Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 816
Filter
1.
Sci Rep ; 14(1): 9104, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643249

ABSTRACT

Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common among children. AML is characterized by aberrant proliferation of myeloid blasts in the bone marrow and impaired normal hematopoiesis. Despite the introduction of new drugs and allogeneic bone marrow transplantation, patients have poor overall survival rate with relapse as the major challenge, driving the demand for new therapeutic strategies. AML patients with high expression of the very long/long chain fatty acid transporter CD36 have poorer survival and very long chain fatty acid metabolism is critical for AML cell survival. Here we show that fatty acids are transferred from human primary adipocytes to AML cells upon co-culturing. A drug-like small molecule (SMS121) was identified by receptor-based virtual screening and experimentally demonstrated to target the lipid uptake protein CD36. SMS121 reduced the uptake of fatty acid into AML cells that could be reversed by addition of free fatty acids and caused decreased cell viability. The data presented here serves as a framework for the development of CD36 inhibitors to be used as future therapeutics against AML.


Subject(s)
Fatty Acids , Leukemia, Myeloid, Acute , Adult , Child , Humans , Fatty Acids/therapeutic use , Leukemia, Myeloid, Acute/metabolism , Bone Marrow/metabolism , Acute Disease , Coculture Techniques
3.
Curr Opin Cardiol ; 39(4): 280-285, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38456474

ABSTRACT

PURPOSE OF REVIEW: To study the effect of bempedoic acid on markers of inflammation and lipoprotein (a) to help determine if the drug would be useful to treat patients with elevated cardiovascular risks and residual cardiovascular risk despite optimal low-density lipoprotein cholesterol (LDL-C) levels. RECENT FINDINGS: Bempedoic acid is found to cause significant reduction in LDL-C and high-sensitivity C-reactive protein (hs-CRP) in various randomized clinical trials. Multiple meta-analyses have also found that bempedoic acid therapy leads to reduction in non-high-density lipoprotein cholesterol (non-HDL-C), total cholesterol (TC) and apolipoprotein B (ApoB) levels. However, it has minimal effect on lipoprotein (a) (Lp(a)) level. SUMMARY: Bempedoic acid is a new lipid-lowering agent that inhibits enzyme ATP-citrate lyase in the cholesterol biosynthesis pathway. Major risk of cardiovascular events and its associated morbidity and mortality are proportional to LDL-C and inflammatory markers levels. It was found that bempedoic acid significantly lowers LDL-C, hs-CRP and other inflammatory markers levels. This drug could potentially be used in patients with elevated cardiovascular risk, in patients with residual cardiovascular risk despite attaining LDL-C goal and in statin intolerant patients.


Subject(s)
Biomarkers , C-Reactive Protein , Cardiovascular Diseases , Dicarboxylic Acids , Fatty Acids , Inflammation , Lipoprotein(a) , Humans , Dicarboxylic Acids/therapeutic use , Dicarboxylic Acids/pharmacology , Lipoprotein(a)/blood , Biomarkers/blood , Inflammation/drug therapy , Cardiovascular Diseases/prevention & control , Fatty Acids/therapeutic use , C-Reactive Protein/analysis , C-Reactive Protein/drug effects , Cholesterol, LDL/blood , Cholesterol, LDL/drug effects , Hypolipidemic Agents/therapeutic use , Hypolipidemic Agents/pharmacology
4.
J Ethnopharmacol ; 328: 118015, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38499261

