Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.798
Filter
1.
Invest Ophthalmol Vis Sci ; 65(5): 9, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38700873

ABSTRACT

Purpose: We sought to explore whether sex imbalances are discernible in several autosomally inherited macular dystrophies. Methods: We searched the electronic patient records of our large inherited retinal disease cohort, quantifying numbers of males and females with the more common (non-ABCA4) inherited macular dystrophies (associated with BEST1, EFEMP1, PROM1, PRPH2, RP1L1, and TIMP3). BEST1 cases were subdivided into typical autosomal dominant and recessive disease. For PRPH2, only patients with variants at codons 172 or 142 were included. Recessive PROM1 and recessive RP1L1 cases were excluded because these variants give a more widespread or peripheral degeneration. The proportion of females was calculated for each condition; two-tailed binomial testing was performed. Where a significant imbalance was found, previously published cohorts were also explored. Results: Of 325 patients included, numbers for BEST1, EFEMP1, PROM1, PRPH2, RP1L1, and TIMP3 were 152, 35, 30, 50, 14, and 44, respectively. For autosomal dominant Best disease (n = 115), there were fewer females (38%; 95% confidence interval [CI], 29-48%; P = 0.015). For EFEMP1-associated disease (n = 35), there were significantly more females (77%; 95% CI, 60%-90%; P = 0.0019). No significant imbalances were seen for the other genes. When pooling our cohort with previous large dominant Best disease cohorts, the proportion of females was 37% (95% CI, 31%-43%; P = 1.2 × 10-5). Pooling previously published EFEMP1-cases with ours yielded an overall female proportion of 62% (95% CI, 54%-69%; P = 0.0023). Conclusions: This exploratory study found significant sex imbalances in two autosomal macular dystrophies, suggesting that sex could be a modifier. Our findings invite replication in further cohorts and the investigation of potential mechanisms.


Subject(s)
Macular Degeneration , Humans , Female , Male , Sex Distribution , Macular Degeneration/genetics , Macular Degeneration/diagnosis , Extracellular Matrix Proteins/genetics , Eye Proteins/genetics , Peripherins/genetics , Tissue Inhibitor of Metalloproteinase-3/genetics
2.
Elife ; 132024 May 30.
Article in English | MEDLINE | ID: mdl-38814685

ABSTRACT

Detailed binding experiments reveal new insights into the Norrin/Wnt signaling pathway that helps to control vascularization in the retina.


Subject(s)
Eye Proteins , Nerve Tissue Proteins , Retina , Wnt Signaling Pathway , Eye Proteins/metabolism , Eye Proteins/genetics , Humans , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Retina/metabolism , Animals , Protein Binding
3.
Stem Cell Res Ther ; 15(1): 152, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816767

ABSTRACT

BACKGROUND: X-linked juvenile retinoschisis (XLRS) is an inherited disease caused by RS1 gene mutation, which leads to retinal splitting and visual impairment. The mechanism of RS1-associated retinal degeneration is not fully understood. Besides, animal models of XLRS have limitations in the study of XLRS. Here, we used human induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs) to investigate the disease mechanisms and potential treatments for XLRS. METHODS: hiPSCs reprogrammed from peripheral blood mononuclear cells of two RS1 mutant (E72K) XLRS patients were differentiated into ROs. Subsequently, we explored whether RS1 mutation could affect RO development and explore the effectiveness of RS1 gene augmentation therapy. RESULTS: ROs derived from RS1 (E72K) mutation hiPSCs exhibited a developmental delay in the photoreceptor, retinoschisin (RS1) deficiency, and altered spontaneous activity compared with control ROs. Furthermore, the delays in development were associated with decreased expression of rod-specific precursor markers (NRL) and photoreceptor-specific markers (RCVRN). Adeno-associated virus (AAV)-mediated gene augmentation with RS1 at the photoreceptor immature stage rescued the rod photoreceptor developmental delay in ROs with the RS1 (E72K) mutation. CONCLUSIONS: The RS1 (E72K) mutation results in the photoreceptor development delay in ROs and can be partially rescued by the RS1 gene augmentation therapy.


