Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
Clin J Gastroenterol ; 17(1): 12-17, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37934348

ABSTRACT

Recently, the results of gastric cancer treatment have improved; however, its characteristics in adolescents and young adults are not well known. We report the case of a patient with advanced gastric cancer, Fanconi anemia (FA), and primary biliary cholangitis. A 26-year-old woman visited a local physician complaining of epigastralgia. Esophagogastroduodenoscopy revealed edematous changes with poor distension and circumferential thickened folds with erosions in the gastric body. Biopsy results of the lesion specimens revealed poorly differentiated adenocarcinoma. Abdominal contrast-enhanced computed tomography revealed gastric wall with irregular thickness, several nodules in the peritoneal cavity, and a mass lesion in the right ovary. We diagnosed the patient with T4N2M1 stage IV gastric cancer accompanied by peritoneal and ovarian metastases and initiated nivolumab with S-1 plus oxaliplatin as the first-line treatment regimen. Because of immune-related adverse events after one course of systemic treatment, the regimen was changed to ramucirumab combined with nab-paclitaxel chemotherapy as the second-line treatment. After three cycles of weekly nab-paclitaxel with ramucirumab, the decreased platelet count did not recover, and her general condition gradually deteriorated. Comprehensive genome profiling using next-generation sequencing was performed to determine the feasibility of genotype-matched therapies. Alterations in FA complementation group A (FANCA) F1263del (49.1%) and E484Q (12.3%), which encode a key component of the multiprotein FA complex, were identified. The patient died 10 months after treatment initiation. In conclusion, when treating malignancies in adolescent and young adult patients, the genomic background should be considered.


Subject(s)
Fanconi Anemia , Stomach Neoplasms , Female , Humans , Young Adult , Adolescent , Adult , Stomach Neoplasms/complications , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Fanconi Anemia/drug therapy , Fanconi Anemia/etiology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Ramucirumab , High-Throughput Nucleotide Sequencing
4.
J Zhejiang Univ Sci B ; 24(3): 207-220, 2023 Mar 15.
Article in English, Chinese | MEDLINE | ID: mdl-36915997

ABSTRACT

A series of chemotherapeutic drugs that induce DNA damage, such as cisplatin (DDP), are standard clinical treatments for ovarian cancer, testicular cancer, and other diseases that lack effective targeted drug therapy. Drug resistance is one of the main factors limiting their application. Sensitizers can overcome the drug resistance of tumor cells, thereby enhancing the antitumor activity of chemotherapeutic drugs. In this study, we aimed to identify marketable drugs that could be potential chemotherapy sensitizers and explore the underlying mechanisms. We found that the alcohol withdrawal drug disulfiram (DSF) could significantly enhance the antitumor activity of DDP. JC-1 staining, propidium iodide (PI) staining, and western blotting confirmed that the combination of DSF and DDP could enhance the apoptosis of tumor cells. Subsequent RNA sequencing combined with Gene Set Enrichment Analysis (GSEA) pathway enrichment analysis and cell biology studies such as immunofluorescence suggested an underlying mechanism: DSF makes cells more vulnerable to DNA damage by inhibiting the Fanconi anemia (FA) repair pathway, exerting a sensitizing effect to DNA damaging agents including platinum chemotherapy drugs. Thus, our study illustrated the potential mechanism of action of DSF in enhancing the antitumor effect of DDP. This might provide an effective and safe solution for combating DDP resistance in clinical treatment.


Subject(s)
Alcoholism , Antineoplastic Agents , Fanconi Anemia , Substance Withdrawal Syndrome , Testicular Neoplasms , Female , Male , Humans , Cisplatin/pharmacology , Disulfiram/pharmacology , Testicular Neoplasms/drug therapy , Fanconi Anemia/drug therapy , Alcoholism/drug therapy , Drug Resistance, Neoplasm , Cell Line, Tumor , Substance Withdrawal Syndrome/drug therapy , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation
5.
Article in English | WPRIM (Western Pacific) | ID: wpr-971481

