Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.027
Filter
1.
Sci Rep ; 14(1): 13116, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849435

ABSTRACT

Stearoyl-CoA desaturase 1 (SCD1) is an attractive target for cancer therapy. However, the clinical efficacy of SCD1 inhibitor monotherapy is limited. There is thus a need to elucidate the mechanisms of resistance to SCD1 inhibition and develop new therapeutic strategies for combination therapy. In this study, we investigated the molecular mechanisms by which cancer cells acquire resistance to endoplasmic reticulum (ER) stress-dependent cancer cell death induced by SCD1 inhibition. SCD1 inhibitor-sensitive and -resistant cancer cells were treated with SCD1 inhibitors in vitro, and SCD1 inhibitor-sensitive cancer cells accumulated palmitic acid and underwent ER stress response-induced cell death. Conversely, SCD1-resistant cancer cells did not undergo ER stress response-induced cell death because fatty acid desaturase 2 (FADS2) eliminated the accumulation of palmitic acid. Furthermore, genetic depletion using siRNA showed that FADS2 is a key determinant of sensitivity/resistance of cancer cells to SCD1 inhibitor. A549 cells, an SCD1 inhibitor-resistant cancer cell line, underwent ER stress-dependent cancer cell death upon dual inhibition of SCD1 and FADS2. Thus, combination therapy with SCD1 inhibition and FADS2 inhibition is potentially a new cancer therapeutic strategy targeting fatty acid metabolism.


Subject(s)
Drug Resistance, Neoplasm , Endoplasmic Reticulum Stress , Fatty Acid Desaturases , Stearoyl-CoA Desaturase , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/antagonists & inhibitors , Humans , Endoplasmic Reticulum Stress/drug effects , Drug Resistance, Neoplasm/genetics , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Cell Line, Tumor , A549 Cells , Palmitic Acid/pharmacology , Cell Death/drug effects , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/drug therapy
2.
Transl Psychiatry ; 14(1): 222, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811538

ABSTRACT

Omega-3 fatty acids have been implicated in the aetiology of depressive disorders, though trials supplementing omega-3 to prevent major depressive disorder (MDD) have so far been unsuccessful. Whether this association is causal remains unclear. We used two sample Mendelian randomization (MR) to investigate causality. Genetic variants associated with circulating omega-3 and omega-6 fatty acids in UK Biobank (UKBB, n = 115,078) were selected as exposures. The Psychiatric Genomics Consortium (PGC) genome-wide association studies (GWAS) of MDD (n = 430,775; cases = 116,209; controls = 314,566) and recurrent depression (rMDD, n = 80,933; cases = 17,451; controls = 62,482), were used as outcomes. Multivariable MR (MVMR) models were used to account for biologically correlated lipids, such as high- and low-density cholesterol and triglycerides, and to explore the relative importance of longer-chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) using data from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE, n = 8866). Genetic colocalization analyses were used to explore the presence of a shared underlying causal variant between traits. Genetically predicted total omega-3 fatty acids reduced the odds of MDD (ORIVW 0.96 per standard deviation (SD, i.e. 0.22 mmol/l) (95% CIs 0.93-0.98, p = 0.003)). The largest point estimates were observed for eicosapentaenoic acid (EPA), a long-chain omega-3 fatty acid (OREPA 0.92; 95% CI 0.88-0.96; p = 0.0002). The effect of omega-3 fatty acids was robust to MVMR models accounting for biologically correlated lipids. 'Leave-one-out' analyses highlighted the FADS gene cluster as a key driver of the effect. Colocalization analyses suggested a shared causal variant using the primary outcome sample, but genomic confounding could not be fully excluded. This study supports a role for omega-3 fatty acids, particularly EPA, in the aetiology of depression, although pleiotropic mechanisms cannot be ruled out. The findings support guidelines highlighting the importance of EPA dose and ratio for MDD and question whether targeted interventions may be superior to universal prevention trials, as modest effect sizes will limit statistical power.


Subject(s)
Depressive Disorder, Major , Fatty Acids, Omega-3 , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Depressive Disorder, Major/genetics , Depressive Disorder, Major/epidemiology , Fatty Acids, Omega-3/blood , Female , Male , Polymorphism, Single Nucleotide , Middle Aged , Eicosapentaenoic Acid/blood , Docosahexaenoic Acids/blood , Delta-5 Fatty Acid Desaturase , Fatty Acid Desaturases/genetics , Adult , Fatty Acids, Omega-6/blood , Aged , United Kingdom/epidemiology
3.
Clin Nutr ; 43(6): 1488-1494, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718720

