Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.644
Filter
1.
Front Immunol ; 15: 1386344, 2024.
Article in English | MEDLINE | ID: mdl-38855108

ABSTRACT

Background: Ocular allergy (OA) is a localized subset of allergy characterized by ocular surface itchiness, redness and inflammation. Inflammation and eye-rubbing, due to allergy-associated itch, are common in OA sufferers and may trigger changes to the ocular surface biochemistry. The primary aim of this study is to assess the differences in the human tear proteome between OA sufferers and Healthy Controls (HCs) across peak allergy season and off-peak season in Victoria, Australia. Methods: 19 participants (14 OA sufferers, 5 HCs) aged 18-45 were recruited for this study. Participants were grouped based on allergy symptom assessment questionnaire scoring. Proteins were extracted from human tear samples and were run on an Orbitrap Mass Spectrometer. Peaks were matched to a DIA library. Data was analyzed using the software MaxQuant, Perseus and IBM SPSS. Results: 1267 proteins were identified in tear samples of OA sufferers and HCs. 23 proteins were differentially expressed between peak allergy season OA suffers vs HCs, and 21 were differentially expressed in off-peak season. Decreased proteins in OA sufferers related to cell structure regulation, inflammatory regulation and antimicrobial regulation. In both seasons, OA sufferers were shown to have increased expression of proteins relating to inflammation, immune responses and cellular development. Conclusion: Tear protein identification showed dysregulation of proteins involved in inflammation, immunity and cellular structures. Proteins relating to cellular structure may suggest a possible link between OA-associated itch and the subsequent ocular surface damage via eye-rubbing, while inflammatory and immune protein changes highlight potential diagnostic and therapeutic biomarkers of OA.


Subject(s)
Proteome , Proteomics , Seasons , Tears , Humans , Tears/metabolism , Tears/chemistry , Tears/immunology , Adult , Male , Female , Proteomics/methods , Middle Aged , Victoria , Young Adult , Adolescent , Eye Proteins/metabolism , Conjunctivitis, Allergic/metabolism , Conjunctivitis, Allergic/immunology , Inflammation/metabolism , Biomarkers , Hypersensitivity/metabolism , Hypersensitivity/immunology
2.
Elife ; 132024 May 30.
Article in English | MEDLINE | ID: mdl-38814685

ABSTRACT

Detailed binding experiments reveal new insights into the Norrin/Wnt signaling pathway that helps to control vascularization in the retina.


Subject(s)
Eye Proteins , Nerve Tissue Proteins , Retina , Wnt Signaling Pathway , Eye Proteins/metabolism , Eye Proteins/genetics , Humans , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Retina/metabolism , Animals , Protein Binding
3.
Cell Commun Signal ; 22(1): 290, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802833

ABSTRACT

The Crumbs protein (CRB) family plays a crucial role in maintaining the apical-basal polarity and integrity of embryonic epithelia. The family comprises different isoforms in different animals and possesses diverse structural, localization, and functional characteristics. Mutations in the human CRB1 or CRB2 gene may lead to a broad spectrum of retinal dystrophies. Various CRB-associated experimental models have recently provided mechanistic insights into human CRB-associated retinopathies. The knowledge obtained from these models corroborates the importance of CRB in retinal development and maintenance. Therefore, complete elucidation of these models can provide excellent therapeutic prospects for human CRB-associated retinopathies. In this review, we summarize the current animal models and human-derived models of different CRB family members and describe the main characteristics of their retinal phenotypes.


Subject(s)
Membrane Proteins , Retinal Diseases , Humans , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Retinal Diseases/genetics , Retinal Diseases/pathology , Retinal Diseases/metabolism , Retina/metabolism , Retina/pathology , Eye Proteins/genetics , Eye Proteins/metabolism , Disease Models, Animal , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Mutation
4.
Nat Commun ; 15(1): 4316, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773095

ABSTRACT

As signalling organelles, cilia regulate their G protein-coupled receptor content by ectocytosis, a process requiring localised actin dynamics to alter membrane shape. Photoreceptor outer segments comprise an expanse of folded membranes (discs) at the tip of highly-specialised connecting cilia, into which photosensitive GPCRs are concentrated. Discs are shed and remade daily. Defects in this process, due to mutations, cause retinitis pigmentosa (RP). Whilst fundamental for vision, the mechanism of photoreceptor disc generation is poorly understood. Here, we show membrane deformation required for disc genesis is driven by dynamic actin changes in a process akin to ectocytosis. We show RPGR, a leading RP gene, regulates actin-binding protein activity central to this process. Actin dynamics, required for disc formation, are perturbed in Rpgr mouse models, leading to aborted membrane shedding as ectosome-like vesicles, photoreceptor death and visual loss. Actin manipulation partially rescues this, suggesting the pathway could be targeted therapeutically. These findings help define how actin-mediated dynamics control outer segment turnover.