Subject(s)
Eye Proteins , Genetic Therapy , Induced Pluripotent Stem Cells , Mutation , Organoids , Retina , Retinoschisis , Retinoschisis/genetics , Retinoschisis/therapy , Retinoschisis/pathology , Retinoschisis/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Genetic Therapy/methods , Organoids/metabolism , Retina/metabolism , Retina/pathology , Male , Cell Differentiation
4.
Cell Commun Signal ; 22(1): 290, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802833

ABSTRACT

The Crumbs protein (CRB) family plays a crucial role in maintaining the apical-basal polarity and integrity of embryonic epithelia. The family comprises different isoforms in different animals and possesses diverse structural, localization, and functional characteristics. Mutations in the human CRB1 or CRB2 gene may lead to a broad spectrum of retinal dystrophies. Various CRB-associated experimental models have recently provided mechanistic insights into human CRB-associated retinopathies. The knowledge obtained from these models corroborates the importance of CRB in retinal development and maintenance. Therefore, complete elucidation of these models can provide excellent therapeutic prospects for human CRB-associated retinopathies. In this review, we summarize the current animal models and human-derived models of different CRB family members and describe the main characteristics of their retinal phenotypes.


Subject(s)
Membrane Proteins , Retinal Diseases , Humans , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Retinal Diseases/genetics , Retinal Diseases/pathology , Retinal Diseases/metabolism , Retina/metabolism , Retina/pathology , Eye Proteins/genetics , Eye Proteins/metabolism , Disease Models, Animal , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Mutation
5.
Genes (Basel) ; 15(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38790254

ABSTRACT

Pathogenic variants in the Crumbs homolog 1 (CRB1) gene lead to severe, childhood-onset retinal degeneration leading to blindness in early adulthood. There are no approved therapies, and traditional adeno-associated viral vector-based gene therapy approaches are challenged by the existence of multiple CRB1 isoforms. Here, we describe three CRB1 variants, including a novel, previously unreported variant that led to retinal degeneration. We offer a CRISPR-Cas-mediated DNA base editing strategy as a potential future therapeutic approach. This study is a retrospective case series. Clinical and genetic assessments were performed, including deep phenotyping by retinal imaging. In silico analyses were used to predict the pathogenicity of the novel variant and to determine whether the variants are amenable to DNA base editing strategies. Case 1 was a 24-year-old male with cone-rod dystrophy and retinal thickening typical of CRB1 retinopathy. He had a relatively preserved central outer retinal structure and a best corrected visual acuity (BCVA) of 60 ETDRS letters in both eyes. Genetic testing revealed compound heterozygous variants in exon 9: c.2843G>A, p.(Cys948Tyr) and a novel variant, c.2833G>A, p.(Gly945Arg), which was predicted to likely be pathogenic by an in silico analysis. Cases 2 and 3 were two brothers, aged 20 and 24, who presented with severe cone-rod dystrophy and a significant disruption of the outer nuclear layers. The BCVA was reduced to hand movements in both eyes in Case 2 and to 42 ETDRS letters in both eyes in Case 3. Case 2 was also affected with marked cystoid macular lesions, which are common in CRB1 retinopathy, but responded well to treatment with oral acetazolamide. Genetic testing revealed two c.2234C>T, p.(Thr745Met) variants in both brothers. As G-to-A and C-to-T variants, all three variants are amenable to adenine base editors (ABEs) targeting the forward strand in the Case 1 variants and the reverse strand in Cases 2 and 3. Available PAM sites were detected for KKH-nSaCas9-ABE8e for the c.2843G>A variant, nSaCas9-ABE8e and KKH-nSaCas9-ABE8e for the c.2833G>A variant, and nSpCas9-ABE8e for the c.2234C>T variant. In this case series, we report three pathogenic CRB1 variants, including a novel c.2833G>A variant associated with early-onset cone-rod dystrophy. We highlight the severity and rapid progression of the disease and offer ABEs as a potential future therapeutic approach for this devastating blinding condition.