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) formula Banxia Xiexin decoction (BXD) has definite therapeutic effect in treating stress-induced gastric ulceration (SIGU) and many other gastrointestinal diseases, but its effect on gastric lymphatic pumping (GLP) remains unclear. AIM OF THE STUDY: Elucidating the role of GLP in SIGU and BXD treatment, and exploring the molecular mechanisms of GLP regulation. MATERIALS AND METHODS: In vivo GLP imaging were performed on SIGU rat model, and the lymphatic dynamic parameters were evaluated. Gastric antrum tissues and serum were collected for macroscopic, histopathological and ulcerative parameters analysis. Gastric lymphatic vessel (GLV) tissues were collected for RNA-Seq assays. Differentially expressed genes (DEGs) were screened from RNA-Seq result and submitted for transcriptomic analysis. Key DEGs and their derivative proteins were measured by qRT-PCR and WB. RESULTS: GLP was significantly suppressed in SIGU rats. BXD could recover GLP, ameliorate stomach lymphostasis, and alleviate the ulcerative damage. Transcriptome analysis of GLV showed the top up-DEGs were concentrated in smooth muscle contraction signaling pathway, while the top the down-DEGs were concentrated in energy metabolism pathways especially fatty acid degradation pathway, which indicated BXD can promote lymphatic smooth muscle contraction, regulate energy metabolism, and reduce fatty acid degradation. The most possible target of these mechanisms was the lymphatic smooth muscle cells (LSMCs) which drove the GLP. This speculation was further validated by the qRT-PCR and WB assessments for the level of key genes and proteins. CONCLUSIONS: By activating the smooth muscle contraction signaling pathway, restoring energy supply, modulating energy metabolism program and reducing fatty acid degradation, BXD effectively recovered GLP, mitigated the accumulation of inflammatory cytokines and metabolic wastes in the stomach, which importantly contributes to its efficacy in treating SIGU.


Subject(s)
Drugs, Chinese Herbal , Lymphatic Vessels , Stomach Ulcer , Rats , Animals , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Energy Metabolism , Lymphatic Vessels/metabolism , Fatty Acids/therapeutic use
5.
Nutrients ; 16(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38337678

ABSTRACT

Metabolic disorders, encompassing diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, etc., pose a substantial global health threat, with rising morbidity and mortality rates. Addressing these disorders is crucial, as conventional drugs often come with high costs and adverse effects. This review explores the potential of royal jelly (RJ), a natural bee product rich in bioactive components, as an alternative strategy for managing metabolic diseases. RJ exhibits diverse therapeutic properties, including antimicrobial, estrogen-like, anti-inflammatory, hypotensive, anticancer, and antioxidant effects. This review's focus is on investigating how RJ and its components impact conditions like diabetes mellitus, cardiovascular disease, and gastrointestinal illnesses. Evidence suggests that RJ serves as a complementary treatment for various health issues, notably demonstrating cholesterol- and glucose-lowering effects in diabetic rats. Specific RJ-derived metabolites, such as 10-hydroxy-2-decenoic acid (10-HDA), also known as the "Queen bee acid," show promise in reducing insulin resistance and hyperglycemia. Recent research highlights RJ's role in modulating immune responses, enhancing anti-inflammatory cytokines, and suppressing key inflammatory mediators. Despite these promising findings, further research is needed to comprehensively understand the mechanisms underlying RJ's therapeutic effects.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Experimental , Gastrointestinal Diseases , Metabolic Diseases , Rats , Animals , Bees , Diabetes Mellitus, Experimental/drug therapy , Fatty Acids/therapeutic use , Gastrointestinal Diseases/drug therapy , Metabolic Diseases/drug therapy , Cardiovascular Diseases/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
6.
J Clin Lipidol ; 18(2): e153-e165, 2024.
Article in English | MEDLINE | ID: mdl-38341323