Subject(s)
Actins , Eye Proteins , Retinitis Pigmentosa , Animals , Actins/metabolism , Mice , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Cilia/metabolism , Humans , Retinal Photoreceptor Cell Outer Segment/metabolism , Mice, Knockout , Mice, Inbred C57BL , Cell Membrane/metabolism
5.
Sci Rep ; 14(1): 11886, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789534

ABSTRACT

The E3 ubiquitin-ligase UHRF1 is an epigenetic regulator coordinating DNA methylation and histone modifications. However, little is known about how it regulates adipogenesis or metabolism. In this study, we discovered that UHRF1 is a key regulatory factor for adipogenesis, and we identified the altered molecular pathways that UHRF1 targets. Using CRISPR/Cas9-based knockout strategies, we discovered the whole transcriptomic changes upon UHRF1 deletion. Bioinformatics analyses revealed that key adipogenesis regulators such PPAR-γ and C/EBP-α were suppressed, whereas TGF-ß signaling and fibrosis markers were upregulated in UHRF1-depleted differentiating adipocytes. Furthermore, UHRF1-depleted cells showed upregulated expression and secretion of TGF-ß1, as well as the glycoprotein GPNMB. Treating differentiating preadipocytes with recombinant GPNMB led to an increase in TGF-ß protein and secretion levels, which was accompanied by an increase in secretion of fibrosis markers such as MMP13 and a reduction in adipogenic conversion potential. Conversely, UHRF1 overexpression studies in human cells demonstrated downregulated levels of GPNMB and TGF-ß, and enhanced adipogenic potential. In conclusion, our data show that UHRF1 positively regulates 3T3-L1 adipogenesis and limits fibrosis by suppressing GPNMB and TGF-ß signaling cascade, highlighting the potential relevance of UHRF1 and its targets to the clinical management of obesity and linked metabolic disorders.


Subject(s)
Adipogenesis , Membrane Glycoproteins , Signal Transduction , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Humans , Animals , Mice , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Fibrosis , Transforming Growth Factor beta/metabolism , Eye Proteins/metabolism , Eye Proteins/genetics , 3T3-L1 Cells , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Adipocytes/metabolism , Cell Differentiation
6.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38713624

ABSTRACT

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cerebral Cortex , ErbB Receptors , Hedgehog Proteins , Nerve Tissue Proteins , Neural Stem Cells , Neurogenesis , Oligodendrocyte Transcription Factor 2 , PAX6 Transcription Factor , Animals , Neurogenesis/physiology , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Mice , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendrocyte Transcription Factor 2/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , PAX6 Transcription Factor/metabolism , PAX6 Transcription Factor/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Paired Box Transcription Factors/metabolism , Paired Box Transcription Factors/genetics , Neuroglia/metabolism , Neuroglia/cytology , Gene Expression Regulation, Developmental , Signal Transduction , Olfactory Bulb/metabolism , Olfactory Bulb/cytology , Cell Lineage , Humans
7.
Transl Vis Sci Technol ; 13(5): 1, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691083