Subject(s)
CRISPR-Cas Systems , Eye Proteins , Gene Editing , Membrane Proteins , Nerve Tissue Proteins , Humans , Male , Gene Editing/methods , Membrane Proteins/genetics , Young Adult , Eye Proteins/genetics , Nerve Tissue Proteins/genetics , Adult , Cone-Rod Dystrophies/genetics , Cone-Rod Dystrophies/pathology , Female , Computer Simulation , Genetic Therapy/methods , Retrospective Studies
6.
Nat Commun ; 15(1): 4316, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773095

ABSTRACT

As signalling organelles, cilia regulate their G protein-coupled receptor content by ectocytosis, a process requiring localised actin dynamics to alter membrane shape. Photoreceptor outer segments comprise an expanse of folded membranes (discs) at the tip of highly-specialised connecting cilia, into which photosensitive GPCRs are concentrated. Discs are shed and remade daily. Defects in this process, due to mutations, cause retinitis pigmentosa (RP). Whilst fundamental for vision, the mechanism of photoreceptor disc generation is poorly understood. Here, we show membrane deformation required for disc genesis is driven by dynamic actin changes in a process akin to ectocytosis. We show RPGR, a leading RP gene, regulates actin-binding protein activity central to this process. Actin dynamics, required for disc formation, are perturbed in Rpgr mouse models, leading to aborted membrane shedding as ectosome-like vesicles, photoreceptor death and visual loss. Actin manipulation partially rescues this, suggesting the pathway could be targeted therapeutically. These findings help define how actin-mediated dynamics control outer segment turnover.


Subject(s)
Actins , Eye Proteins , Retinitis Pigmentosa , Animals , Actins/metabolism , Mice , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Cilia/metabolism , Humans , Retinal Photoreceptor Cell Outer Segment/metabolism , Mice, Knockout , Mice, Inbred C57BL , Cell Membrane/metabolism
7.
Sci Rep ; 14(1): 11886, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789534

ABSTRACT

The E3 ubiquitin-ligase UHRF1 is an epigenetic regulator coordinating DNA methylation and histone modifications. However, little is known about how it regulates adipogenesis or metabolism. In this study, we discovered that UHRF1 is a key regulatory factor for adipogenesis, and we identified the altered molecular pathways that UHRF1 targets. Using CRISPR/Cas9-based knockout strategies, we discovered the whole transcriptomic changes upon UHRF1 deletion. Bioinformatics analyses revealed that key adipogenesis regulators such PPAR-γ and C/EBP-α were suppressed, whereas TGF-ß signaling and fibrosis markers were upregulated in UHRF1-depleted differentiating adipocytes. Furthermore, UHRF1-depleted cells showed upregulated expression and secretion of TGF-ß1, as well as the glycoprotein GPNMB. Treating differentiating preadipocytes with recombinant GPNMB led to an increase in TGF-ß protein and secretion levels, which was accompanied by an increase in secretion of fibrosis markers such as MMP13 and a reduction in adipogenic conversion potential. Conversely, UHRF1 overexpression studies in human cells demonstrated downregulated levels of GPNMB and TGF-ß, and enhanced adipogenic potential. In conclusion, our data show that UHRF1 positively regulates 3T3-L1 adipogenesis and limits fibrosis by suppressing GPNMB and TGF-ß signaling cascade, highlighting the potential relevance of UHRF1 and its targets to the clinical management of obesity and linked metabolic disorders.