ABSTRACT

BACKGROUND & AIMS: Leukocyte telomere length (LTL) is a biomarker of aging that may be influenced by dietary factors. Omega-3 fatty acids (n-3 FA) have been suggested to affect LTL. However, research on this effect has been inconclusive. The aim of the study was to test the hypothesis about the positive effect of n-3 FA on LTL. METHODS: Fat-1 transgenic mice, which can convert omega-6 fatty acids (n-6 FA) to n-3 FA and have elevated levels of endogenous n-3 FA in their tissues, were used to study the effects of n-3 FA on LTL at different ages. Blood samples from 10-month-old wild-type (WT) mice (n = 10) and fat-1 mice (n = 10) and 3-month-old WT mice (n = 5) and fat-1 mice (n = 5) were used to measure relative and absolute LTL. The levels of proteins critical for telomere maintenance were examined by Western blot analysis. RESULTS: Fat-1 transgenic mice had longer leukocyte telomeres than their WT siblings, suggesting a slower rate of age-related telomere shortening in fat-1 mice. In animals aged 10 months, the LTL was significantly longer in fat-1 than in WT mice (mean ± SEM; relative LTL: WT = 1.00 ± 0.09 vs. fat-1: 1.25 ± 0.05, P = 0.031; absolute LTL: WT = 64.41 ± 6.50 vs. fat-1: 78.53 ± 3.86, P = 0.048). The difference in LTL observed in three-month-old mice was insignificant, however the mean LTL was still longer in fat-1 mice than in the WT mice. Fat-1 mice also had abundant levels of two shelterin proteins: TRF1 (27%, P = 0.028) and TRF2 (47%, P = 0.040) (telomeric repeat binding factor 1 and 2) compared to WT animals. CONCLUSION: This study, for the first time in a unique animal model free of dietary confounders, has demonstrated that increased levels of n-3 FA in tissues can reduce telomere attrition. The data presented indicate the possibility of using omega-3 fatty acids to reduce accelerated telomere attrition and, consequently, counteract premature aging and reduce the risk of age-related diseases.


Subject(s)
Aging , Fatty Acids, Omega-3 , Mice, Transgenic , Telomere , Animals , Mice , Leukocytes/metabolism , Male , Telomere Shortening , Fatty Acids, Omega-6 , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Mice, Inbred C57BL , Female , Cadherins , Caenorhabditis elegans Proteins
4.
BMC Genomics ; 25(1): 510, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783193

ABSTRACT

Domesticated safflower (Carthamus tinctorius L.) is a widely cultivated edible oil crop. However, despite its economic importance, the genetic basis underlying key traits such as oil content, resistance to biotic and abiotic stresses, and flowering time remains poorly understood. Here, we present the genome assembly for C. tinctorius variety Jihong01, which was obtained by integrating Oxford Nanopore Technologies (ONT) and BGI-SEQ500 sequencing results. The assembled genome was 1,061.1 Mb, and consisted of 32,379 protein-coding genes, 97.71% of which were functionally annotated. Safflower had a recent whole genome duplication (WGD) event in evolution history and diverged from sunflower approximately 37.3 million years ago. Through comparative genomic analysis at five seed development stages, we unveiled the pivotal roles of fatty acid desaturase 2 (FAD2) and fatty acid desaturase 6 (FAD6) in linoleic acid (LA) biosynthesis. Similarly, the differential gene expression analysis further reinforced the significance of these genes in regulating LA accumulation. Moreover, our investigation of seed fatty acid composition at different seed developmental stages unveiled the crucial roles of FAD2 and FAD6 in LA biosynthesis. These findings offer important insights into enhancing breeding programs for the improvement of quality traits and provide reference resource for further research on the natural properties of safflower.


Subject(s)
Carthamus tinctorius , Fatty Acid Desaturases , Fatty Acids, Unsaturated , Genome, Plant , Carthamus tinctorius/genetics , Carthamus tinctorius/metabolism , Fatty Acids, Unsaturated/biosynthesis , Fatty Acids, Unsaturated/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Genomics/methods , Gene Expression Regulation, Plant , Molecular Sequence Annotation
5.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791555

ABSTRACT

Disordered eating behavior differs between the restricting subtype (AN-R) and the binging and purging subtype (AN-BP) of anorexia nervosa (AN). Yet, little is known about how these differences impact fatty acid (FA) dysregulation in AN. To address this question, we analyzed 26 FAs and 7 FA lipogenic enzymes (4 desaturases and 3 elongases) in 96 women: 25 AN-R, 25 AN-BP, and 46 healthy control women. Our goal was to assess subtype-specific patterns. Lauric acid was significantly higher in AN-BP than in AN-R at the fasting timepoint (p = 0.038) and displayed significantly different postprandial changes 2 h after eating. AN-R displayed significantly higher levels of n-3 alpha-linolenic acid, stearidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid, and n-6 linoleic acid and gamma-linolenic acid compared to controls. AN-BP showed elevated EPA and saturated lauric acid compared to controls. Higher EPA was associated with elevated anxiety in AN-R (p = 0.035) but was linked to lower anxiety in AN-BP (p = 0.043). These findings suggest distinct disordered eating behaviors in AN subtypes contribute to lipid dysregulation and eating disorder comorbidities. A personalized dietary intervention may improve lipid dysregulation and enhance treatment effectiveness for AN.