ABSTRACT

Purpose: This feasibility study investigated the practicability of collecting and analyzing tear proteins from preterm infants at risk of retinopathy of prematurity (ROP). We sought to identify any tear proteins which might be implicated in the pathophysiology of ROP as well as prognostic markers. Methods: Schirmer's test was used to obtain tear samples from premature babies, scheduled for ROP screening, after parental informed consent. Mass spectrometry was used for proteomic analysis. Results: Samples were collected from 12 infants, which were all adequate for protein analysis. Gestational age ranged from 25 + 6 to 31 + 1 weeks. Postnatal age at sampling ranged from 19 to 66 days. One infant developed self-limiting ROP. Seven hundred one proteins were identified; 261 proteins identified in the majority of tear samples, including several common tear proteins, were used for analyses. Increased risk of ROP as determined by the postnatal growth ROP (G-ROP) criteria was associated with an increase in lactate dehydrogenase B chain in tears. Older infants demonstrated increased concentration of immunoglobulin complexes within their tear samples and two sets of twins in the cohort showed exceptionally similar proteomes, supporting validity of the analysis. Conclusions: Tear sampling by Schirmer test strips and subsequent proteomic analysis by mass spectrometry in preterm infants is feasible. A larger study is required to investigate the potential use of tear proteomics in identification of ROP. Translational Relevance: Tear sampling and subsequent mass spectrometry in preterm infants is feasible. Investigation of the premature tear proteome may increase our understanding of retinal development and provide noninvasive biomarkers for identification of treatment-warranted ROP.


Subject(s)
Biomarkers , Eye Proteins , Feasibility Studies , Gestational Age , Infant, Premature , Proteomics , Retinopathy of Prematurity , Tears , Humans , Retinopathy of Prematurity/diagnosis , Retinopathy of Prematurity/metabolism , Proteomics/methods , Infant, Newborn , Female , Tears/chemistry , Tears/metabolism , Male , Biomarkers/metabolism , Biomarkers/analysis , Eye Proteins/metabolism , Eye Proteins/analysis , Infant , Mass Spectrometry/methods
8.
Stem Cell Res Ther ; 15(1): 152, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816767

ABSTRACT

BACKGROUND: X-linked juvenile retinoschisis (XLRS) is an inherited disease caused by RS1 gene mutation, which leads to retinal splitting and visual impairment. The mechanism of RS1-associated retinal degeneration is not fully understood. Besides, animal models of XLRS have limitations in the study of XLRS. Here, we used human induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs) to investigate the disease mechanisms and potential treatments for XLRS. METHODS: hiPSCs reprogrammed from peripheral blood mononuclear cells of two RS1 mutant (E72K) XLRS patients were differentiated into ROs. Subsequently, we explored whether RS1 mutation could affect RO development and explore the effectiveness of RS1 gene augmentation therapy. RESULTS: ROs derived from RS1 (E72K) mutation hiPSCs exhibited a developmental delay in the photoreceptor, retinoschisin (RS1) deficiency, and altered spontaneous activity compared with control ROs. Furthermore, the delays in development were associated with decreased expression of rod-specific precursor markers (NRL) and photoreceptor-specific markers (RCVRN). Adeno-associated virus (AAV)-mediated gene augmentation with RS1 at the photoreceptor immature stage rescued the rod photoreceptor developmental delay in ROs with the RS1 (E72K) mutation. CONCLUSIONS: The RS1 (E72K) mutation results in the photoreceptor development delay in ROs and can be partially rescued by the RS1 gene augmentation therapy.


Subject(s)
Eye Proteins , Genetic Therapy , Induced Pluripotent Stem Cells , Mutation , Organoids , Retina , Retinoschisis , Retinoschisis/genetics , Retinoschisis/therapy , Retinoschisis/pathology , Retinoschisis/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Genetic Therapy/methods , Organoids/metabolism , Retina/metabolism , Retina/pathology , Male , Cell Differentiation
9.
J Proteome Res ; 23(6): 2206-2218, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38723043

ABSTRACT

Acupuncture is widely used to treat dry eye disease (DED), but its effect has not been reported in treating video display terminal (VDT)-related dry eye, and the mechanism of acupuncture on VDT-related dry eye is also unknown. In our study, the tear proteome was compared with identifying possible mechanisms and biomarkers for predicting acupuncture effectiveness in VDT-related dry eye. The results showed that the ocular surface disease index scores were significantly different between the acupuncture group (AC group) and artificial tears group (AT group) at the end of the study, whereas tear film breakup time (TFBUT) and Schirmer I test (SIT) were not significantly different between the groups. Proteome changes pre- and post-treatment in the AC group were associated with B cell-related immune processes, inflammation, glycolysis, and actin cytoskeleton. Furthermore, the proteins hexosaminidase A and mannose-binding lectin 1 could prospectively predict whether acupuncture treatment was effective. Therefore, we believe that acupuncture can provide greater improvement in the clinical symptoms of VDT-related dry eye than artificial tears. The mechanism of acupuncture in VDT-related dry eye treatment may be associated with glycolysis- and actin cytoskeleton remodeling-mediated inflammatory and immune processes. Additionally, hexosaminidase A and mannose-binding lectin 1 are biomarkers for predicting the efficacy of acupuncture for VDT-related dry eye.