Subject(s)
Adipogenesis , Membrane Glycoproteins , Signal Transduction , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Humans , Animals , Mice , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Fibrosis , Transforming Growth Factor beta/metabolism , Eye Proteins/metabolism , Eye Proteins/genetics , 3T3-L1 Cells , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Adipocytes/metabolism , Cell Differentiation
8.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38713624

ABSTRACT

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cerebral Cortex , ErbB Receptors , Hedgehog Proteins , Nerve Tissue Proteins , Neural Stem Cells , Neurogenesis , Oligodendrocyte Transcription Factor 2 , PAX6 Transcription Factor , Animals , Neurogenesis/physiology , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Mice , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendrocyte Transcription Factor 2/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , PAX6 Transcription Factor/metabolism , PAX6 Transcription Factor/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Paired Box Transcription Factors/metabolism , Paired Box Transcription Factors/genetics , Neuroglia/metabolism , Neuroglia/cytology , Gene Expression Regulation, Developmental , Signal Transduction , Olfactory Bulb/metabolism , Olfactory Bulb/cytology , Cell Lineage , Humans
9.
BMC Ophthalmol ; 24(1): 167, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622537

ABSTRACT

PURPOSE: The goal of the study was to search for novel bi-allelic CRB1 mutations, and then to analyze the CRB1 literature at the genotypic and phenotypic levels. APPROACH: We screened various variables such as the CRB1 mutation types, domains, exons, and genotypes and their relation with specific ocular phenotypes. An emphasis was given to the bi-allelic missense and nonsense mutations because of their high prevalence compared to other mutation types. Finally, we quantified the effect of various non-modifiable factors over the best-corrected visual acuity oculus uterque (BCVA OU) using multivariate linear regression models and identified genetic interactions. RESULTS: A novel bi-allelic missense in the exon 9 of CRB1; c.2936G > A; p.(Gly979Asp) was found to be associated with rod-cone dystrophy (RCD). CRB1 mutation type, exons, domains, and genotype distribution varied significantly according to fundus characteristics, such as peripheral pigmentation and condition, optic disc, vessels, macular condition, and pigmentation (P < 0.05). Of the 154 articles retrieved from PubMed, 96 studies with 439 bi-allelic CRB1 patients were included. Missense mutations were significantly associated with an absence of macular pigments, pale optic disc, and periphery pigmentation, resulting in a higher risk of RCD (P < 0.05). In contrast, homozygous nonsense mutations were associated with macular pigments, periphery pigments, and a high risk of LCA (P < 0.05) and increased BCVA OU levels. We found that age, mutation types, and inherited retinal diseases were critical determinants of BCVA OU as they significantly increased it by 33% 26%, and 38%, respectively (P < 0.05). Loss of function alleles additively increased the risk of LCA, with nonsense having a more profound effect than indels. Finally, our analysis showed that p.(Cys948Tyr) and p.(Lys801Ter) and p.(Lys801Ter); p.(Cys896Ter) might interact to modify BCVA OU levels. CONCLUSION: This meta-analysis updated the literature and identified genotype-phenotype associations in bi-allelic CRB1 patients.


Subject(s)
Codon, Nonsense , Nerve Tissue Proteins , Humans , Alleles , Nerve Tissue Proteins/genetics , Genetic Association Studies , Retina , Phenotype , Mutation , Eye Proteins/genetics , Pedigree , DNA Mutational Analysis , Membrane Proteins/genetics
10.
Mol Vis ; 30: 49-57, 2024.
Article in English | MEDLINE | ID: mdl-38586605

ABSTRACT

RPGR pathogenic variants are the major cause of X-linked retinitis pigmentosa. Here, we report the results from 1,033 clinical DNA tests that included sequencing of RPGR. A total of 184 RPGR variants were identified: 78 pathogenic or likely pathogenic, 14 uncertain, and 92 likely benign or benign. Among the pathogenic and likely pathogenic variants, 23 were novel, and most were frameshift or nonsense mutations (87%) and enriched (67%) in RPGR exon 15 (ORF15). Identical pathogenic variants found in different families were largely on different haplotype backgrounds, indicating relatively frequent, recurrent RPGR mutations. None of the 16 mother/affected son pairs showed de novo mutations; all 16 mothers were heterozygous for the pathogenic variant. These last two observations support the occurrence of most RPGR mutations in the male germline.


