Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gut ; 70(6): 1162-1173, 2021 06.
Article in English | MEDLINE | ID: mdl-32998876

ABSTRACT

OBJECTIVE: Altered bacterial composition is associated with disease progression in cirrhosis but the role of virome, especially phages, is unclear. DESIGN: Cross-sectional and pre/post rifaximin cohorts were enrolled. Cross-sectional: controls and cirrhotic outpatients (compensated, on lactulose (Cirr-L), on rifaximin (Cirr-LR)) were included and followed for 90-day hospitalisations. Pre/post: compensated cirrhotics underwent stool collection pre/post 8 weeks of rifaximin. Stool metagenomics for bacteria and phages and their correlation networks were analysed in controls versus cirrhosis, within cirrhotics, hospitalised/not and pre/post rifaximin. RESULTS: Cross-sectional: 40 controls and 163 cirrhotics (63 compensated, 43 Cirr-L, 57 Cirr-LR) were enrolled. Cirr-L/LR groups were similar on model for end-stage liver disease (MELD) score but Cirr-L developed greater hospitalisations versus Cirr-LR (56% vs 30%, p=0.008). Bacterial alpha/beta diversity worsened from controls through Cirr-LR. While phage alpha diversity was similar, beta diversity was different between groups. Autochthonous bacteria linked negatively, pathobionts linked positively with MELD but only modest phage-MELD correlations were seen. Phage-bacterial correlation network complexity was highest in controls, lowest in Cirr-L and increased in Cirr-LR. Microviridae and Faecalibacterium phages were linked with autochthonous bacteria in Cirr-LR, but not Cirr-L hospitalised patients had greater pathobionts, lower commensal bacteria and phages focused on Streptococcus, Lactococcus and Myoviridae. Pre/post: No changes in alpha/beta diversity of phages or bacteria were seen postrifaximin. Phage-bacterial linkages centred around urease-producing Streptococcus species collapsed postrifaximin. CONCLUSION: Unlike bacteria, faecal phages are sparsely linked with cirrhosis characteristics and 90-day outcomes. Phage and bacterial linkages centred on urease-producing, ammonia-generating Streptococcus species were affected by disease progression and rifaximin therapy and were altered in patients who experienced 90-day hospitalisations.


Subject(s)
Anti-Bacterial Agents/therapeutic use , End Stage Liver Disease/microbiology , Firmicutes/virology , Hepatic Encephalopathy/microbiology , Liver Cirrhosis/microbiology , Rifaximin/therapeutic use , Aged , Anti-Bacterial Agents/pharmacology , Cross-Sectional Studies , Disease Progression , End Stage Liver Disease/etiology , Faecalibacterium/genetics , Faecalibacterium/virology , Feces/microbiology , Female , Firmicutes/genetics , Gastrointestinal Agents/therapeutic use , Hospitalization , Humans , Lactococcus/genetics , Lactococcus/virology , Lactulose/therapeutic use , Liver Cirrhosis/complications , Liver Cirrhosis/drug therapy , Male , Metagenome/drug effects , Metagenomics , Microbial Interactions , Microviridae/genetics , Middle Aged , Myoviridae/genetics , Patient Acuity , Rifaximin/pharmacology , Streptococcus/genetics , Streptococcus/virology , Virome/drug effects
2.
Cell Host Microbe ; 26(4): 527-541.e5, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31600503

ABSTRACT

The human gut contains a vast array of viruses, mostly bacteriophages. The majority remain uncharacterized, and their roles in shaping the gut microbiome and in impacting on human health remain poorly understood. We performed longitudinal metagenomic analysis of fecal viruses in healthy adults that reveal high temporal stability, individual specificity, and correlation with the bacterial microbiome. Using a database-independent approach that uses most of the sequencing data, we uncovered the existence of a stable, numerically predominant individual-specific persistent personal virome. Clustering of viral genomes and de novo taxonomic annotation identified several groups of crAss-like and Microviridae bacteriophages as the most stable colonizers of the human gut. CRISPR-based host prediction highlighted connections between these stable viral communities and highly predominant gut bacterial taxa such as Bacteroides, Prevotella, and Faecalibacterium. This study provides insights into the structure of the human gut virome and serves as an important baseline for hypothesis-driven research.


Subject(s)
Bacteroides/virology , Faecalibacterium/virology , Gastrointestinal Microbiome/genetics , Microviridae/genetics , Prevotella/virology , Bacteroides/isolation & purification , Faecalibacterium/isolation & purification , Humans , Longitudinal Studies , Metagenome/genetics , Microviridae/classification , Microviridae/isolation & purification , Prevotella/isolation & purification , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...