Subject(s)
Acupuncture Therapy , Dry Eye Syndromes , Proteomics , Tears , Humans , Dry Eye Syndromes/therapy , Dry Eye Syndromes/metabolism , Tears/metabolism , Acupuncture Therapy/methods , Male , Female , Proteomics/methods , Middle Aged , Computer Terminals , Adult , Biomarkers/metabolism , Biomarkers/analysis , Proteome/analysis , Proteome/metabolism , Eye Proteins/metabolism
10.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38570189

ABSTRACT

Crumbs homolog 1 (CRB1) is one of the key genes linked to retinitis pigmentosa and Leber congenital amaurosis, which are characterized by a high clinical heterogeneity. The Crumbs family member CRB2 has a similar protein structure to CRB1, and in zebrafish, Crb2 has been shown to interact through the extracellular domain. Here, we show that CRB1 and CRB2 co-localize in the human retina and human iPSC-derived retinal organoids. In retina-specific pull-downs, CRB1 was enriched in CRB2 samples, supporting a CRB1-CRB2 interaction. Furthermore, novel interactors of the crumbs complex were identified, representing a retina-derived protein interaction network. Using co-immunoprecipitation, we further demonstrate that human canonical CRB1 interacts with CRB1 and CRB2, but not with CRB3, which lacks an extracellular domain. Next, we explored how missense mutations in the extracellular domain affect CRB1-CRB2 interactions. We observed no or a mild loss of CRB1-CRB2 interaction, when interrogating various CRB1 or CRB2 missense mutants in vitro. Taken together, our results show a stable interaction of human canonical CRB2 and CRB1 in the retina.


Subject(s)
Leber Congenital Amaurosis , Retinitis Pigmentosa , Animals , Humans , Zebrafish/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Retina/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Carrier Proteins/metabolism
11.
CRISPR J ; 7(2): 100-110, 2024 04.
Article in English | MEDLINE | ID: mdl-38579141

ABSTRACT

Inherited retinal diseases (IRDs) are a heterogeneous group of blinding genetic disorders caused by pathogenic variants in genes expressed in the retina. In this study, we sought to develop a method for rapid evaluation of IRD gene variant pathogenicity by inducing expression of retinal genes in patient-derived fibroblasts using CRISPR-activation (CRISPRa). We demonstrate CRISPRa of CRB1 expression in fibroblasts derived from patients with retinitis pigmentosa, enabling investigation of pathogenic mechanisms associated with specific variants. We show the CRB1 c.4005 + 1G>A variant caused exon 11 skipping in CRISPR-activated fibroblasts and retinal organoids (ROs) derived from the same RP12 patient. The c.652 + 5G>C variant was shown to enhance exon 2 skipping in CRISPR-activated fibroblasts and differentially affected CRB1 isoform expression in fibroblasts and ROs. Our study demonstrates an accessible platform for transcript screening of IRD gene variants in patient-derived fibroblasts, which can potentially be applied for rapid pathogenicity assessments of any gene variant.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Reactive Oxygen Species/metabolism , Virulence , Gene Editing , Gene Expression , Eye Proteins/genetics , Eye Proteins/metabolism , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
12.
Int J Biol Macromol ; 267(Pt 1): 131274, 2024 May.
Article in English | MEDLINE | ID: mdl-38569991

ABSTRACT

The vitreous is a vital component of the eye, occupying a substantial portion of its volume and maintaining its structure. This study delves into the presence and significance of intrinsically disordered proteins (IDPs) within the vitreous, utilizing a dataset of 1240 vitreous proteins previously discovered in the vitreous proteome by Murthy et al.in five healthy subjects. The results indicate that 26.9 % of vitreous proteins are highly disordered, 68.8 % possess moderate disorder, and only 4.3 % are highly ordered. A complex interaction network among these proteins suggests their biological importance, and approximately 25 % may undergo liquid-liquid phase separation (LLPS). These findings offer new perspectives on the vitreous' molecular composition and behavior, potentially impacting our understanding of eye-related diseases, physiological changes such as vitreous syneresis. Further research is needed to translate these insights into clinical applications, although the intrinsic protein disorder and its association with LLPS appears to play a role in vitreous proteome function.


