Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.787
Filter
1.
Cardiovasc Diabetol ; 23(1): 154, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702735

ABSTRACT

BACKGROUND: Insulin resistance (IR) plays an important role in the pathophysiology of cardiovascular disease. Recent studies have shown that diabetes mellitus and impaired lipid metabolism are associated with the severity and prognosis of idiopathic pulmonary arterial hypertension (IPAH). However, the relationship between IR and pulmonary hypertension is poorly understood. This study explored the association between four IR indices and IPAH using data from a multicenter cohort. METHODS: A total of 602 consecutive participants with IPAH were included in this study between January 2015 and December 2022. The metabolic score for IR (METS-IR), triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio, triglyceride and glucose (TyG) index, and triglyceride-glucose-body mass index (TyG-BMI) were used to quantify IR levels in patients with IPAH. The correlation between non-insulin-based IR indices and long-term adverse outcomes was determined using multivariate Cox regression models and restricted cubic splines. RESULTS: During a mean of 3.6 years' follow-up, 214 participants experienced all-cause death or worsening condition. Compared with in low to intermediate-low risk patients, the TG/HDL-C ratio (2.9 ± 1.7 vs. 3.3 ± 2.1, P = 0.003) and METS-IR (34.5 ± 6.7 vs. 36.4 ± 7.5, P < 0.001) were significantly increased in high to intermediate-high risk patients. IR indices correlated with well-validated variables that reflected the severity of IPAH, such as the cardiac index and stroke volume index. Multivariate Cox regression analyses indicated that the TyG-BMI index (hazard ratio [HR] 1.179, 95% confidence interval [CI] 1.020, 1.363 per 1.0-standard deviation [SD] increment, P = 0.026) and METS-IR (HR 1.169, 95% CI 1.016, 1.345 per 1.0-SD increment, P = 0.030) independently predicted adverse outcomes. Addition of the TG/HDL-C ratio and METS-IR significantly improved the reclassification and discrimination ability beyond the European Society of Cardiology (ESC) risk score. CONCLUSIONS: IR is associated with the severity and long-term prognosis of IPAH. TyG-BMI and METS-IR can independently predict clinical worsening events, while METS-IR also provide incremental predictive performance beyond the ESC risk stratification.


Subject(s)
Biomarkers , Blood Glucose , Insulin Resistance , Severity of Illness Index , Triglycerides , Adult , Female , Humans , Male , Biomarkers/blood , Blood Glucose/metabolism , China/epidemiology , Cholesterol, HDL/blood , Disease Progression , Familial Primary Pulmonary Hypertension/diagnosis , Familial Primary Pulmonary Hypertension/blood , Familial Primary Pulmonary Hypertension/physiopathology , Familial Primary Pulmonary Hypertension/mortality , Prognosis , Retrospective Studies , Risk Assessment , Risk Factors , Time Factors , Triglycerides/blood
2.
J Transl Med ; 22(1): 502, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797830

ABSTRACT

BACKGROUND: Inflammation and dysregulated immunity play vital roles in idiopathic pulmonary arterial hypertension (IPAH), while the mechanisms that initiate and promote these processes are unclear. METHODS: Transcriptomic data of lung tissues from IPAH patients and controls were obtained from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA), differential expression analysis, protein-protein interaction (PPI) and functional enrichment analysis were combined with a hemodynamically-related histopathological score to identify inflammation-associated hub genes in IPAH. The monocrotaline-induced rat model of pulmonary hypertension was utilized to confirm the expression pattern of these hub genes. Single-cell RNA-sequencing (scRNA-seq) data were used to identify the hub gene-expressing cell types and their intercellular interactions. RESULTS: Through an extensive bioinformatics analysis, CXCL9, CCL5, GZMA and GZMK were identified as hub genes that distinguished IPAH patients from controls. Among these genes, pulmonary expression levels of Cxcl9, Ccl5 and Gzma were elevated in monocrotaline-exposed rats. Further investigation revealed that only CCL5 and GZMA were highly expressed in T and NK cells, where CCL5 mediated T and NK cell interaction with endothelial cells, smooth muscle cells, and fibroblasts through multiple receptors. CONCLUSIONS: Our study identified a new inflammatory pathway in IPAH, where T and NK cells drove heightened inflammation predominantly via the upregulation of CCL5, providing groundwork for the development of targeted therapeutics.