ABSTRACT

A series of chemotherapeutic drugs that induce DNA damage, such as cisplatin (DDP), are standard clinical treatments for ovarian cancer, testicular cancer, and other diseases that lack effective targeted drug therapy. Drug resistance is one of the main factors limiting their application. Sensitizers can overcome the drug resistance of tumor cells, thereby enhancing the antitumor activity of chemotherapeutic drugs. In this study, we aimed to identify marketable drugs that could be potential chemotherapy sensitizers and explore the underlying mechanisms. We found that the alcohol withdrawal drug disulfiram (DSF) could significantly enhance the antitumor activity of DDP. JC-1 staining, propidium iodide (PI) staining, and western blotting confirmed that the combination of DSF and DDP could enhance the apoptosis of tumor cells. Subsequent RNA sequencing combined with Gene Set Enrichment Analysis (GSEA) pathway enrichment analysis and cell biology studies such as immunofluorescence suggested an underlying mechanism: DSF makes cells more vulnerable to DNA damage by inhibiting the Fanconi anemia (FA) repair pathway, exerting a sensitizing effect to DNA damaging agents including platinum chemotherapy drugs. Thus, our study illustrated the potential mechanism of action of DSF in enhancing the antitumor effect of DDP. This might provide an effective and safe solution for combating DDP resistance in clinical treatment.


Subject(s)
Female , Male , Humans , Cisplatin/pharmacology , Disulfiram/pharmacology , Testicular Neoplasms/drug therapy , Fanconi Anemia/drug therapy , Alcoholism/drug therapy , Drug Resistance, Neoplasm , Cell Line, Tumor , Substance Withdrawal Syndrome/drug therapy , Apoptosis , Antineoplastic Agents/therapeutic use , Cell Proliferation
6.
Cancer Res ; 82(18): 3249-3262, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-35867033

ABSTRACT

The Fanconi anemia (FA) pathway is essential for repairing DNA interstrand crosslinks (ICL). ICLs induce stalled DNA replication forks and trigger activation of the FA pathway by promoting recruitment of the FANCM/FAAP24/MHF complex to ICL sites. Given that stalled replication forks are proximal to ICL sites, fork-associated proteins may coordinate with FA factors to rapidly sense ICLs for activation of FA signaling. Here we report that And-1, a replisome protein, is critical for activation of the FA pathway by sensing ICL-stalled forks and recruiting the FANCM/FAAP24 complex to ICLs. In response to ICLs, And-1 rapidly accumulated at ICL-stalled forks in a manner dependent on ataxia telangiectasia and Rad3-related protein-induced phosphorylation at T826. And-1 phosphorylation triggered an intramolecular change that promoted the interaction of And-1 with FANCM/FAAP24, resulting in recruitment of the FANCM/FAAP24 complex to ICLs. Furthermore, p-T826 And-1 was elevated in cisplatin-resistant ovarian cancer cells, and activated And-1 contributed to cisplatin resistance. Collectively, these studies elucidate a mechanism by which And-1 regulates FA signaling and identify And-1 as a potential target for developing therapeutic approaches to treat platinum-resistant ovarian cancer. SIGNIFICANCE: This work shows that phosphorylation of And-1 by ATR activates Fanconi anemia signaling at interstrand crosslink-stalled replication forks by recruiting the FANCM/FAAP24 complex, revealing And-1 as a potential therapeutic target in cancer.


Subject(s)
Fanconi Anemia , Ovarian Neoplasms , Cisplatin/pharmacology , DNA , DNA Damage , DNA Helicases/genetics , DNA Repair , DNA Replication , DNA-Binding Proteins/genetics , Fanconi Anemia/drug therapy , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Female , Humans
7.
Blood Adv ; 6(12): 3803-3811, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35500223

ABSTRACT

Fanconi anemia (FA), a genetic DNA repair disorder characterized by marrow failure and cancer susceptibility. In FA mice, metformin improves blood counts and delays tumor development. We conducted a single institution study of metformin in nondiabetic patients with FA to determine feasibility and tolerability of metformin treatment and to assess for improvement in blood counts. Fourteen of 15 patients with at least 1 cytopenia (hemoglobin < 10 g/dL; platelet count < 100 000 cells/µL; or an absolute neutrophil count < 1000 cells/µL) were eligible to receive metformin for 6 months. Median patient age was 9.4 years (range 6.0-26.5 ). Thirteen of 14 subjects (93%) tolerated maximal dosing for age; 1 subject had dose reduction for grade 2 gastrointestinal symptoms. No subjects developed hypoglycemia or metabolic acidosis. No subjects had dose interruptions caused by toxicity, and no grade 3 or higher adverse events attributed to metformin were observed. Hematologic response based on modified Myelodysplastic Syndrome International Working Group criteria was observed in 4 of 13 evaluable patients (30.8%; 90% confidence interval, 11.3-57.3). Median time to response was 84.5 days (range 71-128 days). Responses were noted in neutrophils (n = 3), platelets (n = 1), and red blood cells (n = 1). No subjects met criteria for disease progression or relapse during treatment. Correlative studies explored potential mechanisms of metformin activity in FA. Plasma proteomics showed reduction in inflammatory pathways with metformin. Metformin is safe and tolerable in nondiabetic patients with FA and may provide therapeutic benefit. This trial was registered at as #NCT03398824.