Subject(s)
Eye Proteins , Retinitis Pigmentosa , Humans , Eye Proteins/genetics , Pedigree , Mutation , Frameshift Mutation , Vision Disorders , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology
11.
Indian J Ophthalmol ; 72(Suppl 3): S509-S513, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38648460

ABSTRACT

PURPOSE: Mutations of G protein-coupled receptor 143 (GPR143) and FERM domain containing 7 (FRMD7) may result in congenital nystagmus (CN) in the first 6 months of life. We aimed to compare the differences in ocular oscillations between patients with these two gene mutations as well as the functional and structural changes in their retinas and visual pathways. METHODS: Medical records were retrospectively reviewed to identify patients of congenital nystagmus with confirmed mutations in either GPR143 or FMRD7 genes from January 2018 to May 2023. The parameters of the ocular oscillations were recorded using Eyelink 1000 Plus. The retinal structure and function were evaluated using optical coherence tomography and multi-focal electroretinography (mERG). The visual pathway and optical nerve projection were evaluated using visual evoked potentials. The next-generation sequencing technique was used to identify the pathogenic variations in the disease-causing genes for CN. RESULTS: Twenty nystagmus patients of GPR143 and 21 patients of FMRD7 who had been confirmed by molecular testing between January 2018 and May 2023 were included. Foveal hypoplasia was detected only in patients with the GPR143 pathogenic variant. mERG examination showed a flat response topography in the GPR143 group compared to the FRMD7 group. VEP showed that bilateral amplitude inconsistency was detected only in the patients with GPR143 gene mutation. The amplitude and frequency of the ocular oscillations were not found to differ between patients with two different genetic mutations. CONCLUSIONS: Although the etiology and molecular mechanisms are completely different between CN patients, they may have similar ocular oscillations. A careful clinical examination and electrophysiological test will be helpful in making a differential diagnosis. Our novel identified variants will further expand the spectrum of the GPR143 and FRMD7 variants.


Subject(s)
Cytoskeletal Proteins , Membrane Proteins , Nystagmus, Congenital , Female , Humans , Male , Cytoskeletal Proteins/genetics , DNA/genetics , DNA Mutational Analysis , Electroretinography , Evoked Potentials, Visual/physiology , Eye Movements/physiology , Eye Proteins/genetics , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Mutation , Nystagmus, Congenital/genetics , Nystagmus, Congenital/physiopathology , Nystagmus, Congenital/diagnosis , Retina/physiopathology , Retrospective Studies , Tomography, Optical Coherence/methods
12.
CRISPR J ; 7(2): 100-110, 2024 04.
Article in English | MEDLINE | ID: mdl-38579141

ABSTRACT

Inherited retinal diseases (IRDs) are a heterogeneous group of blinding genetic disorders caused by pathogenic variants in genes expressed in the retina. In this study, we sought to develop a method for rapid evaluation of IRD gene variant pathogenicity by inducing expression of retinal genes in patient-derived fibroblasts using CRISPR-activation (CRISPRa). We demonstrate CRISPRa of CRB1 expression in fibroblasts derived from patients with retinitis pigmentosa, enabling investigation of pathogenic mechanisms associated with specific variants. We show the CRB1 c.4005 + 1G>A variant caused exon 11 skipping in CRISPR-activated fibroblasts and retinal organoids (ROs) derived from the same RP12 patient. The c.652 + 5G>C variant was shown to enhance exon 2 skipping in CRISPR-activated fibroblasts and differentially affected CRB1 isoform expression in fibroblasts and ROs. Our study demonstrates an accessible platform for transcript screening of IRD gene variants in patient-derived fibroblasts, which can potentially be applied for rapid pathogenicity assessments of any gene variant.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Reactive Oxygen Species/metabolism , Virulence , Gene Editing , Gene Expression , Eye Proteins/genetics , Eye Proteins/metabolism , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
13.
JCI Insight ; 9(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646933