ABSTRACT

BACKGROUND: Patients with heterozygous familial hypercholesterolemia (HeFH) often cannot reach guideline-recommended low-density lipoprotein cholesterol (LDL-C) goals despite multidrug therapy. OBJECTIVE: To evaluate the efficacy and safety of bempedoic acid as an add-on therapy for lowering LDL-C in patients with HeFH. METHODS: Pooled data from two 52-week phase 3 clinical trials of patients with atherosclerotic cardiovascular disease and/or HeFH receiving maximally tolerated statin therapy (randomized 2:1 to bempedoic acid or placebo) were analyzed by HeFH status. Endpoints included changes from baseline to week 12 (and up to week 52) in LDL-C and other lipid parameters, achievement of LDL-C goals, and safety. RESULTS: A total of 217 (bempedoic acid, 146; placebo, 71) patients with HeFH and 2,792 (bempedoic acid, 1,864; placebo, 928) without HeFH were included (mean baseline LDL-C, 172.8 mg/dL and 102.6 mg/dL, respectively). Bempedoic acid significantly lowered LDL-C at week 12 vs. placebo regardless of HeFH status (with HeFH, -21.2%; without HeFH, -18.2% [both P<0.0001]). Bempedoic acid significantly reduced other lipid parameters and high-sensitivity C-reactive protein vs. placebo regardless of HeFH status (all P≤0.01). Among patients with HeFH treated with bempedoic acid, 32% and 27% achieved LDL-C <100 mg/dL at weeks 12 and 52, respectively. Overall treatment-emergent adverse event incidence was comparable across all four groups (74.7-77.5%). CONCLUSION: Bempedoic acid significantly lowered LDL-C levels vs. placebo and was generally well tolerated in all patients, with no new safety findings in patients with HeFH, despite more intensive lipid-lowering therapy in patients with vs. without HeFH.


Subject(s)
Cholesterol, LDL , Dicarboxylic Acids , Fatty Acids , Heterozygote , Hyperlipoproteinemia Type II , Humans , Dicarboxylic Acids/therapeutic use , Dicarboxylic Acids/adverse effects , Hyperlipoproteinemia Type II/drug therapy , Male , Cholesterol, LDL/blood , Fatty Acids/therapeutic use , Fatty Acids/adverse effects , Middle Aged , Female , Adult , Treatment Outcome , Clinical Trials, Phase III as Topic , Aged
7.
Curr Atheroscler Rep ; 26(3): 83-89, 2024 03.
Article in English | MEDLINE | ID: mdl-38294660

ABSTRACT

PURPOSE OF REVIEW: Bempedoic acid is a novel therapeutic agent that is designed to reduce levels of low-density lipoprotein cholesterol (LDL-C). The purpose of this review is to provide the background for development of bempedoic acid, findings from clinical trials and to discuss clinical implications. RECENT FINDINGS: Bempedoic acid inhibits ATP citrate lyase within the liver and reduces cholesterol synthesis, with the potential to avoid muscle symptoms experienced by patients treated with statins. Early clinical studies demonstrated that administration of bempedoic acid resulted in lowering of LDL-C by 20-30% as monotherapy and by 40-50% when combined with ezetimibe, in addition to lowering of high sensitivity C-reactive protein by 20-30%. The CLEAR Outcomes trial of high cardiovascular risk patients, with elevated LDL-C levels and either unable or unwilling to take statins demonstrated that bempedoic acid reduced the rate of major adverse cardiovascular events. A greater incidence of elevation of hepatic transaminase and creatinine, gout, and cholelithiasis were consistently observed in bempedoic acid-treated patients. Bempedoic acid presents an additional therapeutic option to achieve more effective lowering of LDL-C levels and reduction in cardiovascular risk.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Cholesterol, LDL , Fatty Acids/therapeutic use , Dicarboxylic Acids/therapeutic use
8.
Technol Cancer Res Treat ; 23: 15330338231223080, 2024.
Article in English | MEDLINE | ID: mdl-38179723