Subject(s)
Fanconi Anemia , Metformin , Child , Fanconi Anemia/drug therapy , Fanconi Anemia/genetics , Humans , Metformin/therapeutic use , Young Adult
8.
Curr Cancer Drug Targets ; 22(7): 591-602, 2022.
Article in English | MEDLINE | ID: mdl-35362384

ABSTRACT

BACKGROUND: Ovarian cancer (OVCA) has unique epigenetic alterations and defects in homologous recombination (HR). Despite initial sensitivity to platinum-based chemotherapy, HR dysfunctional tumors eventually acquire drug resistance. Fanconi anemia (FA) is characterized by bone marrow failure (BMF) and a reduced ability to eradicate DNA interstrand cross-links (ICL). However, the mechanism of chemoresistance mediated by FANCI was unclear in OVCA. OBJECTIVE: We explore to identify whether FANCI was involved in chemoresistance in OVCA. METHODS: FANCI expression and epigenetic alterations were analyzed, respectively, using TIMER and cBioPortal. The correlation between FANCI expression and the survival of OVCA patients was analyzed using Kaplan-Meier Plotter, GSE63885, and TCGA-OVCA dataset. FANCI expression in OVCA was detected by immunohistochemistry. Cell proliferation, migration, and invasion in FANCI inhibiting cells were assessed by CCK-8 and Transwell. Apoptosis and DNA damage were examined by flow cytometry and immunofluorescence. Meanwhile, the activity of caspase 3/7 was detected by Caspase-Glo® 3/7 kit. In addition, the expression of FANCI, γH2AX, and apoptosis effectors was examined by Western blot. RESULTS: FANCI has copy number variations (CNVs) in OVCA. The high expression of FANCI in OVCA patients was associated with poor survival. Moreover, FANCI expression was correlated with the response to chemotherapy in OVCA. FANCI expression in OVCA cells was induced by carboplatin in a time-dependent manner. Silencing of FANCI had no effect on cell proliferation, but hindered OVCA cell migration and invasion. Mechanically, knockdown of FANCI enhanced DNA damage-induced apoptosis through the CHK1/2-P53-P21 pathway. CONCLUSION: FANCI may be a potential therapeutic target for OVCA patients.


Subject(s)
Fanconi Anemia , Ovarian Neoplasms , Carboplatin/pharmacology , Carboplatin/therapeutic use , Carcinoma, Ovarian Epithelial , DNA Copy Number Variations , DNA Damage , Fanconi Anemia/drug therapy , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group D2 Protein/chemistry , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics
9.
Gene ; 825: 146398, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35306114

ABSTRACT

PURPOSE: To explore the associations between FANC (FANCA, FANCC, FANCE, FANCF, and FANCJ) single nucleotide polymorphisms (SNPs) and prognosis of non-small cell lung cancer (NSCLC) patients with platinum-based chemotherapy. METHODS: According to the inclusion criteria, we selected 395 DNA samples from NSCLC patients for genotyping and combined with clinical data for Cox regression analysis and stratification analyses to assess relationships between overall survival (OS) and progression free survival (PFS) with SNPs genotypes. RESULTS: The results revealed that patients with FANCE rs6907678 TT genotype have a longer OS than TC and CC genotype (Additive model: P = 0.004, HR = 1.696, 95% CI = 1.186-2.425). In stratification analyses, Longer PFS is found in female, age ≤ 55 years old and non-smoking patients with FANCE rs6907678 TT genotype, and patients with TT genotypes were significantly had longer OS in male, age >55 years old, non-smoking, squamous cell carcinoma and stage IV stratification. CONCLUSION: Our data demonstrates that patients with FANCE rs6907678 TT genotype are contributed to better prognosis. FANCE rs6907678 may be used as a clinical biomarker for predicting the prognosis of NSCLC patients with platinum-based chemotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Fanconi Anemia , Lung Neoplasms , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Fanconi Anemia/drug therapy , Fanconi Anemia/genetics , Female , Genotype , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Platinum/therapeutic use , Polymorphism, Single Nucleotide
10.
Exp Hematol ; 109: 27-34, 2022 05.
Article in English | MEDLINE | ID: mdl-35202716