ABSTRACT

Inherited retinal dystrophies (IRDs) are progressive diseases leading to vision loss. Mutation in the eyes shut homolog (EYS) gene is one of the most frequent causes of IRD. However, the mechanism of photoreceptor cell degeneration by mutant EYS has not been fully elucidated. Here, we generated retinal organoids from induced pluripotent stem cells (iPSCs) derived from patients with EYS-associated retinal dystrophy (EYS-RD). In photoreceptor cells of RD organoids, both EYS and G protein-coupled receptor kinase 7 (GRK7), one of the proteins handling phototoxicity, were not in the outer segment, where they are physiologically present. Furthermore, photoreceptor cells in RD organoids were vulnerable to light stimuli, and especially to blue light. Mislocalization of GRK7, which was also observed in eys-knockout zebrafish, was reversed by delivering control EYS into photoreceptor cells of RD organoids. These findings suggest that avoiding phototoxicity would be a potential therapeutic approach for EYS-RD.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Retinal Dystrophies , Zebrafish , Animals , Humans , Eye Proteins/genetics , Eye Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Light/adverse effects , Mutation , Organoids/metabolism , Retina/metabolism , Retina/pathology , Retinal Dystrophies/therapy , Retinal Dystrophies/genetics , Retinal Dystrophies/metabolism
14.
Hum Gene Ther ; 35(9-10): 342-354, 2024 May.
Article in English | MEDLINE | ID: mdl-38661546

ABSTRACT

X-linked retinoschisis (XLRS) is a monogenic recessive inherited retinal disease caused by defects in retinoschisin (RS1). It manifests clinically as retinal schisis cavities and a disproportionate reduction of b-wave amplitude compared with the a-wave amplitude. Currently there is no approved treatment. In the last decade, there has been major progress in the development of gene therapy for XLRS. Previous preclinical studies have demonstrated the treatment benefits of hRS1 gene augmentation therapy in mouse models. However, outcomes in clinical trials have been disappointing, and this might be attributed to dysfunctional assembly of RS1 complexes and/or the impaired targeted cells. In this study, the human synapsin 1 gene promoter (hSyn) was used to control the expression of hRS1 to specifically target retinal ganglion cells and our results confirmed the specific expression and functional assembly of the protein. Moreover, our results demonstrated that a single intravitreal injection of rAAV2-hSyn-hRS1 results in architectural restoration of retinal schisis cavities and improvement in vision in a mouse model of XLRS. In brief, this study not only supports the clinical development of the rAAV2-hSyn-hRS1 vector in XLRS patients but also confirms the therapeutic potential of rAAV-based gene therapy in inherited retinal diseases.


Subject(s)
Dependovirus , Disease Models, Animal , Genetic Therapy , Genetic Vectors , Intravitreal Injections , Mice, Knockout , Retinal Ganglion Cells , Retinoschisis , Synapsins , Animals , Dependovirus/genetics , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Mice , Genetic Therapy/methods , Retinoschisis/therapy , Retinoschisis/genetics , Humans , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Synapsins/genetics , Synapsins/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Gene Expression , Promoter Regions, Genetic , Retina/metabolism , Retina/pathology , Gene Transfer Techniques
15.
Nat Commun ; 15(1): 3146, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605029

ABSTRACT

Despite their lack of a defined 3D structure, intrinsically disordered regions (IDRs) of proteins play important biological roles. Many IDRs contain short linear motifs (SLiMs) that mediate protein-protein interactions (PPIs), which can be regulated by post-translational modifications like phosphorylation. 20% of pathogenic missense mutations are found in IDRs, and understanding how such mutations affect PPIs is essential for unraveling disease mechanisms. Here, we employ peptide-based interaction proteomics to investigate 36 disease-associated mutations affecting phosphorylation sites. Our results unveil significant differences in interactomes between phosphorylated and non-phosphorylated peptides, often due to disrupted phosphorylation-dependent SLiMs. We focused on a mutation of a serine phosphorylation site in the transcription factor GATAD1, which causes dilated cardiomyopathy. We find that this phosphorylation site mediates interaction with 14-3-3 family proteins. Follow-up experiments reveal the structural basis of this interaction and suggest that 14-3-3 binding affects GATAD1 nucleocytoplasmic transport by masking a nuclear localisation signal. Our results demonstrate that pathogenic mutations of human phosphorylation sites can significantly impact protein-protein interactions, offering insights into potential molecular mechanisms underlying pathogenesis.