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) with Fms-like tyrosine kinase 3 gene internal tandem duplication (FLT3-ITD) mutations has a poor prognosis. The combination of arsenic trioxide (ATO) and all-trans retinoic acid (ATRA) has a synergistic killing effect on leukemia cells with FLT3-ITD mutation. However, the mechanism, especially the changes of gene expression and metabolic activity remain unclear. Here we explore the transcriptome and metabolomics changes of FLT3-ITD AML cells treated with ATO/ATRA. METHODS: RNA-seq was used to identify differential expressed genes (DEGs), and ultra-high performance liquid chromatography-quadrupole electrostatic field orbital trap mass spectrometry (UHPLC-QE-MS) nontargeted metabolomics method was used to screen out the differential metabolites in FLT3-ITD mutant cell lines treated with ATRA and ATO. KEGG pathway database was utilized for pathway exploration and Seahorse XF24 was used to detect extracellular acidification rate (ECAR). Metabolic polymerase chain reaction (PCR) array and real-time quantitative PCR (RT-qPCR) were used to detect mRNA levels of key metabolic genes of glycolysis and fatty acid after drug treatment. RESULTS: A total of 3873 DEGs were identified and enriched in 281 Gene Ontology (GO) terms, among which 210 were related to biological processes, 43 were related to cellular components, and 28 were related to molecular functions. Besides, 1794 and 927 differential metabolites were screened in positive and negative ion mode separately, and 59 different metabolic pathways were involved, including alanine-aspartate-glutamate metabolic pathway, arginine, and proline metabolic pathway, glycerophospholipid metabolic pathways, etc. According to KEGG Pathway analysis of transcriptome combined with metabolome, glycolysis/gluconeogenesis pathway and fatty acid metabolism pathway were significantly founded enriched. ATRA + ATO may inhibit the glycolysis of FLT3-ITD AML cells by inhibiting FLT3 and its downstream AKT/HK2-VDAC1 signaling pathway. CONCLUSIONS: The gene transcription profile and metabolites of FLT3-ITD mutant cells changes significantly after treatment, which might be related to the anti-FLT3-ITD AML effect. The screened DEGs, differential metabolites pathway are helpful in studying the mechanism of anti-leukemia effects and drug targets.


Subject(s)
Leukemia, Myeloid, Acute , fms-Like Tyrosine Kinase 3 , Humans , Arsenic Trioxide/pharmacology , fms-Like Tyrosine Kinase 3/genetics , Transcriptome , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Tretinoin/pharmacology , Tretinoin/therapeutic use , Mutation , Gene Expression Profiling , Fatty Acids/therapeutic use
9.
J Cardiovasc Transl Res ; 17(1): 56-70, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37450209

ABSTRACT

Heart failure (HF) is a complex and multifactorial disease that affects millions of people worldwide. It is characterized by metabolic disturbances of substrates such as glucose, fatty acids (FAs), ketone bodies, and amino acids, which lead to changes in cardiac energy metabolism pathways. These metabolic alterations can directly or indirectly promote myocardial remodeling, thereby accelerating the progression of HF, resulting in a vicious cycle of worsening symptoms, and contributing to the increased hospitalization and mortality among patients with HF. In this review, we summarized the latest researches on energy metabolic profiling in HF and provided the related translational therapeutic strategies for this devastating disease. By taking a holistic approach to understanding energy metabolism changes in HF, we hope to provide comprehensive insights into the pathophysiology of this challenging condition and identify novel precise targets for the development of more effective treatments.


Subject(s)
Heart Failure , Humans , Heart Failure/metabolism , Myocardium/metabolism , Energy Metabolism , Heart , Fatty Acids/metabolism , Fatty Acids/therapeutic use
10.
Curr Opin Lipidol ; 35(1): 41-50, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38085172

ABSTRACT

PURPOSES OF REVIEW: Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity worldwide. Recognizing the importance of dyslipidemia treatment in the prevention of cardiovascular events has become a part of standard clinical practice. Desired values of LDL cholesterol (LDL-C) have become lower and lower in the last few decades, as evidenced by the most recent guidelines. Therefore, efforts to lower LDL cholesterol concentrations with conventional therapies and combinations of lipid-lowering therapy may not be successful in a high proportion of patients. RECENT FINDINGS: Bempedoic acid is a novel agent, first in-class ATP Citrate Lyase (ACL) inhibitor, which targets biosynthesis of the cholesterol in the liver. Considering the results of phase 3 studies, it has been approved for sole use for dyslipidemia treatment for patients who are statin-intolerant or in combination with statin-ezetimibe for those suffering from familial hypercholesterolemia or ASCVD and unable to reach targeted LDL-C values. SUMMARY: Bempedoic acid has proven beneficial for further reduction of LDL cholesterol for targeted groups of patients. It is not only efficient but also a well tolerated, affordable, and available agent whose place in lipid-lowering management is yet to be fully understood with new data collected from ongoing clinical research. In this review we suggest the place of bempedoic acid in lipid-lowering management.