ABSTRACT

Fanconi anemia (FA) is a rare and complex genetic disorder, clinically characterized by bone marrow failure, congenital defects, and cancer predisposition. Hematopoietic stem cell transplantation (HSCT) represents the only therapeutic option to restore normal hematopoiesis after the occurrence of marrow failure or clonal hematopoietic abnormality. However, radiation exposure during transplant may increase the risk of later malignancies. In this retrospective study, we analyzed the results of HSCT with a radiation-free, busulfan-based conditioning regimen in FA patients. A total of 122 patients (median age: 8 years, range: 2-18 years) with FA who underwent HSCT between January 2008 and January 2020 were enrolled in this study and followed up to the end of 2020. The preparative regimen included busulfan (0.2 mg/kg/day, days -9 to -6), cyclophosphamide (15 mg/kg/day, days -5 to -2), and in vivo T-cell depletion with rabbit anti-thymocyte globulin. All patients received graft-versus-host disease prophylaxis with cyclosporine combined with methotrexate. We used the Kaplan-Meier method, log-rank test, and Cox proportional hazards models to analyze patient survival. Peripheral blood, bone marrow and cord blood hematopoietic stem cells were used in 84 (68.9%), 31 (25.4%) and 7 (5.7%) patients, respectively. Donors were matched siblings in 48 (39.3%), matched other relatives in 56 (45.9%), and matched unrelated persons in 18 (14.8%) patients. With a median follow-up time of 24.25 months, graft rejection occurred in only one patient. The 1- and 5-year overall survival rates were 84.14% (95% confidence interval: 76.02-89.70) and 82.16% (95% confidence interval: 73.01-88.45), respectively. Of the patient characteristics documented before transplant, the presence of cardiopulmonary, genitourinary tract, central nervous system, and limb malformations significantly affected survival rates. Our results indicate excellent outcomes in patients with FA undergoing HSCT with a radiation-free, busulfan-based conditioning regimen. It would be desirable to aim at optimizing the outcome of HSCT in FA patients in future studies.


Subject(s)
Fanconi Anemia , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Busulfan/therapeutic use , Fanconi Anemia/drug therapy , Graft vs Host Disease/drug therapy , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Humans , Prognosis , Retrospective Studies , T-Lymphocytes , Transplantation Conditioning/methods , Unrelated Donors
11.
Sci Rep ; 12(1): 45, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997070

ABSTRACT

Head-and-neck squamous cell carcinomas (HNSCCs) are relatively common in patients with Fanconi anemia (FA), a hereditary chromosomal instability disorder. Standard chemo-radiation therapy is not tolerated in FA due to an overall somatic hypersensitivity to such treatment. The question is how to find a suitable alternative treatment. We used whole-exome and whole genome mRNA sequencing to identify major genomic and transcriptomic events associated with FA-HNSCC. CRISPR-engineered FA-knockout models were used to validate a number of top hits that were likely to be druggable. We identified deletion of 18q21.2 and amplification of 11q22.2 as prevailing copy-number alterations in FA HNSCCs, the latter of which was associated with strong overexpression of the cancer-related genes YAP1, BIRC2, BIRC3 (at 11q22.1-2). We then found the drug AZD5582, a known small molecule inhibitor of BIRC2-3, to selectively kill FA tumor cells that overexpressed BIRC2-3. This occurred at drug concentrations that did not affect the viability of untransformed FA cells. Our data indicate that 11q22.2 amplifications are relatively common oncogenic events in FA-HNSCCs, as holds for non FA-HNSCC. Therefore, chemotherapeutic inhibition of overexpressed BIRC2-3 may provide the basis for an approach to develop a clinically realistic treatment of FA-HNSCCs that carry 11q22.2 amplifications.


