Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 15: 69, 2014 Jan 25.
Article in English | MEDLINE | ID: mdl-24460898

ABSTRACT

BACKGROUND: Paclitaxel (Taxol™) is an important anticancer drug with a unique mode of action. The biosynthesis of paclitaxel had been considered restricted to the Taxus species until it was discovered in Taxomyces andreanae, an endophytic fungus of T. brevifolia. Subsequently, paclitaxel was found in hazel (Corylus avellana L.) and in several other endophytic fungi. The distribution of paclitaxel in plants and endophytic fungi and the reported sequence homology of key genes in paclitaxel biosynthesis between plant and fungi species raises the question about whether the origin of this pathway in these two physically associated groups could have been facilitated by horizontal gene transfer. RESULTS: The ability of the endophytic fungus of hazel Penicillium aurantiogriseum NRRL 62431 to independently synthesize paclitaxel was established by liquid chromatography-mass spectrometry and proton nuclear magnetic resonance. The genome of Penicillium aurantiogriseum NRRL 62431 was sequenced and gene candidates that may be involved in paclitaxel biosynthesis were identified by comparison with the 13 known paclitaxel biosynthetic genes in Taxus. We found that paclitaxel biosynthetic gene candidates in P. aurantiogriseum NRRL 62431 have evolved independently and that horizontal gene transfer between this endophytic fungus and its plant host is unlikely. CONCLUSIONS: Our findings shed new light on how paclitaxel-producing endophytic fungi synthesize paclitaxel, and will facilitate metabolic engineering for the industrial production of paclitaxel from fungi.


Subject(s)
Genome, Fungal , Paclitaxel/biosynthesis , Penicillium/genetics , Acyltransferases/classification , Acyltransferases/genetics , Acyltransferases/metabolism , Base Sequence , Chromatography, High Pressure Liquid , Farnesyltranstransferase/classification , Farnesyltranstransferase/genetics , Farnesyltranstransferase/metabolism , Fungal Proteins/classification , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/genetics , Gene Transfer, Horizontal , Mass Spectrometry , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Paclitaxel/analysis , Penicillium/classification , Phylogeny , Sequence Analysis, RNA
2.
Mol Genet Genomics ; 282(3): 257-71, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19529962

ABSTRACT

The filamentous fungus Penicillium paxilli contains two distinct geranylgeranyl diphosphate (GGPP) synthases, GgsA and GgsB (PaxG). PaxG and its homologues in Neotyphodium lolii and Fusarium fujikuroi are associated with diterpene secondary metabolite gene clusters. The genomes of other filamentous fungi including Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae and Fusarium graminearum also contain two or more copies of GGPP synthase genes, although the diterpene metabolite capability of these fungi is not known. The objective of this study was to understand the biological significance of the presence of two copies of GGPP synthases in P. paxilli by investigating their subcellular localization. Using a carotenoid complementation assay and gene deletion analysis, we show that P. paxilli GgsA and PaxG have GGPP synthase activities and that paxG is required for paxilline biosynthesis, respectively. In the DeltapaxG mutant background ggsA was unable to complement paxilline biosynthesis. A GgsA-EGFP fusion protein was localized to punctuate organelles and the EGFP-GRV fusion protein, containing the C-terminus tripeptide GRV of PaxG, was localized to peroxisomes. A truncated PaxG mutant lacking the C-terminus tripeptide GRV was unable to complement a DeltapaxG mutant demonstrating that the tripeptide is functionally important for paxilline biosynthesis.


Subject(s)
Farnesyltranstransferase/metabolism , Penicillium/enzymology , Protein Sorting Signals , Farnesyltranstransferase/classification , Farnesyltranstransferase/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Peroxisomes/enzymology , Phylogeny , Protein Sorting Signals/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...