Subject(s)
Intrinsically Disordered Proteins , Proteome , Vitreous Body , Humans , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Proteome/metabolism , Vitreous Body/metabolism , Eye Proteins/metabolism
13.
Hum Gene Ther ; 35(9-10): 342-354, 2024 May.
Article in English | MEDLINE | ID: mdl-38661546

ABSTRACT

X-linked retinoschisis (XLRS) is a monogenic recessive inherited retinal disease caused by defects in retinoschisin (RS1). It manifests clinically as retinal schisis cavities and a disproportionate reduction of b-wave amplitude compared with the a-wave amplitude. Currently there is no approved treatment. In the last decade, there has been major progress in the development of gene therapy for XLRS. Previous preclinical studies have demonstrated the treatment benefits of hRS1 gene augmentation therapy in mouse models. However, outcomes in clinical trials have been disappointing, and this might be attributed to dysfunctional assembly of RS1 complexes and/or the impaired targeted cells. In this study, the human synapsin 1 gene promoter (hSyn) was used to control the expression of hRS1 to specifically target retinal ganglion cells and our results confirmed the specific expression and functional assembly of the protein. Moreover, our results demonstrated that a single intravitreal injection of rAAV2-hSyn-hRS1 results in architectural restoration of retinal schisis cavities and improvement in vision in a mouse model of XLRS. In brief, this study not only supports the clinical development of the rAAV2-hSyn-hRS1 vector in XLRS patients but also confirms the therapeutic potential of rAAV-based gene therapy in inherited retinal diseases.


Subject(s)
Dependovirus , Disease Models, Animal , Genetic Therapy , Genetic Vectors , Intravitreal Injections , Mice, Knockout , Retinal Ganglion Cells , Retinoschisis , Synapsins , Animals , Dependovirus/genetics , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Mice , Genetic Therapy/methods , Retinoschisis/therapy , Retinoschisis/genetics , Humans , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Synapsins/genetics , Synapsins/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Gene Expression , Promoter Regions, Genetic , Retina/metabolism , Retina/pathology , Gene Transfer Techniques
14.
Exp Eye Res ; 243: 109903, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642601

ABSTRACT

Pseudoexfoliation syndrome (PEX) is characterized by the deposition of fibrous pseudoexfoliation material (PEXM) in the eye, and secondary glaucoma associated with this syndrome has a faster and more severe clinical course. The incidence of PEX and pseudoexfoliative glaucoma (PEXG) exhibits ethnic clustering; however, few proteomic studies related to PEX and PEXG have been conducted in Asian populations. Therefore, we aimed to conduct proteomic analysis on the aqueous humor (AH) obtained from Uyghur patients with cataracts, those with PEX and cataracts, and those with PEXG and cataracts to better understand the molecular mechanisms of the disease and identify its potential biomarkers. To this end, AH was collected from patients with cataracts (n = 10, control group), PEX with cataracts (n = 10, PEX group), and PEXG with cataracts (n = 10, PEXG group) during phacoemulsification. Label-free quantitative proteomic techniques combined with bioinformatics were used to identify and analyze differentially expressed proteins (DEPs) in the AH of PEX and PEXG groups. Then, independent AH samples (n = 12, each group) were collected to validate DEPs by enzyme-linked immunosorbent assay (ELISA). The PEX group exhibited 25 DEPs, while the PEXG group showed 44 DEPs, both compared to the control group. Subsequently, we found three newly identified proteins in both PEX and PEXG groups, wherein FRAS1-related extracellular matrix protein 2 (FREM2) and osteoclast-associated receptor (OSCAR) exhibited downregulation, whereas coagulation Factor IX (F9) displayed upregulation. Bioinformatics analysis suggested that extracellular matrix interactions, abnormal blood-derived proteins, and lysosomes were mainly involved in the process of PEX and PEXG, and the PPI network further revealed F9 may serve as a potential biomarker for both PEX and PEXG. In conclusion, this study provides new information for understanding the proteomics of AH in PEX and PEXG.


