Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 50(9): 3472-3486, 2019 11.
Article in English | MEDLINE | ID: mdl-31199027

ABSTRACT

Olfactory ensheathing cells (OECs) are a specialized class of glia, wrapping around olfactory sensory axons that target the olfactory bulb (OB) and cross the peripheral nervous system/central nervous system boundary during development and continue to do so post-natally. OEC subpopulations perform distinct subtype-specific functions dependent on their maturity status. Disrupted OEC development is thought to be associated with abnormal OB morphogenesis, leading to anosmia, a defining characteristic of Kallmann syndrome. Hence, anosmin-1 encoded by Kallmann syndrome gene (KAL-1) might modulate OEC differentiation/maturation in the OB. We performed in ovo electroporation of shRNA in the olfactory placode to knock-down kal in chick embryos, resulting in abnormal OB morphogenesis and loss of olfactory sensory axonal innervation into OB. BLBP-expressing OECs appeared to form a thinner and poorly organized outmost OB layer where SOX10 expressing OECs were completely absent with emergence of GFAP-expressing OECs. Furthermore, in embryonic day 10 chick OB explant cultures, GFAP expression in OECs accumulating along the OB nerve layers was dramatically reduced by recombinant anosmin-1. We then purified immature OECs from embryonic day 10 chick OB. These cells express GFAP after 7 days in vitro, exhibiting a multipolar morphology. Overexpression of chick anosmin, exogenous anosmin-1 or FGF2 could inhibit GFAP expression with cells presenting elongated morphology, which was blocked by the FGF receptor inhibitor Su5402. These data demonstrate that anosmin-1 functions via FGF signalling in regulating OEC maturation, thereby providing a permissive glial environment for axonal innervation into the OB during development.


Subject(s)
Neuroglia/cytology , Animals , Cell Proliferation/drug effects , Chick Embryo , Fatty Acid-Binding Protein 7/biosynthesis , Fibroblast Growth Factor 2/biosynthesis , Nerve Tissue Proteins/metabolism , Neuroglia/metabolism , Olfactory Bulb/drug effects , Olfactory Bulb/growth & development , Pyrroles/pharmacology , RNA, Small Interfering/pharmacology
2.
Adv Biol Regul ; 71: 206-218, 2019 01.
Article in English | MEDLINE | ID: mdl-30245263

ABSTRACT

Lipids are major molecules for the function of organisms and are involved in the pathophysiology of various diseases. Fatty acids (FAs) signaling and their metabolism are some of the most important pathways in tumor development, as lipids serve as energetic sources during carcinogenesis. Fatty acid binding proteins (FABPs) facilitate FAs transport to different cell organelles, modulating their metabolism along with mediating other physiological activities. FABP7, brain-typed FABP, is thought to be an important molecule for cell proliferation in healthy as well as diseased organisms. Several studies on human tumors and tumor-derived cell lines put FABP7 in the center of tumorigenesis, and its high expression level has been reported to correlate with poor prognosis in different tumor types. Several types of FABP7-expressing tumors have shown an up-regulation of cell signaling activity, but molecular mechanisms of FABP7 involvement in tumorigenesis still remain elusive. In this review, we focus on the expression and function of FABP7 in different tumors, and possible mechanisms of FABP7 in tumor proliferation and migration.


Subject(s)
Cell Proliferation , Fatty Acid-Binding Protein 7/biosynthesis , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/biosynthesis , Neoplasms/metabolism , Signal Transduction , Tumor Suppressor Proteins/biosynthesis , Animals , Fatty Acid-Binding Protein 7/genetics , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , Tumor Suppressor Proteins/genetics
3.
Article in English | MEDLINE | ID: mdl-28844908

ABSTRACT

In the duplication-degeneration-complementation model, duplicated gene-pairs undergo nonfunctionalization (loss from the genome), subfunctionalization (the functions of the ancestral gene are sub-divided between duplicate genes), or neofunctionalization (one of the duplicate genes acquires a new function). These processes occur by loss or gain of regulatory elements in gene promoters. Fatty acid-binding proteins (Fabp) belong to a multigene family composed of orthologous proteins that are highly conserved in sequence and function, but differ in their gene regulation. We previously reported that the zebrafish fabp1a, fabp1b.1, and fabp1b.2 promoters underwent subfunctionalization of PPAR responsiveness. Here, we describe the regulation at the duplicated zebrafish fabp7a/fabp7b, fabp10a/fabp10b and fabp11a/fabp11b gene promoters. Differential control at the duplicated fabp promoters was assessed by DNA sequence analysis, responsiveness to PPAR-isoform specific agonists and NF-κB p50 antagonists in zebrafish liver and intestine explant tissue, and in HEK293A cells transfected with fabp promoter-reporter constructs. Each zebrafish fabp gene displayed unique transcriptional regulation compared to its paralogous duplicate. This work provides a framework to account for the evolutionary trajectories that led to the high retention (57%) of duplicated fabp genes in the zebrafish genome compared to only ~3% of all duplicated genes in the zebrafish genome.