Subject(s)
Chemokine CCL5 , Familial Primary Pulmonary Hypertension , Killer Cells, Natural , RNA-Seq , Single-Cell Analysis , T-Lymphocytes , Animals , Humans , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Familial Primary Pulmonary Hypertension/genetics , Familial Primary Pulmonary Hypertension/pathology , Familial Primary Pulmonary Hypertension/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Male , Cell Communication/genetics , Rats, Sprague-Dawley , Lung/pathology , Rats , Gene Regulatory Networks , Monocrotaline , Protein Interaction Maps/genetics , Computational Biology
3.
BMC Pulm Med ; 24(1): 199, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654208

ABSTRACT

BACKGROUND: Fractional exhaled nitric oxide (FeNO) has been extensively studied in various causes of pulmonary hypertension (PH), but its utility as a noninvasive marker remains highly debated. The objective of our study was to assess FeNO levels in patients with idiopathic pulmonary arterial hypertension (IPAH) and mixed connective tissue disease complicating pulmonary hypertension (MCTD-PH), and to correlate them with respiratory functional data, disease severity, and cardiopulmonary function. METHODS: We collected data from 54 patients diagnosed with IPAH and 78 patients diagnosed with MCTD-PH at the Shanghai Pulmonary Hospital Affiliated to Tongji University. Our data collection included measurements of brain natriuretic peptide (pro-BNP), cardiopulmonary exercise test (CPET), pulmonary function test (PFT), impulse oscillometry (IOS), and FeNO levels. Additionally, we assessed World Health Organization functional class (WHO-FC) of each patient. RESULTS: (1) The fractional exhaled concentration of nitric oxide was notably higher in patients with IPAH compared to those with MCTD-PH. Furthermore, within the IPAH group, FeNO levels were found to be lower in cases of severe IPAH compared to mild IPAH (P = 0.024); (2) In severe pulmonary hypertension as per the WHO-FC classification, FeNO levels in IPAH exhibited negative correlations with FEV1/FVC (Forced Expiratory Velocity at one second /Forced Vital Capacity), MEF50% (Maximum Expiratory Flow at 50%), MEF25%, and MMEF75/25% (Maximum Mid-expiratory Flow between 75% and 25%), while in severe MCTD-PH, FeNO levels were negatively correlated with R20% (Resistance at 20 Hz); (3) ROC (Receiving operator characteristic curve) analysis indicated that the optimal cutoff value of FeNO for diagnosing severe IPAH was 23ppb; (4) While FeNO levels tend to be negatively correlated with peakPETO2(peak end-tidal partial pressure for oxygen) in severe IPAH, in mild IPAH they had a positive correlation to peakO2/Heart rate (HR). An interesting find was observed in cases of severe MCTD-PH, where FeNO levels were negatively correlated with HR and respiratory exchange ratio (RER), while positively correlated with O2/HR throughout the cardiopulmonary exercise test. CONCLUSION: FeNO levels serve as a non-invasive measure of IPAH severity. Although FeNO levels may not assess the severity of MCTD-PH, their significant makes them a valuable tool when assessing severe MCTD-PH.


Subject(s)
Exercise Test , Familial Primary Pulmonary Hypertension , Mixed Connective Tissue Disease , Nitric Oxide , Humans , Female , Male , Middle Aged , Adult , Mixed Connective Tissue Disease/complications , Nitric Oxide/analysis , Nitric Oxide/metabolism , Familial Primary Pulmonary Hypertension/physiopathology , Familial Primary Pulmonary Hypertension/diagnosis , Familial Primary Pulmonary Hypertension/complications , Biomarkers/analysis , Biomarkers/metabolism , Respiratory Function Tests , Fractional Exhaled Nitric Oxide Testing , Severity of Illness Index , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/diagnosis , Natriuretic Peptide, Brain/metabolism , China , Aged
4.
Respir Med ; 227: 107643, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657739