Subject(s)
Anorexia Nervosa , Fatty Acids , Humans , Female , Anorexia Nervosa/metabolism , Adult , Fatty Acids/metabolism , Young Adult , Lipogenesis , Eicosapentaenoic Acid/metabolism , Lauric Acids/metabolism , Fatty Acid Elongases/metabolism , Adolescent , Fatty Acid Desaturases/metabolism , Case-Control Studies , Fatty Acids, Unsaturated
6.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732052

ABSTRACT

Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) mediated hepatocyte-specific overexpression of Fads1 (AAV8-Fads1) attenuates western diet-induced metabolic phenotypes in a rat model. Male weanling Sprague-Dawley rats were fed with a chow diet, or low-fat high-fructose (LFHFr) or high-fat high-fructose diet (HFHFr) ad libitum for 8 weeks. Metabolic phenotypes were evaluated at the endpoint. AAV8-Fads1 injection restored hepatic FADS1 protein levels in both LFHFr and HFHFr-fed rats. While AAV8-Fads1 injection led to improved glucose tolerance and insulin signaling in LFHFr-fed rats, it significantly reduced plasma triglyceride (by ~50%) and hepatic cholesterol levels (by ~25%) in HFHFr-fed rats. Hepatic lipidomics analysis showed that FADS1 activity was rescued by AAV8-FADS1 in HFHFr-fed rats, as shown by the restored arachidonic acid (AA)/dihomo-γ-linolenic acid (DGLA) ratio, and that was associated with reduced monounsaturated fatty acid (MUFA). Our data suggest that the beneficial role of AAV8-Fads1 is likely mediated by the inhibition of fatty acid re-esterification. FADS1 is a promising therapeutic target for MASLD in a diet-dependent manner.


Subject(s)
Delta-5 Fatty Acid Desaturase , Diet, Western , Fatty Acid Desaturases , Hepatocytes , Animals , Male , Rats , Delta-5 Fatty Acid Desaturase/metabolism , Dependovirus/genetics , Diet, Western/adverse effects , Disease Models, Animal , Fatty Acid Desaturases/metabolism , Fatty Acid Desaturases/genetics , Fructose/metabolism , Hepatocytes/metabolism , Liver/metabolism , Phenotype , Rats, Sprague-Dawley , Triglycerides/metabolism
7.
Pestic Biochem Physiol ; 200: 105832, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582595

ABSTRACT

Moth insects rely on sex pheromones for long distance attraction and searching for sex partners. The biosynthesis of moth sex pheromones involves the catalytic action of multiple enzymes, with desaturases playing a crucial role in the process of carbon chain desaturation. However, the specific desaturases involved in sex pheromone biosynthesis in fall armyworm (FAW), Spodoptera frugiperda, have not been clarified. In this study, a Δ11 desaturase (SfruDES1) gene in FAW was knocked out using the CRISPR/Cas9 genome editing system. A homozygous mutant of SfruDES1 was obtained through genetic crosses. The gas chromatography-mass spectrometry (GC-MS) analysis results showed that the three main sex pheromone components (Z7-12:Ac, Z9-14:Ac, and Z11-16:Ac) and the three minor components (Z9-14:Ald, E11-14:Ac and Z11-14:Ac) of FAW were not detected in homozygous mutant females compared to the wild type. Furthermore, behavioral assay demonstrated that the loss of SfruDES1 resulted in a significant reduction in the attractiveness of females to males, along with disruptions in mating behavior and oviposition. Additionally, in a heterologous expression system, recombinant SfruDES1 could introduce a cis double bond at the Δ11 position in palmitic acid, which resulted in the changes in components of the synthesized products. These findings suggest desaturase plays a key role in the biosynthesis of sex pheromones, and knockout of the SfruDES1 disrupts sex pheromone biosynthesis and mating behavior in FAW. The SfruDES1 could serve as tool to develop a control method for S. frugiperda.