Subject(s)
Baculoviral IAP Repeat-Containing 3 Protein/genetics , Baculoviral IAP Repeat-Containing 3 Protein/metabolism , Fanconi Anemia/drug therapy , Fanconi Anemia/genetics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Inhibitor of Apoptosis Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Alkynes/pharmacology , Baculoviral IAP Repeat-Containing 3 Protein/antagonists & inhibitors , Cell Line , Cell Survival/drug effects , Cell Survival/genetics , DNA Copy Number Variations , DNA Mutational Analysis , Fanconi Anemia/complications , Fanconi Anemia/immunology , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/complications , Head and Neck Neoplasms/immunology , Humans , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Oligopeptides/pharmacology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism
12.
Cell Death Differ ; 29(3): 568-584, 2022 03.
Article in English | MEDLINE | ID: mdl-34611298

ABSTRACT

Squamous cell carcinomas (SCC) frequently have an exceptionally high mutational burden. As consequence, they rapidly develop resistance to platinum-based chemotherapy and overall survival is limited. Novel therapeutic strategies are therefore urgently required. SCC express ∆Np63, which regulates the Fanconi Anemia (FA) DNA-damage response in cancer cells, thereby contributing to chemotherapy-resistance. Here we report that the deubiquitylase USP28 is recruited to sites of DNA damage in cisplatin-treated cells. ATR phosphorylates USP28 and increases its enzymatic activity. This phosphorylation event is required to positively regulate the DNA damage repair in SCC by stabilizing ∆Np63. Knock-down or inhibition of USP28 by a specific inhibitor weakens the ability of SCC to cope with DNA damage during platin-based chemotherapy. Hence, our study presents a novel mechanism by which ∆Np63 expressing SCC can be targeted to overcome chemotherapy resistance. Limited treatment options and low response rates to chemotherapy are particularly common in patients with squamous cancer. The SCC specific transcription factor ∆Np63 enhances the expression of Fanconi Anemia genes, thereby contributing to recombinational DNA repair and Cisplatin resistance. Targeting the USP28-∆Np63 axis in SCC tones down this DNA damage response pathways, thereby sensitizing SCC cells to cisplatin treatment.


Subject(s)
Carcinoma, Squamous Cell , Fanconi Anemia , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cisplatin/pharmacology , Fanconi Anemia/drug therapy , Fanconi Anemia/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Humans , Transcription Factors/metabolism , Ubiquitin Thiolesterase/metabolism
13.
J Pediatr Hematol Oncol ; 44(1): e74-e76, 2022 01 01.
Article in English | MEDLINE | ID: mdl-33560087

ABSTRACT

Fanconi aplastic anemia (FAA) is a rare inherited bone marrow failure disorder characterized by congenital defects and pancytopenia. Hematopoietic stem cell transplantation (HSCT) is a curative treatment for patients with FAA due to the risk of cancer and pancytopenia. Blood transfusions are the best supportive therapy. Oxymetholone (5 mg/kg daily) is most commonly used; however, it is not curative. Extensive transfusions should be avoided because of alloimmunization and graft-versus-host disease because they have poor outcomes in patients with HSCT. This is a case report of a 5-year-old Syrian male patient with FAA, who was successfully treated with eltrombopag (50 mg daily) in conjunction with oxymetholone (5 mg/kg daily). The patient required platelet transfusions despite oxymetholone therapy and there was no suitable donor for HSCT. After the addition of eltrombopag therapy, platelet transfusions were no longer required. Eltrombopag can be effectively used as a bridge to HSCT in patients with FAA.


Subject(s)
Benzoates/administration & dosage , Fanconi Anemia/drug therapy , Hydrazines/administration & dosage , Pyrazoles/administration & dosage , Allografts , Child, Preschool , Hematopoietic Stem Cell Transplantation , Humans , Male
15.
Mol Cell ; 81(11): 2278-2289, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33984284

