Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.821
Filter
1.
Clin Transl Sci ; 17(6): e13760, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847320

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is the severe form of non-alcoholic fatty liver disease which has a high potential to progress to cirrhosis and hepatocellular carcinoma, yet adequate effective therapies are lacking. Hypoadiponectinemia is causally involved in the pathogenesis of MASH. This study investigated the pharmacological effects of adiponectin replacement therapy with the adiponectin-derived peptide ALY688 (ALY688-SR) in a mouse model of MASH. Human induced pluripotent stem (iPS) cell-derived hepatocytes were used to test cytotoxicity and signaling of unmodified ALY688 in vitro. High-fat diet with low methionine and no added choline (CDAHF) was used to induce MASH and test the effects of ALY688-SR in vivo. Histological MASH activity score (NAS) and fibrosis score were determined to assess the effect of ALY688-SR. Transcriptional characterization of mice through RNA sequencing was performed to indicate potential molecular mechanisms involved. In cultured hepatocytes, ALY688 efficiently induced adiponectin-like signaling, including the AMP-activated protein kinase and p38 mitogen-activated protein kinase pathways, and did not elicit cytotoxicity. Administration of ALY688-SR in mice did not influence body weight but significantly ameliorated CDAHF-induced hepatic steatosis, inflammation, and fibrosis, therefore effectively preventing the development and progression of MASH. Mechanistically, ALY688-SR treatment markedly induced hepatic expression of genes involved in fatty acid oxidation, whereas it significantly suppressed the expression of pro-inflammatory and pro-fibrotic genes as demonstrated by transcriptomic analysis. ALY688-SR may represent an effective approach in MASH treatment. Its mode of action involves inhibition of hepatic steatosis, inflammation, and fibrosis, possibly via canonical adiponectin-mediated signaling.


Subject(s)
Adiponectin , Disease Models, Animal , Hepatocytes , Non-alcoholic Fatty Liver Disease , Animals , Adiponectin/metabolism , Adiponectin/pharmacology , Adiponectin/deficiency , Mice , Humans , Hepatocytes/metabolism , Hepatocytes/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Male , Mice, Inbred C57BL , Signal Transduction/drug effects , Diet, High-Fat/adverse effects , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/drug therapy , Metabolism, Inborn Errors/pathology , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Metabolic Diseases/prevention & control , Metabolic Diseases/etiology , Liver/metabolism , Liver/drug effects , Liver/pathology , Fatty Liver/prevention & control , Fatty Liver/metabolism , Fatty Liver/drug therapy , Fatty Liver/pathology
2.
Medicine (Baltimore) ; 103(23): e38444, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847728

ABSTRACT

To investigate changes in skeletal muscle mass and fat fraction in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes mellitus (T2DM) undergoing treatment with Semaglutide for 6months. This single-arm pilot study included 21 patients with MASLD who received semaglutide for T2DM. Body weight, metabolic parameters, liver enzymes, fibrosis markers, skeletal muscle index (cm2/m2), and fat fraction (%) at the L3 level using the two-point Dixon method on magnetic resonance imaging (MRI), as well as liver steatosis and liver stiffness assessed using MRI-based proton density fat fraction (MRI-PDFF) and MR elastography, respectively, were prospectively examined before and 6 months after semaglutide administration. The mean age of the patients was 53 years and 47.6% were females. The median liver steatosis-fraction (%) and skeletal muscle steatosis-fraction values (%) significantly decreased (22.0 vs 12.0; P = .0014) and (12.8 vs 9.9; P = .0416) at baseline and 6 months, respectively, while maintaining muscle mass during treatment. Semaglutide also dramatically reduced hemoglobin A1c (%) (6.8 vs 5.8, P = .0003), AST (IU/L) (54 vs 26, P < .0001), ALT (IU/L) (80 vs 34, P = .0004), and γ-GTP (IU/L) levels (64 vs 34, P = .0007). Although not statistically significant, Body weight (kg) (79.9 vs 77.4), body mass index (BMI) (kg/m2) (28.9 vs 27.6), and liver stiffness (kPa) (28.9 vs 27.6) showed a decreasing trend. Fibrosis markers such as M2BPGi, type IV collagen, and skeletal muscle area did not differ. Semaglutide demonstrated favorable effects on liver and skeletal muscle steatosis, promoting improved liver function and diabetic status.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptides , Liver , Muscle, Skeletal , Humans , Female , Middle Aged , Male , Diabetes Mellitus, Type 2/drug therapy , Prospective Studies , Muscle, Skeletal/drug effects , Glucagon-Like Peptides/therapeutic use , Glucagon-Like Peptides/administration & dosage , Pilot Projects , Liver/drug effects , Liver/diagnostic imaging , Liver/pathology , Hypoglycemic Agents/therapeutic use , Fatty Liver/drug therapy , Adult , Glucagon-Like Peptide-1 Receptor/agonists , Magnetic Resonance Imaging , Elasticity Imaging Techniques , Glycated Hemoglobin/drug effects , Glycated Hemoglobin/analysis , Aged
3.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-38837944