Subject(s)
Aqueous Humor , Exfoliation Syndrome , Eye Proteins , Proteomics , Humans , Exfoliation Syndrome/metabolism , Aqueous Humor/metabolism , Proteomics/methods , Male , Female , Aged , Eye Proteins/metabolism , China/epidemiology , Glaucoma, Open-Angle/metabolism , Middle Aged , Biomarkers/metabolism , Enzyme-Linked Immunosorbent Assay , Cataract/metabolism , Intraocular Pressure/physiology
15.
Exp Eye Res ; 243: 109887, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609044

ABSTRACT

The pathophysiology of Primary Open Angle Glaucoma (POAG) remains poorly understood. Through proteomic analysis of aqueous humour (AH) from POAG patients, we aim to identify changes in protein composition of these samples compared to control samples. High resolution mass spectrometry-based TMT6plex quantitative proteomics analysis is performed on AH samples collected from POAG patients, and compared against a control group of patients with cataracts. Data are available via ProteomeXchange with identifier PXD033153. 1589 proteins were quantified from the aqueous samples using Proteome Discoverer version 2.2 software. Among these proteins, 210 were identified as unique master proteins. The proteins which were up or down-regulated by ±3 fold-change were considered significant. Human neuroblastoma full-length cDNA clone CS0DD006YL02 was significantly upregulated in patients with severe POAG on >2 medications, while actin, cytoplasmic 1, V2-7 protein (fragment), immunoglobulin-like polypeptide 1 and phosphatidylethanolamine-binding protein 4 were only present in these patients with severe POAG on >2 medications. Beta-crystallin B1 and B2, Gamma-crystallin C, D and S were significantly downregulated in the severe POAG ≤2 glaucoma medications group. Beta-crystallin B2, Gamma-crystallin D and GCT-A9 light chain variable region (fragment) were significantly downregulated in the non-severe POAG group. Actin, cytoplasmic 1 was significantly upregulated in subjects with severe POAG who required more than 2 glaucoma medications. Crystallins (Beta-crystallin B1 and B2, Gamma-crystallin C, D and S) were significantly downregulated in subjects with severe POAG who required less than 2 glaucoma medications.


Subject(s)
Aqueous Humor , Eye Proteins , Glaucoma, Open-Angle , Proteomics , Humans , Glaucoma, Open-Angle/metabolism , Aqueous Humor/metabolism , Female , Male , Eye Proteins/metabolism , Aged , Middle Aged , Proteomics/methods , Intraocular Pressure/physiology , Asian People
16.
JCI Insight ; 9(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646933

ABSTRACT

Inherited retinal dystrophies (IRDs) are progressive diseases leading to vision loss. Mutation in the eyes shut homolog (EYS) gene is one of the most frequent causes of IRD. However, the mechanism of photoreceptor cell degeneration by mutant EYS has not been fully elucidated. Here, we generated retinal organoids from induced pluripotent stem cells (iPSCs) derived from patients with EYS-associated retinal dystrophy (EYS-RD). In photoreceptor cells of RD organoids, both EYS and G protein-coupled receptor kinase 7 (GRK7), one of the proteins handling phototoxicity, were not in the outer segment, where they are physiologically present. Furthermore, photoreceptor cells in RD organoids were vulnerable to light stimuli, and especially to blue light. Mislocalization of GRK7, which was also observed in eys-knockout zebrafish, was reversed by delivering control EYS into photoreceptor cells of RD organoids. These findings suggest that avoiding phototoxicity would be a potential therapeutic approach for EYS-RD.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Retinal Dystrophies , Zebrafish , Animals , Humans , Eye Proteins/genetics , Eye Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Light/adverse effects , Mutation , Organoids/metabolism , Retina/metabolism , Retina/pathology , Retinal Dystrophies/therapy , Retinal Dystrophies/genetics , Retinal Dystrophies/metabolism
17.
Cells ; 13(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38534367