ABSTRACT

Agents that induce DNA damage can cure some cancers. However, the side effects of chemotherapy are severe because of the indiscriminate action of DNA-damaging agents on both healthy and cancerous cells. DNA repair pathway inhibition provides a less toxic and targeted alternative to chemotherapy. A compelling DNA repair target is the Fanconi anemia (FA) E3 ligase core complex due to its critical-and likely singular-role in the efficient removal of specific DNA lesions. FA pathway inactivation has been demonstrated to specifically kill some types of cancer cells without the addition of exogenous DNA damage, including cells that lack BRCA1, BRCA2, ATM, or functionally related genes. In this perspective, we discuss the genetic and biochemical evidence in support of the FA core complex as a compelling drug target for cancer therapy. In particular, we discuss the genetic, biochemical, and structural data that could rapidly advance our capacity to identify and implement the use of FA core complex inhibitors in the clinic.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , BRCA1 Protein/genetics , BRCA2 Protein/genetics , DNA Repair/drug effects , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia/drug therapy , Ubiquitin-Protein Ligases/genetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/deficiency , BRCA1 Protein/deficiency , BRCA2 Protein/deficiency , DNA Damage , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/therapeutic use , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia/pathology , Fanconi Anemia Complementation Group Proteins/antagonists & inhibitors , Fanconi Anemia Complementation Group Proteins/metabolism , Gene Expression Regulation, Neoplastic , Humans , Molecular Targeted Therapy/methods , Morpholines/therapeutic use , Pyrones/therapeutic use , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Synthetic Lethal Mutations , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/antagonists & inhibitors , Ubiquitins/genetics , Ubiquitins/metabolism
16.
Cytometry B Clin Cytom ; 100(3): 370-376, 2021 05.
Article in English | MEDLINE | ID: mdl-32857894

ABSTRACT

The recently reported cell division assay (CDA) was optimized to measure the relative sensitivity of cells to cytotoxic drugs in vitro. Here, we investigated the in vitro hypersensitivity of lymphocytes from Fanconi anemia (FA) patients, to cytotoxic drugs using CDA. Peripheral blood mononuclear cells (PBMC) as well as cell lines derived from FA patients were treated with two DNA interstrand crosslinking (ICL) agents, mitomycin C and cyclophosphamide. Our data indicate that the CDA detects hypersensitivity of cells from FA patients to mitomycin C. Further, cell lines derived from FA-patients were also hypersensitive to mitomycin C as well as cyclophosphamide, when assayed by the CDA. This study suggests that the CDA is a useful alternative for the diagnosis of FA patients' hypersensitivity to ICL agents.


Subject(s)
Cell Division/drug effects , Fanconi Anemia/drug therapy , Mitomycin/pharmacology , Antineoplastic Agents/pharmacology , Cell Line , Cyclophosphamide/pharmacology , Flow Cytometry/methods , Humans , Leukocytes, Mononuclear/drug effects , Lymphocytes/drug effects
17.
Exp Hematol ; 93: 70-84.e4, 2021 01.
Article in English | MEDLINE | ID: mdl-33166613

ABSTRACT

Fanconi anemia (FA) is a chromosome instability syndrome with congenital abnormalities, cancer predisposition and bone marrow failure (BMF). Although hematopoietic stem and progenitor cell (HSPC) transplantation is the recommended therapy, new therapies are needed for FA patients without suitable donors. BMF in FA is caused, at least in part, by a hyperactive growth-suppressive transforming growth factor ß (TGFß) pathway, regulated by the TGFß1, TGFß2, and TGFß3 ligands. Accordingly, the TGFß pathway is an attractive therapeutic target for FA. While inhibition of TGFß1 and TGFß3 promotes blood cell expansion, inhibition of TGFß2 is known to suppress hematopoiesis. Here, we report the effects of AVID200, a potent TGFß1- and TGFß3-specific inhibitor, on FA hematopoiesis. AVID200 promoted the survival of murine FA HSPCs in vitro. AVID200 also promoted in vitro the survival of human HSPCs from patients with FA, with the strongest effect in patients progressing to severe aplastic anemia or myelodysplastic syndrome (MDS). Previous studies have indicated that the toxic upregulation of the nonhomologous end-joining (NHEJ) pathway accounts, at least in part, for the poor growth of FA HSPCs. AVID200 downregulated the expression of NHEJ-related genes and reduced DNA damage in primary FA HSPC in vitro and in in vivo models. Collectively, AVID200 exhibits activity in FA mouse and human preclinical models. AVID200 may therefore provide a therapeutic approach to improving BMF in FA.