Subject(s)
Intrinsically Disordered Proteins , Peptides , Humans , Phosphorylation , Peptides/metabolism , Protein Processing, Post-Translational , Gene Expression Regulation , Mutation , Intrinsically Disordered Proteins/metabolism , Protein Binding , Binding Sites , Eye Proteins/genetics
16.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38570189

ABSTRACT

Crumbs homolog 1 (CRB1) is one of the key genes linked to retinitis pigmentosa and Leber congenital amaurosis, which are characterized by a high clinical heterogeneity. The Crumbs family member CRB2 has a similar protein structure to CRB1, and in zebrafish, Crb2 has been shown to interact through the extracellular domain. Here, we show that CRB1 and CRB2 co-localize in the human retina and human iPSC-derived retinal organoids. In retina-specific pull-downs, CRB1 was enriched in CRB2 samples, supporting a CRB1-CRB2 interaction. Furthermore, novel interactors of the crumbs complex were identified, representing a retina-derived protein interaction network. Using co-immunoprecipitation, we further demonstrate that human canonical CRB1 interacts with CRB1 and CRB2, but not with CRB3, which lacks an extracellular domain. Next, we explored how missense mutations in the extracellular domain affect CRB1-CRB2 interactions. We observed no or a mild loss of CRB1-CRB2 interaction, when interrogating various CRB1 or CRB2 missense mutants in vitro. Taken together, our results show a stable interaction of human canonical CRB2 and CRB1 in the retina.


Subject(s)
Leber Congenital Amaurosis , Retinitis Pigmentosa , Animals , Humans , Zebrafish/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Retina/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Carrier Proteins/metabolism
17.
Gene ; 912: 148367, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38485037

ABSTRACT

Retinitis pigmentosa 1-like 1 (RP1L1) is a component of photoreceptor cilia. Pathogenic variants in RP1L1 cause photoreceptor diseases, suggesting that RP1L1 plays an important role in photoreceptor biology, although its exact function is unknown. To date, RP1L1 variants have been associated with occult macular dystrophy (cone degeneration) and retinitis pigmentosa (rod degeneration). Here, we summarize the reported RP1L1-associated photoreceptor pathogenic mutations. The association between RP1L1 and other diseases (mainly several tumors) is also summarized and RP1L1 is included in a wider range of diseases. Finally, it is necessary to further explore the influence mechanism of RP1L1 gene on the health of photoreceptors and how it participates in the occurrence and development of tumors.


Subject(s)
Macular Degeneration , Neoplasms , Retinitis Pigmentosa , Humans , Eye Proteins/genetics , Macular Degeneration/genetics , Neoplasms/genetics , Retinitis Pigmentosa/genetics
18.
Invest Ophthalmol Vis Sci ; 65(3): 31, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38517429

ABSTRACT

Purpose: This study aimed to investigate the impact of 21 NDP mutations located at the dimer interface, focusing on their potential effects on protein assembly, secretion efficiency, and activation of the Norrin/ß-catenin signaling pathway. Methods: The expression level, secretion efficiency, and protein assembly of mutations were analyzed using Western blot. The Norrin/ß-catenin signaling pathway activation ability after overexpression of mutants or supernatant incubation of mutant proteins was tested in HEK293STF cells. The mutant norrin and wild-type (WT) FZD4 were overexpressed in HeLa cells to observe their co-localization. Immunofluorescence staining was conducted in HeLa cells to analyze the subcellular localization of Norrin and the Retention Using Selective Hook (RUSH) assay was used to dynamically observe the secretion process of WT and mutant Norrin. Results: Four mutants (A63S, E66K, H68P, and L103Q) exhibited no significant differences from WT in all evaluations. The other 17 mutants presented abnormalities, including inadequate protein assembly, reduced secretion, inability to bind to FZD4 on the cell membrane, and decreased capacity to activate Norrin/ß-catenin signaling pathway. The RUSH assay revealed the delay in endoplasmic reticulum (ER) exit and impairment of Golgi transport. Conclusions: Mutations at the Norrin dimer interface may lead to abnormal protein assembly, inability to bind to FZD4, and decreased secretion, thus contributing to compromised Norrin/ß-catenin signaling. Our results shed light on the pathogenic mechanisms behind a significant proportion of NDP gene mutations in familial exudative vitreoretinopathy (FEVR) or Norrie disease.