ABSTRACT

Hepatic steatosis is the initial manifestation of abnormal liver functions and often leads to liver diseases such as nonalcoholic fatty liver disease in humans and fatty liver syndrome in animals. In this study, we conducted a comprehensive analysis of a large chicken population consisting of 705 adult hens by combining host genome resequencing; liver transcriptome, proteome, and metabolome analysis; and microbial 16S ribosomal RNA gene sequencing of each gut segment. The results showed the heritability (h2 = 0.25) and duodenal microbiability (m2 = 0.26) of hepatic steatosis were relatively high, indicating a large effect of host genetics and duodenal microbiota on chicken hepatic steatosis. Individuals with hepatic steatosis had low microbiota diversity and a decreased genetic potential to process triglyceride output from hepatocytes, fatty acid ß-oxidation activity, and resistance to fatty acid peroxidation. Furthermore, we revealed a molecular network linking host genomic variants (GGA6: 5.59-5.69 Mb), hepatic gene/protein expression (PEMT, phosphatidyl-ethanolamine N-methyltransferase), metabolite abundances (folate, S-adenosylmethionine, homocysteine, phosphatidyl-ethanolamine, and phosphatidylcholine), and duodenal microbes (genus Lactobacillus) to hepatic steatosis, which could provide new insights into the regulatory mechanism of fatty liver development.


Subject(s)
Chickens , Fatty Liver , Gastrointestinal Microbiome , Animals , Chickens/microbiology , Gastrointestinal Microbiome/genetics , Fatty Liver/genetics , Fatty Liver/microbiology , Fatty Liver/veterinary , Fatty Liver/metabolism , Liver/metabolism , Liver/microbiology , Transcriptome , Genome , Metabolome , Poultry Diseases/microbiology , Poultry Diseases/genetics
4.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38836837