Subject(s)
Anticholesteremic Agents , Dyslipidemias , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Cholesterol, LDL , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Fatty Acids/therapeutic use , Dyslipidemias/drug therapy , Dyslipidemias/chemically induced , Anticholesteremic Agents/therapeutic use
11.
Leukemia ; 38(2): 302-317, 2024 02.
Article in English | MEDLINE | ID: mdl-38057495

ABSTRACT

Chronic lymphocytic leukemia (CLL) is still an incurable disease, with many patients developing resistance to conventional and targeted therapies. To better understand the physiology of CLL and facilitate the development of innovative treatment options, we examined specific metabolic features in the tumor CLL B-lymphocytes. We observed metabolic reprogramming, characterized by a high level of mitochondrial oxidative phosphorylation activity, a low glycolytic rate, and the presence of C2- to C6-carnitine end-products revealing an unexpected, essential role for peroxisomal fatty acid beta-oxidation (pFAO). Accordingly, downmodulation of ACOX1 (a rate-limiting pFAO enzyme overexpressed in CLL cells) was enough to shift the CLL cells' metabolism from lipids to a carbon- and amino-acid-based phenotype. Complete blockade of ACOX1 resulted in lipid droplet accumulation and caspase-dependent death in CLL cells, including those from individuals with poor cytogenetic and clinical prognostic factors. In a therapeutic translational approach, ACOX1 inhibition spared non-tumor blood cells from CLL patients but led to the death of circulating, BCR-stimulated CLL B-lymphocytes and CLL B-cells receiving pro-survival stromal signals. Furthermore, a combination of ACOX1 and BTK inhibitors had a synergistic killing effect. Overall, our results highlight a less-studied but essential metabolic pathway in CLL and pave the way towards the development of new, metabolism-based treatment options.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , B-Lymphocytes/metabolism , Fatty Acids/metabolism , Fatty Acids/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Metabolic Reprogramming , Mitochondria/metabolism
12.
J Clin Lipidol ; 18(1): e59-e69, 2024.
Article in English | MEDLINE | ID: mdl-37951797

ABSTRACT

BACKGROUND: Bempedoic acid is an oral adenosine triphosphate citrate lyase (ACL) inhibitor that lowers low-density lipoprotein cholesterol (LDL-C) blood levels. The Cholesterol Lowering via Bempedoic acid, an ACL-Inhibiting Regimen (CLEAR) Outcomes study demonstrated that bempedoic acid reduced cardiovascular (CV) risk in patients at high risk for CV events who were unwilling or unable to take guideline-recommended doses of statins. OBJECTIVE: To describe detailed safety information from CLEAR Outcomes, including events in the United States (US) prescribing information based on previous phase 3 hyperlipidemia studies. METHODS: CLEAR Outcomes was a double-blind trial conducted in 13,970 patients randomized to oral bempedoic acid 180 mg daily or placebo and followed for a median of 3.4 years. RESULTS: In patients who received at least one dose (7,001 bempedoic acid, 6,964 placebo), treatment emergent adverse events (AE) occurred in 86.3 % and 85 % of patients, respectively. COVID-19 was the most frequently reported AE in both groups. Changes in serum creatinine, blood urea nitrogen, hemoglobin, aminotransaminases, and uric acid were consistent with the known safety profile of bempedoic acid. Gout or gouty arthritis occurred in 3.2 % of bempedoic acid and 2.2 % of placebo patients. AE associated with tendinopathies, including tendon rupture, occurred in 2 % of patients in both treatment groups. Cholelithiasis occurred in 2.2 % of bempedoic acid and 1.2 % of placebo patients; AE related to gallbladder disease were similar between treatment groups. CONCLUSIONS: Bempedoic acid was well-tolerated compared with placebo. Safety data from the long-term CLEAR Outcomes study reinforce the positive benefit-risk profile of bempedoic acid.