Subject(s)
Moths , Sex Attractants , Animals , Female , Male , Spodoptera/genetics , Spodoptera/metabolism , Sex Attractants/metabolism , Oviposition , Moths/genetics , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/chemistry , Fatty Acid Desaturases/metabolism
8.
Sci Rep ; 14(1): 9512, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664593

ABSTRACT

Continuous research on obtaining an even more efficient production of very long-chain polyunsaturated fatty acids (VLC-PUFAs) in plants remains one of the main challenges of scientists working on plant lipids. Since crops are not able to produce these fatty acids due to the lack of necessary enzymes, genes encoding them must be introduced exogenously from native organisms producing VLC-PUFAs. In this study we reported, in tobacco leaves, the characterization of three distinct ∆6-desaturases from diatom Phaeodactylum tricornutum, fungi Rhizopus stolonifer and microalge Osterococcus tauri and two different ∆5-desaturases from P. tricornutum and single-celled saprotrophic eukaryotes Thraustochytrium sp. The in planta agroinfiltration of essential ∆6-desaturases, ∆6-elongases and ∆5-desaturases allowed for successful introduction of eicosapentaenoic acid (20:5∆5,8,11,14,17) biosynthesis pathway. However, despite the desired, targeted production of ω3-fatty acids we detected the presence of ω6-fatty acids, indicating and confirming previous results that all tested desaturases are not specifically restricted to neither ω3- nor ω6-pathway. Nevertheless, the additional co-expression of acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) from Phaeodactylum tricornutum boosted the proportion of ω3-fatty acids in newly synthesized fatty acid pools. For the most promising genes combinations the EPA content reached at maximum 1.4% of total lipid content and 4.5% of all fatty acids accumulated in the TAG pool. Our results for the first time describe the role of LPCAT enzyme and its effectiveness in alleviating a bottleneck called 'substrate dichotomy' for improving the transgenic production of VLC-PUFAs in plants.


Subject(s)
Diatoms , Fatty Acid Desaturases , Fatty Acids, Omega-3 , Metabolic Engineering , Nicotiana , Plants, Genetically Modified , Diatoms/genetics , Diatoms/metabolism , Diatoms/enzymology , Metabolic Engineering/methods , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/biosynthesis , Plants, Genetically Modified/genetics , Nicotiana/genetics , Nicotiana/metabolism
9.
Front Biosci (Landmark Ed) ; 29(4): 131, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38682200

ABSTRACT

BACKGROUND: The endogenous metabolism of polyunsaturated fatty acids is regulated by the fatty acid desaturase (FADS) gene cluster and is strongly associated with diseases such as atherosclerosis, dyslipidemia, and type 2 diabetes. However, the association between FADS and atherosclerosis remains a subject of debate. METHODS: In this study, we specifically investigated the physiological role of Δ-5 fatty acid desaturase (FADS1) in aortic and peripheral vessel (namely, the femoral artery) atherosclerosis by targeting the selective knockdown of hepatic Fads1 in apolipoprotein E-null (ApoE-⁣/-) mice with antisense oligonucleotides (ASOs). RESULTS: Knockdown of hepatic Fads1 in ApoE-⁣/- mice exacerbated aortic atherosclerosis and non-alcoholic fatty liver disease (NAFLD), resulting in weight loss. Upregulation of FADS1 mRNA expression in more severe atherosclerosis vascular tissues potentially caused the upregulation of angiopoietin-like 4 expression. CONCLUSIONS: Our study demonstrated that knockdown of hepatic Fads1 in ApoE-⁣/- mice aggravates spontaneous atherosclerosis and NAFLD but does not affect peripheral atherosclerosis (femoral artery) induced by vascular cuff combined with tandem stenosis.


Subject(s)
Apolipoproteins E , Atherosclerosis , Delta-5 Fatty Acid Desaturase , Fatty Acid Desaturases , Liver , Animals , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Delta-5 Fatty Acid Desaturase/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Liver/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Mice , Gene Knockdown Techniques , Male , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotides, Antisense/genetics
10.
Anal Chim Acta ; 1303: 342511, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38609261

ABSTRACT

BACKGROUND: Mammalian cells both import exogenous fatty acids and synthesize them de novo. Palmitate, the end product of fatty acid synthase (FASN) is a substrate for stearoyl-CoA desaturases (Δ-9 desaturases) that introduce a single double bond into fatty acyl-CoA substrates such as palmitoyl-CoA and stearoyl-CoA. This process is particularly upregulated in lipogenic tissues and cancer cells. Tracer methodology is needed to determine uptake versus de novo synthesis of lipids and subsequent chain elongation and desaturation. Here we describe an NMR method to determine the uptake of 13C-palmitate from the medium into HCT116 human colorectal cancer cells, and the subsequent desaturation and incorporation into complex lipids. RESULTS: Exogenous 13C16-palmitate was absorbed from the medium by HCT116 cells and incorporated primarily into complex glycerol lipids. Desaturase activity was determined from the quantification of double bonds in acyl chains, which was greatly reduced by ablation of the major desaturase SCD1. SIGNIFICANCE: The NMR approach requires minimal sample preparation, is non-destructive, and provides direct information about the level of saturation and incorporation of fatty acids into complex lipids.


