio (SNR) and to reduce displacement error. The experimental results demonstrated that the proposed technique could provide an acoustic radiation force impulse (ARFI) image of the bovine eye with a broader depth-of-field (DOF) and about 80% increased SNR compared to the conventional ARFI image obtained using the in-phase input signal. Therefore, the proposed technique can be one of the useful techniques capable of providing the image of the entire ocular structure to diagnose various eye diseases.


Subject(s)
Elasticity Imaging Techniques , Eye , Signal-To-Noise Ratio , Transducers , Animals , Cattle , Eye/diagnostic imaging , Elasticity Imaging Techniques/methods , Ultrasonography/methods
14.
Sci Robot ; 9(90): eadp5682, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809997

ABSTRACT

Bioinspiration from avian eyes allows development of artificial vision systems with foveated and multispectral imaging.


Subject(s)
Biomimetics , Birds , Vision, Ocular , Animals , Vision, Ocular/physiology , Biomimetics/instrumentation , Eye , Robotics/instrumentation , Humans , Equipment Design , Biomimetic Materials
15.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690727

ABSTRACT

Careful regulation of the complement system is critical for enabling complement proteins to titrate immune defense while also preventing collateral tissue damage from poorly controlled inflammation. In the eye, this balance between complement activity and inhibition is crucial, as a low level of basal complement activity is necessary to support ocular immune privilege, a prerequisite for maintaining vision. Dysregulated complement activation contributes to parainflammation, a low level of inflammation triggered by cellular damage that functions to reestablish homeostasis, or outright inflammation that disrupts the visual axis. Complement dysregulation has been implicated in many ocular diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD). In the last two decades, complement activity has been the focus of intense investigation in AMD pathogenesis, leading to the development of novel therapeutics for the treatment of atrophic AMD. This Review outlines recent advances and challenges, highlighting therapeutic approaches that have advanced to clinical trials, as well as providing a general overview of the complement system in the posterior segment of the eye and selected ocular diseases.


Subject(s)
Complement Activation , Complement System Proteins , Macular Degeneration , Humans , Macular Degeneration/immunology , Macular Degeneration/pathology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Complement Activation/immunology , Animals , Eye/immunology , Eye/pathology
16.
Int J Pharm ; 658: 124192, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38703931

ABSTRACT

Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.


Subject(s)
Administration, Ophthalmic , Drug Carriers , Drug Delivery Systems , Eye , Nanoparticles , Humans , Animals , Drug Carriers/chemistry , Eye/metabolism , Eye/drug effects , Drug Delivery Systems/methods , Nanoparticles/chemistry , Eye Diseases/drug therapy , Nanoparticle Drug Delivery System/chemistry , Biological Availability , Drug Liberation
17.
J Therm Biol ; 121: 103867, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38744026

ABSTRACT

Infrared thermography (IRT) has become more accessible due to technological advancements, making thermal cameras more affordable. Infrared thermal cameras capture the infrared rays emitted by objects and convert it into temperature representations. IRT has emerged as a promising and non-invasive approach for examining the human eye. Ocular surface temperature assessment based on IRT is vital for the diagnosis and monitoring of various eye conditions like dry eye, diabetic retinopathy, glaucoma, allergic conjunctivitis, and inflammatory diseases. A collective sum of 192 articles was sourced from various databases, and through adherence to the PRISMA guidelines, 29 articles were ultimately chosen for systematic analysis. This systematic review article seeks to provide readers with a thorough understanding of IRT's applications, advantages, limitations, and recent developments in the context of eye examinations. It covers various aspects of IRT-based eye analysis, including image acquisition, processing techniques, ocular surface temperature measurement, three different approaches to identifying abnormalities, and different evaluation metrics used. Our review also delves into recent advancements, particularly the integration of machine learning and deep learning algorithms into IRT-based eye examinations. Our systematic review not only sheds light on the current state of research but also outlines promising future prospects for the integration of infrared thermography in advancing eye health diagnostics and care.


Subject(s)
Eye Diseases , Infrared Rays , Thermography , Humans , Thermography/methods , Eye Diseases/diagnosis , Eye Diseases/diagnostic imaging , Eye/diagnostic imaging , Machine Learning , Body Temperature
18.
Toxicon ; 244: 107775, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782188