Subject(s)
Cardiovascular Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Humans , Cardiovascular Diseases/drug therapy , Cholesterol , Dicarboxylic Acids/adverse effects , Fatty Acids/therapeutic use , Heart Disease Risk Factors , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypercholesterolemia/drug therapy , Risk Factors , Double-Blind Method
13.
Drug Resist Updat ; 72: 101019, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984225

ABSTRACT

This report expands on our previous research, highlighting a unique inverse correlation between MYC expression in tumor cells and immune cells during the development of EGFR-TKI resistance. It is observed that MYC expression and fatty acid oxidation (FAO) metabolism in tissue-resident memory (TRM) CD8 + T cells are significantly impaired. These findings offer new insights into the mechanisms of TKI resistance. Although the study is preliminary, it suggests caution when interpreting the effectiveness of MYC inhibitors in reversing TKI resistance, especially when immune factors are not considered.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , ErbB Receptors/genetics , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Fatty Acids/therapeutic use , Mutation
14.
Cardiology ; 149(1): 71-77, 2024.
Article in English | MEDLINE | ID: mdl-37989119

ABSTRACT

BACKGROUND: Low-density lipoproteins are now proven to be causal for atherosclerosis. Pharmacological treatment focuses on an increase of low-density lipoprotein (LDL) receptors, particularly in the hepatocyte, which leads to uptake of LDL from blood, thereby reducing the burden to the arterial wall. This mechanism has first been proven by statins to be effective to reduce cardiovascular morbidity and mortality. The concept of "the lower, the better" was shown by high-intensity statins and new compounds like ezetimibe, PCSK9 antibodies, inclisiran, and ultimately bempedoic acid. SUMMARY: Although first considered only a relatively weak LDL-C lowering drug, bempedoic acid proved to be very effective, for example, in statin-intolerant patients to reduce cardiovascular events in the CLEAR-Outcomes study. In the era of personalized medicine, it should not be forgotten that the individual response to a LDL-C lowering drug can vary considerably. Bempedoic acid has a favorable safety profile, particularly it does not induce muscle problems because its precursor is not metabolized to the active drug in the muscle, and it does not induce hyperglycemia. Bempedoic acid probably is best used in combination with ezetimibe, which leads to LDL-C reductions in the range of moderately intensive statins; in an oral triple combination with a high-intensity statin, LDL-C reductions in the range of two-thirds can be achieved. KEY MESSAGES: Bempedoic acid is a further weapon against the atherogenic effect of LDL cholesterol - in both primary and secondary prevention.


Subject(s)
Anticholesteremic Agents , Dicarboxylic Acids , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Proprotein Convertase 9 , Cholesterol, LDL , Fatty Acids/therapeutic use , Ezetimibe/therapeutic use , Anticholesteremic Agents/adverse effects
15.
AIDS Res Hum Retroviruses ; 40(4): 257-267, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37772708