Subject(s)
Bisphenol A-Glycidyl Methacrylate , Fatty Acids , Magnetic Resonance Imaging , Humans , Animals , Isotopes , Palmitates , Fatty Acid Desaturases , Mammals
11.
JPEN J Parenter Enteral Nutr ; 48(4): 479-485, 2024 May.
Article in English | MEDLINE | ID: mdl-38566550

ABSTRACT

BACKGROUND: Extracellular vesicles in human milk are critical in supporting newborn growth and development. Bioavailability of dietary extracellular vesicles may depend on the composition of membrane lipids. Single-nucleotide polymorphisms (SNPs) in the fatty acid desaturase gene cluster impact the content of long-chain polyunsaturated fatty acids in human milk phospholipids. This study investigated the relation between variation in FADS1 and FADS2 with the content of polyunsaturated fatty acids in extracellular vesicles from human milk. METHODS: Milk was obtained from a cohort of mothers (N = 70) at 2-4 weeks of lactation. SNPs in the FADS gene locus were determined using pyrosequencing for rs174546 in FADS1 and rs174575 in FADS2. Quantitative lipidomic analysis of polyunsaturated fatty acids in human milk and extracellular vesicles from human milk was completed by gas chromatography-mass spectrometry. RESULTS: The rs174546 and rs174575 genotypes were independent predictors of the arachidonic acid content in extracellular vesicles. The rs174546 genotype also predicted eicosapentaenoic acid and docosahexaenoic acid in extracellular vesicles. The reduced content of long-chain polyunsaturated fatty acids in extracellular vesicles in human milk may be due to lower fatty acid desaturase activity in mothers who are carriers of the A allele in rs174546 or the G allele in rs174575. CONCLUSION: The polyunsaturated fatty acid composition of milk extracellular vesicles is predicted by the FADS genotype. These findings yield novel insights regarding extracellular vesicle content and composition that can inform the design of future research to explore how lipid metabolites impact the bioavailability of human milk extracellular vesicles.


Subject(s)
Delta-5 Fatty Acid Desaturase , Extracellular Vesicles , Fatty Acid Desaturases , Fatty Acids, Unsaturated , Genotype , Milk, Human , Polymorphism, Single Nucleotide , Humans , Milk, Human/chemistry , Milk, Human/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Female , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Fatty Acids, Unsaturated/analysis , Fatty Acids, Unsaturated/metabolism , Adult , Genetic Association Studies , Cohort Studies , Lactation/genetics , Lactation/metabolism , Docosahexaenoic Acids/analysis , Docosahexaenoic Acids/metabolism
12.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542213

ABSTRACT

The microalgae Vischeria sp. IPPAS C-70 produces eicosapentaenoic acid. Several stresses cause the formation of fatty acid peaks that resemble hexadecadienoic acids. We used the integrated technique including TLC, HPLC, and GC-MS to search and determine these fatty acids. Double bond positioning in these fatty acids indicated that they were conjugated dienes and allenes. We identified and described natural nine isomers of C16 polyunsaturated fatty acids, including common methylene-interrupted dienes (Δ6,9-16:2, Δ7,10-16:2, Δ9,12-16:2), and unusual conjugated dienes (Δ6,8-, Δ7,9-, Δ8,10-, Δ9,11-, and Δ10,12-16:2), as well as allenic diene (Δ9,10-16:2). We hypothesize that the formation of conjugated dienes and allenes among fatty acids is the result of oxidative stress caused by H2O2. Hydrogen peroxide also caused an increase in saturated at the expense of unsaturated fatty acids, suggesting inhibition either fatty acid desaturases activities or the corresponding gene expression.


Subject(s)
Fatty Acids , Hydrogen Peroxide , Fatty Acids/metabolism , Fatty Acids, Unsaturated/metabolism , Gas Chromatography-Mass Spectrometry , Oxidative Stress , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism
13.
Genes (Basel) ; 15(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38540424

ABSTRACT

Fatty acid desaturases (Fads), as key enzymes in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), catalyze the desaturation between defined carbons of fatty acyl chains and control the degree of unsaturation of fatty acids. In the present study, two Fads genes, designated MulFadsA and MulFadsB, were identified from the genome of the dwarf surf clam Mulinia lateralis (Mollusca, Mactridae), and their spatiotemporal expression was examined. MulFadsA and MulFadsB contained the corresponding conserved functional domains and clustered closely with their respective orthologs from other mollusks. Both genes were expressed in the developmental stages and all tested adult tissues of M. lateralis, with MulFadsA exhibiting significantly higher expression levels in adult tissues than MulFadsB. Subsequently, the effects of dietary microalgae on Fads expressions in the dwarf surf clam were investigated by feeding clams with two types of unialgal diets varying in fatty acid content, i.e., Chlorella pyrenoidosa (Cp) and Platymonas helgolandica (Ph). The results show that the expressions of MulFads were significantly upregulated among adult tissues in the Cp group compared with those in the Ph group. In addition, we observed the desaturation activity of MulFadsA via heterologous expression in yeasts, revealing Δ5 desaturation activity toward PUFA substrates. Taken together, these results provide a novel perspective on M. lateralis LC-PUFA biosynthesis, expanding our understanding of fatty acid synthesis in marine mollusks.