ABSTRACT

We report a novel RPGR missense variant co-segregated with a familial X-linked retinitis pigmentosa (XLRP) case. The brothers were hemizygous for this variant, but only the proband presented with primary ciliary dyskinesia (PCD). Thus, we aimed to elucidate the role of the RPGR variant and other modifier genes in the phenotypic variability observed in the family and its impact on motile cilia. The pathogenicity of the variant on the RPGR protein was evaluated by in vitro studies transiently transfecting the mutated RPGR gene, and immunofluorescence analysis on nasal brushing samples. Whole-exome sequencing was conducted to identify potential modifier variants. In vitro studies showed that the mutated RPGR protein could not localise to the cilium and impaired cilium formation. Accordingly, RPGR was abnormally distributed in the siblings' nasal brushing samples. In addition, a missense variant in CEP290 was identified. The concurrent RPGR variant influenced ciliary mislocalisation of the protein. We provide a comprehensive characterisation of motile cilia in this XLRP family, with only the proband presenting PCD symptoms. The variant's pathogenicity was confirmed, although it alone does not explain the respiratory symptoms. Finally, the CEP290 gene may be a potential modifier for respiratory symptoms in patients with RPGR mutations.


Subject(s)
Ciliary Motility Disorders , Retinitis Pigmentosa , Humans , Male , Ciliary Motility Disorders/genetics , Eye Proteins/metabolism , Genes, Modifier , Mutation , Retinitis Pigmentosa/genetics
18.
Int J Mol Sci ; 25(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542364

ABSTRACT

Retinitis pigmentosa 11 is an untreatable, dominantly inherited retinal disease caused by heterozygous mutations in pre-mRNA processing factor 31 PRPF31. The expression level of PRPF31 is linked to incomplete penetrance in affected families; mutation carriers with higher PRPF31 expression can remain asymptomatic. The current study explores an antisense oligonucleotide exon skipping strategy to treat RP11 caused by truncating mutations within PRPF31 exon 12 since it does not appear to encode any domains essential for PRPF31 protein function. Cells derived from a patient carrying a PRPF31 1205C>A nonsense mutation were investigated; PRPF31 transcripts encoded by the 1205C>A allele were undetectable due to nonsense-mediated mRNA decay, resulting in a 46% reduction in PRPF31 mRNA, relative to healthy donor cells. Antisense oligonucleotide-induced skipping of exon 12 rescued the open reading frame with consequent 1.7-fold PRPF31 mRNA upregulation in the RP11 patient fibroblasts. The level of PRPF31 upregulation met the predicted therapeutic threshold of expression inferred in a non-penetrant carrier family member harbouring the same mutation. This study demonstrated increased PRPF31 expression and retention of the nuclear translocation capability for the induced PRPF31 isoform. Future studies should evaluate the function of the induced PRPF31 protein on pre-mRNA splicing in retinal cells to validate the therapeutic approach for amenable RP11-causing mutations.


Subject(s)
Oligonucleotides, Antisense , RNA Precursors , Retinitis Pigmentosa , Humans , RNA Precursors/genetics , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Open Reading Frames , Mutation , Codon, Nonsense , Eye Proteins/genetics , Eye Proteins/metabolism , Pedigree
19.
Invest Ophthalmol Vis Sci ; 65(3): 31, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38517429

ABSTRACT

Purpose: This study aimed to investigate the impact of 21 NDP mutations located at the dimer interface, focusing on their potential effects on protein assembly, secretion efficiency, and activation of the Norrin/ß-catenin signaling pathway. Methods: The expression level, secretion efficiency, and protein assembly of mutations were analyzed using Western blot. The Norrin/ß-catenin signaling pathway activation ability after overexpression of mutants or supernatant incubation of mutant proteins was tested in HEK293STF cells. The mutant norrin and wild-type (WT) FZD4 were overexpressed in HeLa cells to observe their co-localization. Immunofluorescence staining was conducted in HeLa cells to analyze the subcellular localization of Norrin and the Retention Using Selective Hook (RUSH) assay was used to dynamically observe the secretion process of WT and mutant Norrin. Results: Four mutants (A63S, E66K, H68P, and L103Q) exhibited no significant differences from WT in all evaluations. The other 17 mutants presented abnormalities, including inadequate protein assembly, reduced secretion, inability to bind to FZD4 on the cell membrane, and decreased capacity to activate Norrin/ß-catenin signaling pathway. The RUSH assay revealed the delay in endoplasmic reticulum (ER) exit and impairment of Golgi transport. Conclusions: Mutations at the Norrin dimer interface may lead to abnormal protein assembly, inability to bind to FZD4, and decreased secretion, thus contributing to compromised Norrin/ß-catenin signaling. Our results shed light on the pathogenic mechanisms behind a significant proportion of NDP gene mutations in familial exudative vitreoretinopathy (FEVR) or Norrie disease.