ABSTRACT

Omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFAs) are vital for fetal metabolic programming and immunomodulation. Higher n-6:n-3 ratios, reflecting a proinflammatory eicosanoid profile, are associated with adverse perinatal outcomes. Limited data exist, however, on n-6 and n-3 PUFAs specifically in the context of HIV and pregnancy. Our objective was to assess HIV clinical factors associated with PUFA signatures in pregnant persons with HIV (PWH). In this observational cohort, third trimester plasma PUFA concentrations (six n-6 PUFAs, four n-3 PUFAs) were measured, each as a percent of total fatty acid content, via esterification and gas chromatography in pregnant PWH enrolled from 2009 to 2011 in the Nutrition substudy of the Pediatric HIV/AIDS Cohort Study. PUFA ratios (n-6:n-3) were calculated. Exposures assessed were first/second trimester CD4 count (<200 vs. >200 cells/mm3), HIV RNA viral load (VL) (VL >400 vs. <400 copies/mL), and protease inhibitor (PI) versus non-PI antiretroviral therapy (ART). Linear regression models using generalized estimating equations were fit to assess mean differences and their 95% confidence intervals (CIs) in n-6:n-3 by each exposure, adjusted for potential confounders. Of 264 eligible pregnant PWH, the median age was 27 years, 12% had CD4 counts <200 cells/mm3, and 56% had VL ≥400 copies/mL in the first/second trimesters. PUFA concentrations and ratios were similar by CD4 count and PI exposure. n-3 concentrations were lower in PWH with VL ≥400 versus <400 copies/mL (median 2.8% vs. 3.0%, p < .01, respectively); no differences were observed for n-6 concentrations by VL. In models adjusted for age, education, tobacco use, body mass index, and PI-based ART, n-6:n-3 was higher in those with VL ≥400 copies/mL (mean difference: 1.6; 95% CI: 0.79-2.48, p = .0001). Therefore, PUFA signatures in viremic pregnant PWH reflect a proinflammatory eicosanoid milieu. Future studies should evaluate associations of proinflammatory PUFA signatures with adverse perinatal outcomes in PWH.


Subject(s)
Acquired Immunodeficiency Syndrome , Fatty Acids, Omega-3 , HIV Infections , Pregnancy , Female , Humans , Child , Adult , Cohort Studies , Fatty Acids/therapeutic use , HIV Infections/drug therapy , Viremia/drug therapy , Fatty Acids, Omega-3/therapeutic use , Anti-Retroviral Agents/therapeutic use , Acquired Immunodeficiency Syndrome/drug therapy , Eicosanoids/therapeutic use , Viral Load
16.
J Dermatolog Treat ; 35(1): 2296855, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38146664

ABSTRACT

BACKGROUND: Sebum physiology and its contributions to acne vulgaris (AV) pathophysiology have been long debated. Within the pilosebaceous unit, androgens drive sebocyte production of sebum, comprising mono-, di-, and triglycerides (the latter converted to fatty acids); squalene; cholesterol; cholesterol esters; and wax esters. Upon release to the skin surface, human sebum has important roles in epidermal water retention, antimicrobial defenses, and innate immune responses. AIMS: Alterations in sebum alone and with other pathogenic factors (inflammation, follicular hyperkeratinization, and Cutibacterium acnes [C. acnes] proliferation) contribute to AV pathophysiology. Androgen-driven sebum production, mandatory for AV development, propagates C. acnes proliferation and upregulates inflammatory and comedogenic cascades. RESULTS: Some sebum lipids have comedogenic effects in isolation, and sebum content alterations (including elevations in specific fatty acids) contribute to AV pathogenesis. Regional differences in facial sebum production, coupled with patient characteristics (including sex and age), help exemplify this link between sebum alterations and AV lesion formation. CONCLUSIONS: To date, only combined oral contraceptives and oral spironolactone (both limited to female patients), oral isotretinoin and topical clascoterone (cortexolone 17α-propionate) modulate sebum production in patients with AV. A better understanding of mechanisms underlying sebaceous gland changes driving AV development is needed to expand the AV treatment armamentarium.