Subject(s)
Bivalvia , Chlorella , Animals , Fatty Acid Desaturases/genetics , Fatty Acids, Unsaturated/genetics , Fatty Acids, Unsaturated/metabolism , Chlorella/metabolism , Bivalvia/genetics , Bivalvia/metabolism , Fatty Acids/metabolism
14.
ACS Chem Biol ; 19(4): 896-907, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38506663

ABSTRACT

Cancer cell culture models frequently rely on fetal bovine serum as a source of protein and lipid factors that support cell survival and proliferation; however, serum-containing media imperfectly mimic the in vivo cancer environment. Recent studies suggest that typical serum-containing cell culture conditions can mask cancer dependencies, for example, on cholesterol biosynthesis enzymes, that exist in vivo and emerge when cells are cultured in media that provide more realistic levels of lipids. Here, we describe a high-throughput screen that identified fenretinide and ivermectin as small molecules whose cytotoxicity is greatly enhanced in lipid-restricted media formulations. The mechanism of action studies indicates that ivermectin-induced cell death involves oxidative stress, while fenretinide likely targets delta 4-desaturase, sphingolipid 1, a lipid desaturase necessary for ceramide synthesis, to induce cell death. Notably, both fenretinide and ivermectin have previously demonstrated in vivo anticancer efficacy despite their low cytotoxicity under typical cell culture conditions. These studies suggest ceramide synthesis as a targetable vulnerability of cancer cells cultured under lipid-restricted conditions and reveal a general screening strategy for identifying additional cancer dependencies masked by the superabundance of medium lipids.


Subject(s)
Culture Media , Lipids , Neoplasms , Humans , Ceramides/metabolism , Culture Media/chemistry , Fatty Acid Desaturases , Fenretinide/pharmacology , Ivermectin/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Sphingolipids , Lipids/chemistry , Antineoplastic Agents/pharmacology , High-Throughput Screening Assays/methods , Cell Line, Tumor/drug effects
15.
J Biol Chem ; 300(5): 107243, 2024 May.
Article in English | MEDLINE | ID: mdl-38556086

ABSTRACT

Sterols are ubiquitous membrane constituents that persist to a large extent in the environment due to their water insolubility and chemical inertness. Recently, an oxygenase-independent sterol degradation pathway was discovered in a cholesterol-grown denitrifying bacterium Sterolibacterium (S.) denitrificans. It achieves hydroxylation of the unactivated primary C26 of the isoprenoid side chain to an allylic alcohol via a phosphorylated intermediate in a four-step ATP-dependent enzyme cascade. However, this pathway is incompatible with the degradation of widely distributed steroids containing a double bond at C22 in the isoprenoid side chain such as the plant sterol stigmasterol. Here, we have enriched a prototypical delta-24 desaturase from S. denitrificans, which catalyzes the electron acceptor-dependent oxidation of the intermediate stigmast-1,4-diene-3-one to a conjugated (22,24)-diene. We suggest an α4ß4 architecture of the 440 kDa enzyme, with each subunit covalently binding an flavin mononucleotide cofactor to a histidyl residue. As isolated, both flavins are present as red semiquinone radicals, which can be reduced by stigmast-1,4-diene-3-one but cannot be oxidized even with strong oxidizing agents. We propose a mechanism involving an allylic radical intermediate in which two flavin semiquinones each abstract one hydrogen atom from the substrate. The conjugated delta-22,24 moiety formed allows for the subsequent hydroxylation of the terminal C26 with water by a heterologously produced molybdenum-dependent steroid C26 dehydrogenase 2. In conclusion, the pathway elucidated for delta-22 steroids achieves oxygen-independent hydroxylation of the isoprenoid side chain by bypassing the ATP-dependent formation of a phosphorylated intermediate.


Subject(s)
Bacterial Proteins , Betaproteobacteria , Fatty Acid Desaturases , Stigmasterol , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Molybdenum/chemistry , Stigmasterol/metabolism , Betaproteobacteria/enzymology , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Hydroxylation/genetics , Flavins/metabolism
16.
J Nutr ; 154(5): 1540-1548, 2024 May.
Article in English | MEDLINE | ID: mdl-38453026