Subject(s)
Eye Proteins , Frizzled Receptors , Retinal Diseases , Humans , beta Catenin/genetics , beta Catenin/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Frizzled Receptors/genetics , HeLa Cells , Mutation , Retinal Diseases/genetics , Nerve Tissue Proteins/genetics
19.
EMBO Mol Med ; 16(4): 805-822, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504136

ABSTRACT

For 15 years, gene therapy has been viewed as a beacon of hope for inherited retinal diseases. Many preclinical investigations have centered around vectors with maximal gene expression capabilities, yet despite efficient gene transfer, minimal physiological improvements have been observed in various ciliopathies. Retinitis pigmentosa-type 28 (RP28) is the consequence of bi-allelic null mutations in the FAM161A, an essential protein for the structure of the photoreceptor connecting cilium (CC). In its absence, cilia become disorganized, leading to outer segment collapses and vision impairment. Within the human retina, FAM161A has two isoforms: the long one with exon 4, and the short one without it. To restore CC in Fam161a-deficient mice shortly after the onset of cilium disorganization, we compared AAV vectors with varying promoter activities, doses, and human isoforms. While all vectors improved cell survival, only the combination of both isoforms using the weak FCBR1-F0.4 promoter enabled precise FAM161A expression in the CC and enhanced retinal function. Our investigation into FAM161A gene replacement for RP28 emphasizes the importance of precise therapeutic gene regulation, appropriate vector dosing, and delivery of both isoforms. This precision is pivotal for secure gene therapy involving structural proteins like FAM161A.


Subject(s)
Retinitis Pigmentosa , Animals , Mice , Humans , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/therapy , Retinitis Pigmentosa/metabolism , Retina/metabolism , Exons , Protein Isoforms/genetics , Protein Isoforms/metabolism , Genetic Therapy , Eye Proteins/genetics , Eye Proteins/chemistry , Eye Proteins/metabolism
20.
Int J Mol Sci ; 25(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542364

ABSTRACT

Retinitis pigmentosa 11 is an untreatable, dominantly inherited retinal disease caused by heterozygous mutations in pre-mRNA processing factor 31 PRPF31. The expression level of PRPF31 is linked to incomplete penetrance in affected families; mutation carriers with higher PRPF31 expression can remain asymptomatic. The current study explores an antisense oligonucleotide exon skipping strategy to treat RP11 caused by truncating mutations within PRPF31 exon 12 since it does not appear to encode any domains essential for PRPF31 protein function. Cells derived from a patient carrying a PRPF31 1205C>A nonsense mutation were investigated; PRPF31 transcripts encoded by the 1205C>A allele were undetectable due to nonsense-mediated mRNA decay, resulting in a 46% reduction in PRPF31 mRNA, relative to healthy donor cells. Antisense oligonucleotide-induced skipping of exon 12 rescued the open reading frame with consequent 1.7-fold PRPF31 mRNA upregulation in the RP11 patient fibroblasts. The level of PRPF31 upregulation met the predicted therapeutic threshold of expression inferred in a non-penetrant carrier family member harbouring the same mutation. This study demonstrated increased PRPF31 expression and retention of the nuclear translocation capability for the induced PRPF31 isoform. Future studies should evaluate the function of the induced PRPF31 protein on pre-mRNA splicing in retinal cells to validate the therapeutic approach for amenable RP11-causing mutations.


Subject(s)
Oligonucleotides, Antisense , RNA Precursors , Retinitis Pigmentosa , Humans , RNA Precursors/genetics , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Open Reading Frames , Mutation , Codon, Nonsense , Eye Proteins/genetics , Eye Proteins/metabolism , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...