ABSTRACT

BACKGROUND: Abnormal phospholipid metabolism is linked to metabolic dysfunction-associated steatotic liver disease (MASLD) development and progression. We aimed to clarify whether genetic variants of phospholipid metabolism modify these relationships. METHODS: This case-control study consecutively recruited 600 patients who underwent MRI-based proton density fat fraction examination (240 participants with serum metabonomics analysis, 128 biopsy-proven cases) as 3 groups: healthy control, nonobese MASLD, and obese MASLD, (n = 200 cases each). Ten variants of phospholipid metabolism-related genes [phospholipase A2 Group VII rs1805018, rs76863441, rs1421378, and rs1051931; phospholipase A2 receptor 1 (PLA2R1) rs35771982, rs3828323, and rs3749117; paraoxonase-1 rs662 and rs854560; and ceramide synthase 4 (CERS4) rs17160348)] were genotyped using SNaPshot. RESULTS: The T-allele of CERS4 rs17160348 was associated with a higher risk of both obese and nonobese MASLD (OR: 1.95, 95% CI: 1.20-3.15; OR: 1.76, 95% CI: 1.08-2.86, respectively). PLA2R1 rs35771982-allele is a risk factor for nonobese MASLD (OR: 1.66, 95% CI: 1.11-1.24), moderate-to-severe steatosis (OR: 3.24, 95% CI: 1.96-6.22), and steatohepatitis (OR: 2.61, 95% CI: 1.15-3.87), while the paraoxonase-1 rs854560 T-allele (OR: 0.50, 95% CI: 0.26-0.97) and PLA2R1 rs3749117 C-allele (OR: 1.70, 95% CI: 1.14-2.52) are closely related to obese MASLD. After adjusting for sphingomyelin level, the effect of the PLA2R1 rs35771982CC allele on MASLD was attenuated. Furthermore, similar effects on the association between the CERS4 rs17160348 C allele and MASLD were observed for phosphatidylcholine, phosphatidic acid, sphingomyelin, and phosphatidylinositol. CONCLUSIONS: The mutations in PLA2R1 rs35771982 and CERS4 rs17160348 presented detrimental impact on the risk of occurrence and disease severity in nonobese MASLD through altered phospholipid metabolism.


Subject(s)
Genotype , Receptors, Phospholipase A2 , Humans , Male , Female , Middle Aged , Case-Control Studies , Receptors, Phospholipase A2/genetics , Phospholipids/blood , Adult , Obesity/genetics , Polymorphism, Single Nucleotide , Fatty Liver/genetics , Genetic Predisposition to Disease/genetics
5.
Sci Rep ; 14(1): 12922, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839921

ABSTRACT

The incidence of non-alcoholic fatty liver disease (NAFLD) tends to be younger. And the role of theobromine in fatty liver disease remains unclear. The purpose of this study was to investigate the relationship between dietary theobromine intake and degree of hepatic steatosis in individuals aged 45 and below, using data from the 2017-2020 National Health and Nutrition Examination Survey (NHANES) and liver ultrasonography transient elastography. A total of 1796 participants aged below 45 years were included from NHANES 2017-2020 data after applying exclusion criteria. Multivariate regression and subgroup analyses were conducted to examine the associations between theobromine intake and controlled attenuation parameter (CAP), adjusting for potential confounders. Generalized additive models and two-piecewise linear regression were used to analyze nonlinear relationships. In the unadjusted Model 1 and preliminarily adjusted Model 2, there was no significant correlation between theobromine intake and CAP values. However, in Models 3 and 4, which accounted for confounding factors, a higher intake of theobromine was significantly associated with lower CAP values. Subgroup analyses in the fully adjusted Model 4 revealed a significant negative correlation among individuals aged 18-45, women, and white populations. Nonlinear analysis revealed a U-shaped relationship in black Americans, with the lowest CAP values at 44.5 mg/day theobromine. This study provides evidence that higher theobromine intake is correlated with lower degree of hepatic steatosis in young people, especially those aged 18-45 years, women, and whites. For black Americans, maintaining theobromine intake around 44.5 mg/day may help minimize liver steatosis. These findings may help personalize clinical nutritional guidance, prevent the degree of hepatic steatosis, and provide pharmacological approaches to reverse fatty liver disease in young people.