Subject(s)
Acne Vulgaris , Sebum , Humans , Female , Acne Vulgaris/drug therapy , Acne Vulgaris/pathology , Sebaceous Glands , Skin/pathology , Fatty Acids/therapeutic use
19.
Mar Drugs ; 21(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37999377

ABSTRACT

The monounsaturated fatty acid 7(E)-9-keto-hexadec-7-enoic acid (1) and three structurally related analogues with different oxidation states and degrees of unsaturation (2-4) were discovered from a marine benthic cyanobacterial mat collected from Delta Shoal, Florida Keys. Their structures were elucidated using NMR spectroscopy and mass spectrometry. The structure of 1 contained an α,ß-unsaturated carbonyl system, a key motif required for the activation of the Keap1/Nrf2-ARE pathway that is involved in the activation of antioxidant and phase II detoxification enzymes. Compounds 1-4 were screened in ARE-luciferase reporter gene assay using stably transfected HEK293 cells, and only 1 significantly induced Nrf2 activity at 32 and 10 µM, whereas 2-4 were inactive. As there is crosstalk between inflammation and oxidative stress, subsequent biological studies were focused on 1 to investigate its anti-inflammatory potential. Compound 1 induced Nqo1, a well-known target gene of Nrf2, and suppressed iNos transcript levels, which translated into reduced levels of nitric oxide in LPS-activated mouse macrophage RAW264.7 cells, a more relevant model for inflammation. RNA sequencing was performed to capture the effects of 1 on a global level and identified additional canonical pathways and upstream regulators involved in inflammation and immune response, particularly those related to multiple sclerosis. A targeted survey of marine cyanobacterial samples from other geographic locations, including Guam, suggested the widespread occurrence of 1. Furthermore, the previous isolation of 1 from marine diatoms and green algae implied a potentially important ecological role across marine algal eukaryotes and prokaryotes. The previous isolation from sea lettuce raises the possibility of dietary intervention to attenuate inflammation and related disease progression.


Subject(s)
Fatty Acids , NF-E2-Related Factor 2 , Humans , Mice , Animals , NF-E2-Related Factor 2/metabolism , Fatty Acids/therapeutic use , Kelch-Like ECH-Associated Protein 1/metabolism , HEK293 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/metabolism , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology
20.
Basic Clin Pharmacol Toxicol ; 133(6): 757-769, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37811696

ABSTRACT

Berberine acts via multiple pathways to alleviate fibrosis in various tissues and shows renoprotective effects. However, its role and underlying mechanisms in renal fibrosis remain unclear. Herein, we aimed to investigate the protective effects and molecular mechanisms of berberine against unilateral ureteric obstruction-induced renal fibrosis. The results indicated that berberine treatment (50 mg/kg/day) markedly alleviated histopathological alterations, collagen deposition and inflammatory cell infiltration in kidney tissue and restored mouse renal function. Mechanistically, berberine intervention inhibited NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation and the levels of the inflammatory cytokine IL-1ß in the kidneys of unilateral ureteric obstruction mice. In addition, berberine relieved unilateral ureteric obstruction-induced renal injury by activating adenosine monophosphate-activated protein kinase (AMPK) signalling and promoting fatty acid ß-oxidation. In vitro models showed that berberine treatment prevented the TGF-ß1-induced profibrotic phenotype of hexokinase 2 (HK-2) cells, characterized by loss of an epithelial phenotype (alpha smooth muscle actin [α-SMA]) and acquisition of mesenchymal marker expression (E-cadherin), by restoring abnormal fatty acid ß-oxidation and upregulating the expression of the fatty acid ß-oxidation related-key enzymes or regulators (phosphorylated-AMPK, peroxisome proliferator activated receptor alpha [PPARα] and carnitine palmitoyltransferase 1A [CPT1A]). Collectively, berberine alleviated renal fibrosis by inhibiting NLRP3 inflammasome activation and protected tubular epithelial cells by reversing defective fatty acid ß-oxidation. Our findings might be exploited clinically to provide a potential novel therapeutic strategy for renal fibrosis.


Subject(s)
Berberine , Kidney Diseases , Ureteral Obstruction , Mice , Animals , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy , Berberine/pharmacology , Berberine/therapeutic use , Berberine/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , AMP-Activated Protein Kinases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/etiology , Kidney Diseases/prevention & control , Kidney , Transforming Growth Factor beta1/metabolism , Inflammation/pathology , Fibrosis , Fatty Acids/metabolism , Fatty Acids/pharmacology , Fatty Acids/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...