ABSTRACT

BACKGROUND: Emerging evidence has shown that the blood urea nitrogen to serum albumin ratio (BAR) is associated with the severity and prognosis of heart failure. However, its role in idiopathic pulmonary arterial hypertension (IPAH) remains unclear. This study investigated the associations between BAR and functional status, echocardiographic findings, hemodynamics, and long-term outcomes among patients with IPAH. METHODS: This study included consecutive patients who underwent right heart catheterization (RHC) and were diagnosed with IPAH between January 2013 and January 2018 at Fuwai Hospital. The primary outcome was the worsening of clinical symptoms. Spearman correlation coefficients were used to evaluate the association between the BAR and established markers of IPAH severity. Receiver operating characteristic (ROC) curve analysis was used to determine BAR's optimal cut-off and predictive performance. Kaplan-Meier analysis and Cox proportional hazard models assessed the relationship between BAR and clinical worsening. RESULTS: A total of 340 patients with IPAH were included in this study. BAR correlated with well-validated variables that reflected the severity of IPAH, such as World Health Organization functional class, 6-min walk distance, N-terminal pro-brain natriuretic peptide (NT-proBNP) level, mixed venous oxygen saturation, and cardiac index. Kaplan-Meier curves indicated that patients with BAR>3.80 had a significantly higher clinical worsening rate (log-rank test, P < 0.001) than those with BAR≤3.80. Multivariate Cox analysis showed that BAR could independently predict clinical worsening [hazard ratio(HR):2.642, 95 % confidence interval (CI):1.659-4.208, P < 0.001]. In addition, BAR provided additional predictive value for the European Society of Cardiology (ESC)/European Respiratory Society (ERS) risk assessment score. CONCLUSIONS: BAR reflects disease severity and is independently associated with the prognosis of patients with IPAH.


Subject(s)
Biomarkers , Blood Urea Nitrogen , Serum Albumin , Severity of Illness Index , Humans , Female , Male , Prognosis , Biomarkers/blood , Serum Albumin/analysis , Serum Albumin/metabolism , Middle Aged , Adult , Familial Primary Pulmonary Hypertension/blood , Familial Primary Pulmonary Hypertension/physiopathology , Familial Primary Pulmonary Hypertension/diagnosis , Echocardiography , Cardiac Catheterization , Hemodynamics/physiology , Predictive Value of Tests , Natriuretic Peptide, Brain/blood , Peptide Fragments
5.
BMC Pulm Med ; 24(1): 185, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632547

ABSTRACT

BACKGROUND: Patients with pulmonary arterial hypertension (PAH) exhibit a distinct gut microbiota profile; however, the causal association between gut microbiota, associated metabolites, and PAH remains elusive. We aimed to investigate this causal association and to explore whether dietary patterns play a role in its regulation. METHODS: Summary statistics of gut microbiota, associated metabolites, diet, and PAH were obtained from genome-wide association studies. The inverse variance weighted method was primarily used to measure the causal effect, with sensitivity analyses using the weighted median, weighted mode, simple mode, MR pleiotropy residual sum and outlier (MR-PRESSO), and MR-Egger methods. A reverse Mendelian randomisation analysis was also performed. RESULTS: Alistipes (odds ratio [OR] = 2.269, 95% confidence interval [CI] 1.100-4.679, P = 0.027) and Victivallis (OR = 1.558, 95% CI 1.019-2.380, P = 0.040) were associated with an increased risk of PAH, while Coprobacter (OR = 0.585, 95% CI 0.358-0.956, P = 0.032), Erysipelotrichaceae (UCG003) (OR = 0.494, 95% CI 0.245-0.996, P = 0.049), Lachnospiraceae (UCG008) (OR = 0.596, 95% CI 0.367-0.968, P = 0.036), and Ruminococcaceae (UCG005) (OR = 0.472, 95% CI 0.231-0.962, P = 0.039) protected against PAH. No associations were observed between PAH and gut microbiota-derived metabolites (trimethylamine N-oxide [TMAO] and its precursors betaine, carnitine, and choline), short-chain fatty acids (SCFAs), or diet. Although inverse variance-weighted analysis demonstrated that elevated choline levels were correlated with an increased risk of PAH, the results were not consistent with the sensitivity analysis. Therefore, the association was considered insignificant. Reverse Mendelian randomisation analysis demonstrated that PAH had no causal impact on gut microbiota-derived metabolites but could contribute to increased the levels of Butyricicoccus and Holdemania, while decreasing the levels of Clostridium innocuum, Defluviitaleaceae UCG011, Eisenbergiella, and Ruminiclostridium 5. CONCLUSIONS: Gut microbiota were discovered suggestive evidence of the impacts of genetically predicted abundancy of certain microbial genera on PAH. Results of our study point that the production of SCFAs or TMAO does not mediate this association, which remains to be explained mechanistically.