ABSTRACT

Patients occasionally present with reports of ocular exposure to fluids from rattlesnakes, claiming or suspecting the substance to be venom. This study set out to evaluate and characterize reported cases of suspected venom-induced ophthalmia in humans. A retrospective review of rattlesnake exposures reported to the Arizona Poison and Drug Information Center over a 24-year period was conducted for ocular exposures. Recorded information included patient demographics, clinical course, laboratory results, and treatments. Documentation regarding interactions between patients and snakes was reviewed by Arizona Poison and Drug Information Center herpetologists to evaluate what substance was expelled from the snake resulting in ocular exposure. Our review of rattlesnake encounters found a total of 26 ocular exposure cases. Patient demographics were largely intentional interactions and involved the male sex. Symptoms ranged from asymptomatic to minor effects with 46.2% managed from home and treated with fluid irrigation. A review of cases by herpetologists concluded the exposure patients commonly experienced was to snake musk. Kinematics of venom expulsion by rattlesnakes conclude the venom gland must be compressed, fangs erected to ≥60o, and fang sheath compressed against the roof of the mouth for venom expulsion. Evidence suggests the chance of venom "spitting" by rattlesnakes is close to zero. Rattlesnakes are documented to forcefully expel airborne malodorous "musk" defensively. An important distinction to remember is musk has a foul odor and is usually colorless, while venom is comparatively odorless and yellow. Rattlesnake venom-induced ophthalmia is a rare event as venom expulsion requires the kinematics of feeding or defensive bites. If the rattlesnake is not in the process of biting or otherwise contacting some other object with its mouth, it is more biologically plausible patients are being exposed to snake musk as a deterrent. Whether it's venom or musk, topical exposure to the eyes should prompt immediate irrigation.


Subject(s)
Crotalid Venoms , Crotalus , Snake Bites , Animals , Arizona , Humans , Male , Retrospective Studies , Female , Crotalid Venoms/toxicity , Adult , Middle Aged , Adolescent , Aged , Child , Eye/drug effects , Young Adult , Poison Control Centers
19.
Mol Biol Cell ; 35(7): br13, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38696256

ABSTRACT

Autophagy is a conserved catabolic process where double membrane-bound structures form around macromolecules or organelles targeted for degradation. Autophagosomes fuse with lysosomes to facilitate degradation and macromolecule recycling for homeostasis or growth in a cell autonomous manner. In cancer cells, autophagy is often up-regulated and helps cancer cells survive nutrient deprivation and stressful growth conditions. Here, we propose that the increased intracellular pH (pHi) common to cancer cells is sufficient to induce autophagic cell death. We previously developed tools to increase pHi in the Drosophila eye via overexpression of DNhe2, resulting in aberrant patterning and reduced tissue size. We examined fly eyes at earlier stages of development and found fewer interommatidial cells. We next tested whether this decrease in cell number was due to increased cell death. We found that the DNhe2-induced cell death was caspase independent, which is inconsistent with apoptosis. However, this cell death required autophagy genes, which supports autophagy as the mode of cell death. We also found that expression of molecular markers supports increased autophagy. Together, our findings suggest new roles for ion transport proteins in regulating conserved, critical developmental processes and provide evidence for new paradigms in growth control.


Subject(s)
Autophagic Cell Death , Autophagy , Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Sodium-Hydrogen Exchangers/metabolism , Sodium-Hydrogen Exchangers/genetics , Hydrogen-Ion Concentration , Eye/metabolism , Apoptosis , Lysosomes/metabolism , Drosophila/metabolism , Autophagosomes/metabolism
20.
Arthropod Struct Dev ; 80: 101361, 2024 May.
Article in English | MEDLINE | ID: mdl-38795499

ABSTRACT

One of the least studied eyes of any beetle taxon are those of the scarabaeoid family Passalidae. Some members of this family of around 600 species worldwide are known to have superposition eyes (Aceraius grandis; A. hikidai) while others have apposition eyes (Cylindrocaulus patalis; Ceracupes yui). In C. yui of nearly 3 cm body length (this paper) the retinal layer is very thin and occupies approximately half of an ommatidium's total length, the latter amounting to 284 and 266 µm in the respective dorsal and ventral eye regions. The two eye regions are almost completely separated by a prominent cuticular canthus, a feature usually associated with the presence of a tracheal tapetum, a clear-zone between dioptric and light-perceiving structures and a regular array of smooth facets. In C. yui the facets are smooth (but not very regular) and a tracheal tapetum and a clear-zone are absent. The rhabdoms, formed by 8-9 retinula cells, are complicated, multilobed structures with widths and lengths of around 15 and 80 µm, respectively. The combination of some superposition and mostly apposition eye features, e.g., extensive corneal exocones, relatively small number of ommatidia, absence of a clear-zone and tracheal bush, suggest an adaptation of this species' eye to the fossorial lifestyle of C. yui, and, thus, a manifestation of the passalid eye's plasticity.


Subject(s)
Coleoptera , Animals , Coleoptera/ultrastructure , Coleoptera/anatomy & histology , Microscopy, Electron, Scanning , Compound Eye, Arthropod/ultrastructure , Compound Eye, Arthropod/anatomy & histology , Microscopy, Electron, Transmission , Female , Male , Eye/ultrastructure , Eye/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...