ABSTRACT

BACKGROUND: Single-nucleotide polymorphisms (SNPs) in fatty acid desaturase (FADS) genes may modify dietary fatty acid requirements and influence cardiometabolic health (CMH). OBJECTIVES: We evaluated the role of selected variants in maternal and offspring FADS genes on offspring CMH at the age of 11 y and assessed interactions of genotype with diet quality and prenatal docosahexaenoic acid (DHA) supplementation. METHODS: We used data from offspring (n = 203) born to females who participated in a randomized controlled trial of DHA supplementation (400 mg/d) from midgestation to delivery. We generated a metabolic syndrome (MetS) score from body mass index, high-density lipoprotein cholesterol, triglycerides, systolic blood pressure, and fasting glucose and identified 6 distinct haplotypes from 5 offspring FADS SNPs. Dietary n-6 (ω-6):n-3 fatty acid ratios were derived from 24-h recall data (n = 141). We used generalized linear models to test associations of offspring diet and FADS haplotypes with MetS score and interactions of maternal and offspring FADS SNP rs174602 with prenatal treatment group and dietary n-6:n-3 ratio on MetS score. RESULTS: Associations between FADS haplotypes and MetS score were null. Offspring SNP rs174602 did not modify the association of prenatal DHA supplementation with MetS score. Among children with TT or TC genotype for SNP rs174602 (n = 88), those in the highest n-6:n-3 ratio tertile (>8.61) had higher MetS score relative to the lowest tertile [<6.67) (Δ= 0.36; 95% confidence interval (CI): 0.03, 0.69]. Among children with CC genotype (n = 53), those in the highest n-6:n-3 ratio tertile had a lower MetS score relative to the lowest tertile (Δ= -0.23; 95% CI: -0.61, 0.16). CONCLUSIONS: There was evidence of an interaction of offspring FADS SNP rs174602 with current dietary polyunsaturated fatty acid intake, but not with prenatal DHA supplementation, on MetS score. Further studies may help to determine the utility of targeted supplementation strategies and dietary recommendations based on genetic profile.


Subject(s)
Dietary Supplements , Docosahexaenoic Acids , Fatty Acid Desaturases , Fatty Acids, Omega-3 , Fatty Acids, Omega-6 , Polymorphism, Single Nucleotide , Humans , Female , Docosahexaenoic Acids/administration & dosage , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Pregnancy , Mexico , Male , Child , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-6/administration & dosage , Delta-5 Fatty Acid Desaturase , Metabolic Syndrome/genetics , Metabolic Syndrome/prevention & control , Adult , Diet , Haplotypes
17.
J Biol Chem ; 300(5): 107214, 2024 May.
Article in English | MEDLINE | ID: mdl-38522521

ABSTRACT

The role of polyunsaturated fatty acid (PUFA) biosynthesis in acute myeloid leukemia (AML) remains largely undefined. A comparative expression analysis of 35 genes encoding fatty acid biosynthesis enzymes showed that fatty acid desaturase 1 (FADS1) was highly expressed across multiple AML subtypes relative to healthy controls and that elevated FADS1 expression correlates with worse overall AML patient survival. Functionally, shRNA-mediated inhibition of FADS1 reduced AML cell growth in vitro and significantly delayed leukemia onset in an AML mouse model. AML cell lines depleted of FADS1 arrested in the G1/S-phase of the cell cycle, acquired characteristics of myeloid maturation and subsequently died. To understand the molecular consequences of FADS1 inhibition, a combination of mass spectrometry-based analysis of complex lipids and gene expression analysis (RNA-seq) was performed. FADS1 inhibition caused AML cells to exhibit significant lipidomic remodeling, including depletion of PUFAs from the phospholipids, phosphatidylserine, and phosphatidylethanolamine. These lipidomic alterations were accompanied by an increase induction of inflammatory and stimulator of interferon genes (STING)-mediated type-1 interferon signaling. Remarkably, genetic deletion of STING largely prevented the AML cell maturation and death phenotypes mediated by FADS1 inhibition. Highlighting the therapeutic implications of these findings, pharmacological blockade of PUFA biosynthesis reduced patient-derived AML cell numbers ex vivo but not that of healthy donor cells. Similarly, STING agonism attenuated patient-derived-AML survival; however, STING activation also reduced healthy granulocyte numbers. Collectively, these data unveil a previously unrecognized importance of PUFA biosynthesis in leukemogenesis and that imbalances in PUFA metabolism can drive STING-mediated AML maturation and death.


Subject(s)
Delta-5 Fatty Acid Desaturase , Fatty Acid Desaturases , Fatty Acids, Unsaturated , Leukemia, Myeloid, Acute , Membrane Proteins , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Animals , Humans , Mice , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/biosynthesis , Fatty Acid Desaturases/metabolism , Fatty Acid Desaturases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Line, Tumor , Cell Death , Signal Transduction
18.
Mar Drugs ; 22(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38393053