Subject(s)
Gastrointestinal Microbiome , Methylamines , Pulmonary Arterial Hypertension , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Familial Primary Pulmonary Hypertension , Choline
7.
BMC Cardiovasc Disord ; 24(1): 207, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38614995

ABSTRACT

OBJECTIVE: This study aimed to investigate the serum levels of Peptidase M20 domain containing 1 (PM20D1) in idiopathic pulmonary arterial hypertension (IPAH) patients and examine its association with lipid metabolism, echocardiography, and hemodynamic parameters. METHODS: This prospective observational research enrolled 103 IPAH patients from January 2018 to January 2022. Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum PM20D1 levels in all patients before treatment within 24 h of admission. Demographic data, echocardiography, hemodynamic parameters and serum biomarkers were also collected. RESULTS: The IPAH patients in the deceased group had significantly elevated age, right atrial (RA), mean pulmonary arterial pressure (mPAP), mean right atrial pressure (mRAP), pulmonary capillary wedge pressure (PCWP), pulmonary vascular resistance (PVR) and significantly decreased 6 min walking distance (6MWD) and tricuspid annulus peak systolic velocity (TASPV). IPAH patients showed significant decreases in serum PM20D1, low-density lipoprotein cholesterol (LDL-C), and albumin (ALB). Additionally, PM20D1 was negatively correlated with RA, NT-proBNP and positively correlated with PVR, ALB, 6MWD, and TAPSV. Moreover, PM20D1 has the potential as a biomarker for predicting IPAH patients' prognosis. Finally, logistic regression analysis indicated that PM20D1, ALB, NT-proBNP, PVR, TASPV, RA and 6MWD were identified as risk factors for mortality in IPAH patients. CONCLUSION: Our findings indicated that the serum levels of PM20D1 were significantly decreased in IPAH patients with poor prognosis. Moreover, PM20D1 was identified as a risk factor associated with mortality in IPAH patients.


Subject(s)
Atrial Appendage , Clinical Relevance , Humans , Familial Primary Pulmonary Hypertension/diagnosis , Heart Atria , Albumins
8.
Eur J Med Res ; 29(1): 209, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561801

ABSTRACT

BACKGROUND: Pathologic variants in the bone morphogenetic protein receptor-2 (BMPR2) gene cause a pulmonary arterial hypertension phenotype in an autosomal-dominant pattern with incomplete penetrance. Straight back syndrome is one of the causes of pseudo-heart diseases. To date, no cases of idiopathic or heritable pulmonary arterial hypertension with straight back syndrome have been reported. CASE PRESENTATION: A 30-year-old female was diagnosed with pulmonary arterial hypertension by right heart catheterization. Computed tomography revealed a decreased anteroposterior thoracic space with heart compression, indicating a straight back syndrome. Genetic analysis by whole exome sequencing identified a novel c.2423_2424delGT (p.G808Gfs*4) germline frameshift variant within BMPR2 affecting the cytoplasmic tail domain. CONCLUSIONS: This is the first report of different straight back characteristics in heritable pulmonary arterial hypertension with a novel germline BMPR2 variant. This finding may provide a new perspective on the variable penetrance of the pulmonary arterial hypertension phenotype.