Subject(s)
Eye Proteins , Frizzled Receptors , Retinal Diseases , Humans , beta Catenin/genetics , beta Catenin/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Frizzled Receptors/genetics , HeLa Cells , Mutation , Retinal Diseases/genetics , Nerve Tissue Proteins/genetics
20.
Exp Eye Res ; 242: 109861, 2024 May.
Article in English | MEDLINE | ID: mdl-38522635

ABSTRACT

Amyloid-beta (Aß), a family of aggregation-prone and neurotoxic peptides, has been implicated in the pathophysiology of age-related macular degeneration (AMD). We have previously shown that oligomeric and fibrillar species of Aß42 exerted retinal toxicity in rats, but while the consequences of exposure to amyloid were related to intracellular effects, the mechanism of Aß42 internalization in the retina is not well characterized. In the brain, the 67 kDa laminin receptor (67LR) participates in Aß-related neuronal cell death. A short peptide derived from pigment epithelium-derived factor (PEDF), formerly designated PEDF-335, was found to mitigate experimental models of ischemic retinopathy via targeting of 67LR. In the present study, we hypothesized that 67LR mediates the uptake of pathogenic Aß42 assemblies in the retina, and that targeting of this receptor by PEDF-335 may limit the internalization of Aß, thereby ameliorating its retinotoxicity. To test this assumption ARPE-19 cells in culture were incubated with PEDF-335 before treatment with fibrillar or oligomeric structures of Aß42. Immunostaining confirmed that PEDF-335 treatment substantially prevented amyloid internalization into ARPE-19 cells and maintained their viability in the presence of toxic oligomeric and fibrillar Aß42 entities in vitro. FRET competition assay was performed and confirmed the binding of PEDF-335 to 67LR in RPE-like cells. Wild-type rats were treated with intravitreal PEDF-335 in the experimental eye 2 days prior to administration of retinotoxic Aß42 oligomers or fibrils to both eyes. Retinal function was assessed by electroretinography through 6 weeks post injection. The ERG responses in rats treated with oligomeric or fibrillar Aß42 assemblies were near-normal in eyes previously treated with intravitreal PEDF-335, whereas those measured in the control eyes treated with injection of the Aß42 assemblies alone showed pathologic attenuation of the retinal function through 6 weeks. The retinal presence of 67LR was determined ex vivo by immunostaining and western blotting. Retinal staining demonstrated the constitutional expression of 67LR mainly in the retinal nuclear layers. In the presence of Aß42, the levels of 67LR were increased, although its retinal distribution remained largely unaltered. In contrast, no apparent differences in the retinal expression level of 67LR were noted following exposure to PEDF-335 alone, and its pattern of localization in the retina remained similarly concentrated primarily in the inner and outer nuclear layers. In summary, we found that PEDF-335 confers protection against Aß42-mediated retinal toxicity, with significant effects noted in cells as well as in vivo in rats. The effects of PEDF-335 in the retina are potentially mediated via binding to 67LR and by at least partial inhibition of Aß42 internalization. These results suggest that PEDF-335 may merit further consideration in the development of targeted inhibition of amyloid-related toxicity in the retina. More broadly, our observations provide evidence on the importance of extracellular versus intracellular Aß42 in the retina and suggest concepts on the molecular mechanism of Aß retinal pathogenicity.


Subject(s)
Amyloid beta-Peptides , Electroretinography , Eye Proteins , Nerve Growth Factors , Serpins , Animals , Serpins/metabolism , Eye Proteins/metabolism , Nerve Growth Factors/metabolism , Rats , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Peptide Fragments/toxicity , Disease Models, Animal , Receptors, Laminin/metabolism , Male , Retina/drug effects , Retina/metabolism , Humans , Intravitreal Injections , Blotting, Western , Retinal Diseases/prevention & control , Retinal Diseases/metabolism , Retinal Diseases/chemically induced , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...