Subject(s)
Fanconi Anemia/drug therapy , Hematopoiesis/drug effects , Transforming Growth Factor beta1/antagonists & inhibitors , Transforming Growth Factor beta3/antagonists & inhibitors , Adolescent , Adult , Animals , Cell Survival/drug effects , Cells, Cultured , Child , Child, Preschool , Fanconi Anemia/metabolism , Fanconi Anemia/physiopathology , Female , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/pathology , Humans , Male , Mice , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta3/metabolism
18.
J Pediatr Hematol Oncol ; 43(7): e972-e974, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33235157

ABSTRACT

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is responsible for a global pandemic that can cause severe infections in children, especially those with comorbid conditions. Here, we report a case of a child with a newly diagnosed medulloblastoma, Fanconi Anemia, and SARS-CoV-2 infection. Through multidisciplinary care coordination and meticulous planning, we were able to safely initiate this patient's oncology care and implement a long-term model to address the patient's care. This approach could be replicated with any newly diagnosed pediatric patient that requires monitoring for signs of COVID-19 with concurrent oncology care.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , COVID-19/complications , Fanconi Anemia/drug therapy , Medulloblastoma/drug therapy , SARS-CoV-2/isolation & purification , COVID-19/transmission , COVID-19/virology , Child, Preschool , Fanconi Anemia/diagnosis , Fanconi Anemia/virology , Female , Humans , Medulloblastoma/diagnosis , Medulloblastoma/virology , Prognosis
19.
Orphanet J Rare Dis ; 15(1): 170, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32605631

ABSTRACT

BACKGROUND: Fanconi anemia is a rare disease clinically characterized by malformations, bone marrow failure and an increased risk of solid tumors and hematologic malignancies. The only therapies available are hematopoietic stem cell transplantation for bone marrow failure or leukemia, and surgical resection for solid tumors. Therefore, there is still an urgent need for new therapeutic options. With this aim, we developed a novel high-content cell-based screening assay to identify drugs with therapeutic potential in FA. RESULTS: A TALEN-mediated FANCA-deficient U2OS cell line was stably transfected with YFP-FANCD2 fusion protein. These cells were unable to form fluorescent foci or to monoubiquitinate endogenous or exogenous FANCD2 upon DNA damage and were more sensitive to mitomycin C when compared to the parental wild type counterpart. FANCA correction by retroviral infection restored the cell line's ability to form FANCD2 foci and ubiquitinate FANCD2. The feasibility of this cell-based system was interrogated in a high content screening of 3802 compounds, including a Prestwick library of 1200 FDA-approved drugs. The potential hits identified were then individually tested for their ability to rescue FANCD2 foci and monoubiquitination, and chromosomal stability in the absence of FANCA. CONCLUSIONS: While, unfortunately, none of the compounds tested were able to restore cellular FANCA-deficiency, our study shows the potential capacity to screen large compound libraries in the context of Fanconi anemia therapeutics in an optimized and cost-effective platform.


Subject(s)
Fanconi Anemia , DNA Damage , Drug Evaluation, Preclinical , Fanconi Anemia/drug therapy , Fanconi Anemia/genetics , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Humans
20.
Cancer Lett ; 472: 1-7, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31830560

ABSTRACT

Fanconi anemia (FA) is a rare genome instability syndrome characterized by progressive bone marrow failure and predisposition to cancer, especially head and neck squamous cell carcinoma. Surgical resection is the standard of care for solid tumors, as patients with FA do not tolerate genotoxic chemotherapies or radiation, leading to poor prognosis. It is therefore imperative to develop chemoprevention strategies such as the identification of novel biomarkers to detect the formation of the tumor before its emergence and to use them in clinical trials aimed to counteract genome instability of patients with FA in tissues at risk. Micronuclei (MN) are chromosome fragments that are left behind in anaphase and appear in daughter cells as small additional nuclei. In this work, we analyzed MN frequencies in exfoliated buccal cells from 40 patients with FA and 24 controls. We found that MN frequency was significantly increased in the FA cohort indicating that we can detect chromosome fragility in patients with FA in basal conditions and in a tissue that is divided in vivo. Consequently, the MN assay in exfoliated buccal cells of patients with FA could be used in cancer risk studies and clinical trials aimed to identify cancer chemopreventive drugs.


Subject(s)
Chromosome Fragility/genetics , Fanconi Anemia/genetics , Micronuclei, Chromosome-Defective , Squamous Cell Carcinoma of Head and Neck/genetics , Adolescent , Adult , Biomarkers, Tumor/genetics , Child , Child, Preschool , DNA Damage/genetics , Epithelium/metabolism , Epithelium/pathology , Fanconi Anemia/drug therapy , Fanconi Anemia/pathology , Female , Genomic Instability/genetics , Humans , Male , Micronucleus Tests/methods , Middle Aged , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...