Subject(s)
Pulmonary Arterial Hypertension , Female , Humans , Adult , Familial Primary Pulmonary Hypertension/genetics , Pulmonary Arterial Hypertension/genetics , Phenotype , Mutation , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism
9.
Methodist Debakey Cardiovasc J ; 20(2): 70-80, 2024.
Article in English | MEDLINE | ID: mdl-38495664

ABSTRACT

Pulmonary arterial hypertension (PAH) is a rare devastating disease characterized by elevated pulmonary artery pressure and increased pulmonary vascular resistance. Females have a higher incidence of PAH, which is reflected globally across registries in the United States, Europe, and Asia. However, despite female predominance, women had better outcomes compared with male patients, a finding that has been labeled the "estrogen paradox." Special considerations should be given to women with PAH regarding sexual health, contraception, family planning, and treatment before, during, and after pregnancy. Pregnant women with PAH should be referred to a pulmonary hypertension care center; a multidisciplinary team approach is recommended, and Cesarean section is the preferred mode of delivery. While pregnancy outcomes have improved over the years with PAH-specific therapy, pregnancy portends a high-risk for those with PAH. Continued research is needed to tailor PAH treatment for women.


Subject(s)
Hypertension, Pulmonary , Hypertension , Female , Pregnancy , Humans , Male , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/epidemiology , Hypertension, Pulmonary/therapy , Cesarean Section/adverse effects , Pregnancy Outcome , Familial Primary Pulmonary Hypertension/complications
10.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473983

ABSTRACT

Asians have a higher carrier rate of pulmonary arterial hypertension (PAH)-related genetic variants than Caucasians do. This study aimed to identify PAH-related genetic variants using whole exome sequencing (WES) in Asian idiopathic and heritable PAH cohorts. A WES library was constructed, and candidate variants were further validated by polymerase chain reaction and Sanger sequencing in the PAH cohort. In a total of 69 patients, the highest incidence of variants was found in the BMPR2, ATP13A3, and GDF2 genes. Regarding the BMPR2 gene variants, there were two nonsense variants (c.994C>T, p. Arg332*; c.1750C>T, p. Arg584*), one missense variant (c.1478C>T, p. Thr493Ile), and one novel in-frame deletion variant (c.877_888del, p. Leu293_Ser296del). Regarding the GDF2 variants, there was one likely pathogenic nonsense variant (c.259C>T, p. Gln87*) and two missense variants (c.1207G>A, p. Val403Ile; c.38T>C, p. Leu13Pro). The BMPR2 and GDF2 variant subgroups had worse hemodynamics. Moreover, the GDF2 variant patients were younger and had a significantly lower GDF2 value (135.6 ± 36.2 pg/mL, p = 0.002) in comparison to the value in the non-BMPR2/non-GDF2 mutant group (267.8 ± 185.8 pg/mL). The BMPR2 variant carriers had worse hemodynamics compared to the patients with the non-BMPR2/non-GDF2 mutant group. Moreover, there was a significantly lower GDF2 value in the GDF2 variant carriers compared to the control group. GDF2 may be a protective or corrected modifier in certain genetic backgrounds.


Subject(s)
Pulmonary Arterial Hypertension , Humans , Pulmonary Arterial Hypertension/genetics , Familial Primary Pulmonary Hypertension/genetics , Mutation, Missense , Hemodynamics , Sequence Deletion , Bone Morphogenetic Protein Receptors, Type II/genetics , Mutation , Adenosine Triphosphatases/genetics , Membrane Transport Proteins/genetics , Growth Differentiation Factor 2/genetics
11.
PLoS One ; 19(3): e0299912, 2024.
Article in English | MEDLINE | ID: mdl-38451963