ABSTRACT

The marine red microalga Porphyridium can simultaneously synthesize long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (C20:5, EPA) and arachidonic acid (C20:4, ARA). However, the distribution and synthesis pathways of EPA and ARA in Porphyridium are not clearly understood. In this study, Porphyridium cruentum CCALA 415 was cultured in nitrogen-replete and nitrogen-limited conditions. Fatty acid content determination, transcriptomic, and lipidomic analyses were used to investigate the synthesis of ARA and EPA. The results show that membrane lipids were the main components of lipids, while storage lipids were present in a small proportion in CCALA 415. Nitrogen limitation enhanced the synthesis of storage lipids and ω6 fatty acids while inhibiting the synthesis of membrane lipids and ω3 fatty acids. A total of 217 glycerolipid molecular species were identified, and the most abundant species included monogalactosyldiglyceride (C16:0/C20:5) (MGDG) and phosphatidylcholine (C16:0/C20:4) (PC). ARA was mainly distributed in PC, and EPA was mainly distributed in MGDG. Among all the fatty acid desaturases (FADs), the expressions of Δ5FAD, Δ6FAD, Δ9FAD, and Δ12FAD were up-regulated, whereas those of Δ15FAD and Δ17FAD were down-regulated. Based on these results, only a small proportion of EPA was synthesized through the ω3 pathway, while the majority of EPA was synthesized through the ω6 pathway. ARA synthesized in the ER was likely shuttled into the chloroplast by DAG and was converted into EPA by Δ17FAD.


Subject(s)
Microalgae , Porphyridium , Porphyridium/genetics , Porphyridium/metabolism , Microalgae/genetics , Microalgae/metabolism , Lipidomics , Fatty Acids/analysis , Fatty Acid Desaturases/metabolism , Eicosapentaenoic Acid , Membrane Lipids , Gene Expression Profiling , Nitrogen/metabolism
19.
Plant Sci ; 341: 112016, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311253

ABSTRACT

The discovery of co-suppression in plants has greatly boosted the study of gene silencing mechanisms, but its triggering mechanism has remained a mystery. In this study, we explored its possible trigger mechanism by using Fatty acid desaturase 2 (FAD2) and Fatty acid elongase 1 (FAE1) strong co-suppression systems. Analysis of small RNAs in FAD2 co-suppression lines showed that siRNAs distributed throughout the coding region of FAD2 with an accumulated peak. However, mutations of the peak siRNA-matched site and siRNA derived site had not alleviated the co-suppression of its transgenic lines. Synthetic FAD2 (AtFAD2sm), which has synonymous mutations in the entire coding region, failed to trigger any co-suppression. Furthermore, 5' and 3' portions of AtFAD2 and AtFAD2sm were swapped to form two hybrid genes, AtFAD2-3sm and AtFAD2-5sm. 80 % and 92 % of their transgenic lines exhibited co-suppression, respectively. Finally, FAE1s with different degrees of the continuous sequence identity compared with AtFAE1 were tested in their Arabidopsis transgenic lines, and the results showed the co-suppression frequency was reduced as their continuous sequence identity stepped down. This work suggests that contiguous identity between the entire coding regions of transgenic and native genes rather than a special region is essential for a strong co-suppression.


Subject(s)
Arabidopsis , Fatty Acid Desaturases , RNA Interference , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Genes, Plant/genetics , RNA, Small Interfering
20.
J Lipid Res ; 65(3): 100517, 2024 03.
Article in English | MEDLINE | ID: mdl-38342436

ABSTRACT

The last step of ex novo ceramide biosynthesis consists of the conversion of dihydroceramide into ceramide catalyzed by sphingolipid Δ4-desaturase DEGS1. DEGS1 variants were found to be responsible for heterogeneous clinical pictures belonging to the family of hypomyelinating leukodystrophies. To investigate the mechanisms making such variants pathogenic, we designed a procedure for the efficient detection of desaturase activity in vitro using LC-MS/MS and prepared a suitable cell model knocking out DEGS1 in HEK-293T cells through CRISPR-Cas9 genome editing (KO-DES-HEK). Transfecting KO-DES-HEK cells with DEGS1 variants, we found that their transcripts were all overexpressed as much as the WT transcripts, while the levels of cognate protein were 40%-80% lower. In vitro desaturase activity was lost by many variants except L175Q and N255S, which maintain a catalytic efficiency close to 12% of the WT enzyme. Metabolic labeling of KO-DES-HEK with deuterated palmitate followed by LC-MS/MS analysis of the formed sphingolipids revealed that the ceramide/dihydroceramide and sphingomyelin/dihydrosphingomyelin ratios were low and could be reverted by the overexpression of WT DEGS1 as well as of L175Q and N255S variants, but not by the overexpression of all other variants. Similar analyses performed on fibroblasts from a patient heterozygous for the N255S variant showed very low variant DEGS1 levels and a low ratio between the same unsaturated and saturated sphingolipids formed upon metabolic labeling, notwithstanding the residual activity measured at high substrate and homogenate protein concentrations. We conclude that loss of function and reduced protein levels are both relevant in disease pathogenesis.


Subject(s)
Ceramides , Oxidoreductases , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Ceramides/metabolism , Sphingolipids/genetics , Sphingolipids/metabolism , Fatty Acid Desaturases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...