Subject(s)
Fatty Acid-Binding Protein 7/biosynthesis , Fatty Acid-Binding Proteins/biosynthesis , Gene Duplication , Gene Expression Regulation/physiology , Peroxisome Proliferator-Activated Receptors/metabolism , Zebrafish Proteins/biosynthesis , Zebrafish/metabolism , Animals , Fatty Acid-Binding Protein 7/genetics , Fatty Acid-Binding Proteins/genetics , HEK293 Cells , Humans , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Promoter Regions, Genetic/physiology , Zebrafish/genetics , Zebrafish Proteins/genetics
4.
Sci Adv ; 3(4): e1602663, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28435883

ABSTRACT

Sleep is found widely in the animal kingdom. Despite this, few conserved molecular pathways that govern sleep across phyla have been described. The mammalian brain-type fatty acid binding protein (Fabp7) is expressed in astrocytes, and its mRNA oscillates in tandem with the sleep-wake cycle. However, the role of FABP7 in regulating sleep remains poorly understood. We found that the missense mutation FABP7.T61M is associated with fragmented sleep in humans. This phenotype was recapitulated in mice and fruitflies bearing similar mutations: Fabp7-deficient mice and transgenic flies that express the FABP7.T61M missense mutation in astrocytes also show fragmented sleep. These results provide novel evidence for a distinct molecular pathway linking lipid-signaling cascades within astrocytes in sleep regulation among phylogenetically disparate species.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , Fatty Acid-Binding Protein 7/biosynthesis , Signal Transduction/physiology , Sleep/physiology , Tumor Suppressor Proteins/biosynthesis , Animals , Astrocytes/cytology , Biological Clocks/physiology , Brain/cytology , Drosophila melanogaster , Fatty Acid-Binding Protein 7/genetics , Female , Humans , Male , Mice , Mice, Knockout , Mutation, Missense , Tumor Suppressor Proteins/genetics
5.
J Neurochem ; 140(1): 96-113, 2017 01.
Article in English | MEDLINE | ID: mdl-27787894

ABSTRACT

The astrocyte marker, glial fibrillary acidic protein (GFAP), has essential functions in the brain, but may trigger astroglial scarring when expressed in excess. Docosahexaenoic acid (DHA) is an n-3 fatty acid that is protective during brain development. However, the effect of DHA on GFAP levels of developing brain remains unexplored. Here, we detected that treating developing rats with DHA-enriched fish-oil caused dose-dependent GFAP augmentation. We investigated the mechanism promoting GFAP, hypothesizing the participation of fatty acid-binding protein-7 (FABP7), known to bind DHA. We identified that DHA stimulated FABP7 expression in astrocytes, and FABP7-silencing suppressed DHA-induced GFAP, indicating FABP7-mediated GFAP increase. Further investigation proved FABP7 expression to be phosphatidylinositide 3-kinases (PI3K)/AKT and nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARγ)-dependent. We found that PI3K/AKT activated PPARγ that triggered FABP7 expression via PPARγ-responsive elements within its gene. Towards identifying FABP7-downstream pathways, we considered our previous report that demonstrated cyclin-dependent kinase-5 (CDK5)-PPARγ-protein-protein complex to suppress GFAP. We found that the DHA-induced FABP7 underwent protein-protein interaction with PPARγ, which impeded CDK5-PPARγ formation. Hence, it appeared that enhanced FABP7-PPARγ in lieu of CDK5-PPARγ resulted in increased GFAP. PI3K/AKT not only stimulated formation of FABP7-PPARγ protein-protein complex, but also up-regulated a FABP7-independent MAP-kinase-phosphatase-3 pathway that inactivated CDK5 and hence attenuated CDK5-PPARγ. Overall, our data reveal that via the proximal PI3K/AKT, DHA induces FABP7-PPARγ, through genomic and non-genomic mechanisms, and MAP-kinase-phosphatase-3 that converged at attenuated CDK5-PPARγ and therefore, enhanced GFAP. Accordingly, our study demonstrates a DHA-mediated astroglial hyperactivation, pointing toward a probable injurious role of DHA in brain development.


Subject(s)
Astrocytes/metabolism , Docosahexaenoic Acids/pharmacology , Dual Specificity Phosphatase 6/biosynthesis , Fatty Acid-Binding Protein 7/biosynthesis , Glial Fibrillary Acidic Protein/biosynthesis , Oncogene Protein v-akt/biosynthesis , PPAR gamma/biosynthesis , Animals , Astrocytes/drug effects , Brain/drug effects , Brain/growth & development , Brain/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Female , Male , Protein Binding/physiology , Rats , Rats, Wistar , Up-Regulation/drug effects , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...