ABSTRACT

PURPOSE: In chronic thromboembolic pulmonary hypertension (CTEPH), fibrosis of thrombi in the lumen of blood vessels and obstruction of blood vessels are important factors in the progression of the disease. Therefore, it is important to explore the key genes that lead to chronic thrombosis in order to understand the development of CTEPH, and at the same time, it is beneficial to provide new directions for early identification, disease prevention, clinical diagnosis and treatment, and development of novel therapeutic agents. METHODS: The GSE130391 dataset was downloaded from the Gene Expression Omnibus (GEO) public database, which includes the full gene expression profiles of patients with CTEPH and Idiopathic Pulmonary Arterial Hypertension (IPAH). Differentially Expressed Genes (DEGs) of CTEPH and IPAH were screened, and then Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) functional enrichment analyses were performed on the DEGs; Weighted Gene Co-Expression Network Analysis (WGCNA) to screen the key gene modules and take the intersection genes of DEGs and the key module genes in WGCNA; STRING database was used to construct the protein-protein interaction (PPI) network; and cytoHubba analysis was performed to identify the hub genes. RESULTS: A total of 924 DEGs were screened, and the MEturquoise module with the strongest correlation was selected to take the intersection with DEGs A total of 757 intersecting genes were screened. The top ten hub genes were analyzed by cytoHubba: IL-1B, CXCL8, CCL22, CCL5, CCL20, TNF, IL-12B, JUN, EP300, and CCL4. CONCLUSION: IL-1B, CXCL8, CCL22, CCL5, CCL20, TNF, IL-12B, JUN, EP300, and CCL4 have diagnostic and therapeutic value in CTEPH disease, especially playing a role in chronic thrombosis. The discovery of NF-κB, AP-1 transcription factors, and TNF signaling pathway through pivotal genes may be involved in the disease progression process.


Subject(s)
Hypertension, Pulmonary , Thrombosis , Humans , Hypertension, Pulmonary/genetics , Thrombosis/genetics , Familial Primary Pulmonary Hypertension , Databases, Factual , Gene Expression Profiling , Computational Biology
15.
Chest ; 165(3): 682-691, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38461018

ABSTRACT

Pulmonary arterial hypertension (PAH) and pulmonary hypertension associated with left-sided heart and lung diseases are most commonly easily discriminated and treated accordingly. With the changing epidemiology of PAH, however, a growing proportion of patients at the time of diagnosis present with comorbidities of varying severity. In addition to classical PAH, two distinct phenotypes have emerged: a heart failure with preserved ejection fraction-like phenotype and a lung phenotype. Importantly, the evidence supporting the currently proposed treatment algorithm for PAH has been generated mainly from PAH trials in which patients with cardiopulmonary comorbidities have been underrepresented or excluded. As a consequence, the best therapeutic approach for patients with common PAH with cardiopulmonary comorbidities remains largely unknown and requires further investigation. The present article reviews the relevant literature on the topic and describes the authors' views on the current therapeutic approach for these patients.


Subject(s)
Heart Diseases , Heart Failure , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Pulmonary Arterial Hypertension/epidemiology , Pulmonary Arterial Hypertension/therapy , Pulmonary Arterial Hypertension/complications , Hypertension, Pulmonary/epidemiology , Hypertension, Pulmonary/therapy , Hypertension, Pulmonary/complications , Familial Primary Pulmonary Hypertension/complications , Heart Diseases/complications , Heart Failure/complications , Heart Failure/epidemiology , Heart Failure/therapy
16.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542257

ABSTRACT

While essential hypertension (HTN) is very prevalent, pulmonary arterial hypertension (PAH) is very rare in the general population. However, due to progressive heart failure, prognoses and survival rates are much worse in PAH. Patients with PAH are at a higher risk of developing supraventricular arrhythmias and malignant ventricular arrhythmias. The latter underlie sudden cardiac death regardless of the mechanical cardiac dysfunction. Systemic chronic inflammation and oxidative stress are causal factors that increase the risk of the occurrence of cardiac arrhythmias in hypertension. These stressful factors contribute to endothelial dysfunction and arterial pressure overload, resulting in the development of cardiac pro-arrhythmic conditions, including myocardial structural, ion channel and connexin43 (Cx43) channel remodeling and their dysfunction. Myocardial fibrosis appears to be a crucial proarrhythmic substrate linked with myocardial electrical instability due to the downregulation and abnormal topology of electrical coupling protein Cx43. Furthermore, these conditions promote ventricular mechanical dysfunction and heart failure. The treatment algorithm in HTN is superior to PAH, likely due to the paucity of comprehensive pathomechanisms and causal factors for a multitargeted approach in PAH. The intention of this review is to provide information regarding the role of Cx43 in the development of cardiac arrhythmias in hypertensive heart disease. Furthermore, information on the progress of therapy in terms of its cardioprotective and potentially antiarrhythmic effects is included. Specifically, the benefits of sodium glucose co-transporter inhibitors (SGLT2i), as well as sotatercept, pirfenidone, ranolazine, nintedanib, mirabegron and melatonin are discussed. Discovering novel therapeutic and antiarrhythmic strategies may be challenging for further research. Undoubtedly, such research should include protection of the heart from inflammation and oxidative stress, as these are primary pro-arrhythmic factors that jeopardize cardiac Cx43 homeostasis, the integrity of intercalated disk and extracellular matrix, and, thereby, heart function.


Subject(s)
Heart Failure , Hypertension , Pulmonary Arterial Hypertension , Humans , Connexin 43/metabolism , Pulmonary Arterial Hypertension/drug therapy , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/etiology , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Cardiac Conduction System Disease , Familial Primary Pulmonary Hypertension/complications , Hypertension/drug therapy , Heart Failure/drug therapy , Inflammation/drug therapy
17.
Sci Rep ; 14(1): 7048, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528047

ABSTRACT

The close link between HIV-1 infection and the occurrence of pulmonary arterial hypertension (PAH). However, the underlying molecular mechanisms of their interrelation remain unclear. The microarray data of HIV-1 and PAH were downloaded from GEO database. We utilized WGCNA to identify shared genes between HIV-1 and PAH, followed by conducting GO and pathway enrichment analyses. Subsequently, differentially genes analysis was performed using external validation datasets to further filter hub genes. Immunoinfiltration analysis was performed using CIBERSORT. Finally, hub gene expression was validated using scRNA-seq data. We identified 109 shared genes through WGCNA, primarily enriched in type I interferon (IFN) pathways. By taking the intersection of WGCNA important module genes and DEGs, ISG15 and IFI27 were identified as pivotal hub genes. Immunoinfiltration analysis and scRNA-seq results indicated the significant role of monocytes in the shared molecular mechanisms of HIV-1 and PAH. In summary, our study illustrated the possible mechanism of PAH secondary to HIV-1 and showed that the heightened IFN response in HIV-1 might be a crucial susceptibility factor for PAH, with monocytes being pivotal cells involved in the type I IFN response pathway. This provides potential new insights for further investigating the molecular mechanisms connecting HIV-1 and PAH.


Subject(s)
HIV Seropositivity , HIV-1 , Interferon Type I , Pulmonary Arterial Hypertension , Humans , HIV-1/genetics , Familial Primary Pulmonary Hypertension , Databases, Factual , Interferon Type I/genetics , Computational Biology
18.
Eur J Pharmacol ; 970: 176483, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38479721

ABSTRACT

Stromal derived factor 1 (SDF1) has been shown to be involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the detailed molecular mechanisms remain unclear. To address this, we utilized primary cultured rat pulmonary artery smooth muscle cells (PASMCs) and monocrotaline (MCT)-induced PAH rat models to investigate the mechanisms of SDF1 driving PASMCs proliferation and pulmonary arterial remodeling. SDF1 increased runt-related transcription factor 2 (Runx2) acetylation by Calmodulin (CaM)-dependent protein kinase II (CaMKII)-dependent HDAC4 cytoplasmic translocation, elevation of Runx2 acetylation conferred its resistance to proteasome-mediated degradation. The accumulation of Runx2 further upregulated osteopontin (OPN) expression, finally leading to PASMCs proliferation. Blocking SDF1, suppression of CaMKII, inhibition the nuclear export of HDAC4 or silencing Runx2 attenuated pulmonary arterial remodeling and prevented PAH development in MCT-induced PAH rat models. Our study provides novel sights for SDF1 induction of PASMCs proliferation and suggests that targeting SDF1/CaMKII/HDAC4/Runx2 axis has potential value in the management of PAH.


Subject(s)
Pulmonary Arterial Hypertension , Rats , Animals , Pulmonary Arterial Hypertension/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Vascular Remodeling/physiology , Cell Proliferation , Pulmonary Artery/pathology , Familial Primary Pulmonary Hypertension/pathology , Myocytes, Smooth Muscle , Monocrotaline/adverse effects , Disease Models, Animal , Histone Deacetylases/metabolism
19.
Eur J Pharmacol ; 970: 176492, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38503401

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive vascular disease characterized by remodeling of the pulmonary vasculature and elevated pulmonary arterial pressure, ultimately leading to right heart failure and death. Despite its clinical significance, the precise molecular mechanisms driving PAH pathogenesis warrant confirmation. Compelling evidence indicates that during the development of PAH, pulmonary vascular cells exhibit a preference for energy generation through aerobic glycolysis, known as the "Warburg effect", even in well-oxygenated conditions. This metabolic shift results in imbalanced metabolism, increased proliferation, and severe pulmonary vascular remodeling. Exploring the Warburg effect and its interplay with glycolytic enzymes in the context of PAH has yielded current insights into emerging drug candidates targeting enzymes and intermediates involved in glucose metabolism. This sheds light on both opportunities and challenges in the realm of antiglycolytic therapy for PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Pulmonary Arterial Hypertension/metabolism , Familial Primary Pulmonary Hypertension , Glycolysis , Lung/metabolism , Pulmonary Artery/metabolism , Vascular Remodeling
20.
Eur J Cardiothorac Surg ; 65(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38539035

ABSTRACT

OBJECTIVES: Preoperative intravenous epoprostenol therapy can cause thrombocytopaenia, which may increase the risk of perioperative bleeding during lung transplantation. This study aimed to determine whether lung transplantation can be safely performed in patients with epoprostenol-induced thrombocytopaenia. METHODS: From June 2008 to July 2022, we performed 37 lung transplants in patients with pulmonary arterial hypertension (PAH), including idiopathic PAH (n = 26), congenital heart disease-associated PAH (n = 7), pulmonary veno-occlusive disease (n = 3) and peripheral pulmonary artery stenosis (n = 1) at our institution. Of these, 26 patients received intravenous epoprostenol therapy (EPO group), whereas 11 patients were treated with no epoprostenol (no-EPO group). We retrospectively analysed the preoperative and postoperative platelet counts and post-transplant outcomes in each group. RESULTS: Preoperative platelet counts were relatively lower in the EPO group than in the no-EPO group (median EPO: 127 000 vs no-EPO: 176 000/µl). However, blood loss during surgery was similar between the 2 groups (EPO: 2473 ml vs no-EPO: 2615 ml). The platelet counts significantly increased over 1 month after surgery, and both groups showed similar platelet counts (EPO: 298 000 vs no-EPO: 284 000/µl). In-hospital mortality (EPO: 3.9% vs no-EPO: 18.2%) and the 3-year survival rate (EPO: 91.4% vs no-EPO: 80.8%) were similar between the 2 groups. CONCLUSIONS: Patients with PAH treated with intravenous epoprostenol showed relatively lower platelet counts, which improved after lung transplantation with good post-transplant outcomes.


Subject(s)
Hypertension, Pulmonary , Lung Transplantation , Pulmonary Arterial Hypertension , Thrombocytopenia , Humans , Epoprostenol/therapeutic use , Epoprostenol/adverse effects , Antihypertensive Agents/adverse effects , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/surgery , Retrospective Studies , Familial Primary Pulmonary Hypertension , Thrombocytopenia/chemically induced , Thrombocytopenia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...