Subject(s)
Non-alcoholic Fatty Liver Disease , Nutrition Surveys , Theobromine , Humans , Theobromine/administration & dosage , Female , Male , Adult , Non-alcoholic Fatty Liver Disease/epidemiology , Adolescent , Young Adult , Middle Aged , Liver/diagnostic imaging , Liver/pathology , Elasticity Imaging Techniques , Fatty Liver/epidemiology , Fatty Liver/diagnostic imaging
6.
BMC Med ; 22(1): 221, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825687

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome (MetS) are implicated in the aetiology of non-communicable diseases. Our study aimed to evaluate associations between NAFLD and MetS with overall and cause-specific mortality. METHODS: We used dietary, lifestyle, anthropometric and metabolic biomarker data from a random subsample of 15,784 EPIC cohort participants. NAFLD was assessed using the fatty liver index (FLI) and MetS using the revised definition. Indices for metabolic dysfunction-associated fatty liver disease (MAFLD) were calculated. The individual associations of these indices with overall and cause-specific mortality were assessed using multivariable Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (95%CIs). As a subobjective, risk associations with adaptations of new classifications of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic and alcohol-related liver disease (MetALD) were also assessed. RESULTS: Among the 15,784 sub-cohort participants, a total of 1997 deaths occurred (835 due to cancer, 520 to CVD, 642 to other causes) over a median 15.6 (IQR, 12.3-17.1) years of follow-up. Compared to an FLI < 30, FLI ≥ 60 was associated with increased risks of overall mortality (HR = 1.44, 95%CI = 1.27-1.63), and deaths from cancer (HR = 1.32, 95%CI = 1.09-1.60), CVD (HR = 2.06, 95% CI = 1.61-2.63) or other causes (HR = 1.21, 95%CI = 0.97-1.51). Mortality risk associations were also elevated for individuals with MAFLD compared to those without. Individuals with MetS were at increased risk of all mortality endpoints, except cancer-specific mortality. MASLD and MetALD were associated with higher risk of overall mortality. CONCLUSIONS: Our findings based on a prospective cohort suggest that individuals with hepatic steatosis or metabolic dysfunction have a higher overall and cause-specific mortality risk.


Subject(s)
Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Humans , Male , Female , Middle Aged , Prospective Studies , Metabolic Syndrome/mortality , Non-alcoholic Fatty Liver Disease/mortality , Adult , Aged , Risk Factors , Cohort Studies , Fatty Liver/mortality
7.
Artif Cells Nanomed Biotechnol ; 52(1): 355-369, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38833340

ABSTRACT

The global epidemic of metabolic diseases has led to the emergence of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), which pose a significant threat to human health. Despite recent advances in research on the pathogenesis and treatment of MASLD/MASH, there is still a lack of more effective and targeted therapies. Extracellular vesicles (EVs) discovered in a wide range of tissues and body fluids encapsulate different activated biomolecules and mediate intercellular communication. Recent studies have shown that EVs derived from the liver and adipose tissue (AT) play vital roles in MASLD/MASH pathogenesis and therapeutics, depending on their sources and intervention types. Besides, adipose-derived stem cell (ADSC)-derived EVs appear to be more effective in mitigating MASLD/MASH. This review presents an overview of the definition, extraction strategies, and characterisation of EVs, with a particular focus on the biogenesis and release of exosomes. It also reviews the effects and potential molecular mechanisms of liver- and AT-derived EVs on MASLD/MASH, and emphasises the contribution and clinical therapeutic potential of ADSC-derived EVs. Furthermore, the future perspective of EV therapy in a clinical setting is discussed.


Subject(s)
Adipose Tissue , Extracellular Vesicles , Fatty Liver , Liver , Humans , Adipose Tissue/metabolism , Extracellular Vesicles/metabolism , Liver/metabolism , Liver/pathology , Fatty Liver/metabolism , Fatty Liver/therapy , Fatty Liver/pathology , Animals
8.
BMC Public Health ; 24(1): 1546, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849779

ABSTRACT

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a significantly costly and increasingly prevalent disease, with treatment focused on lifestyle intervention. Integrating education and behavioral health into clinical care offers opportunities to engage and empower patients to prevent progression of liver disease. We describe the design and implementation of Behavioral Resources and Intervention through Digital Group Education (BRIDGE), a 6-session group telehealth program led by advanced practice providers (APPs) in 90-min shared medical appointments (SMAs) with small groups of MASLD patients in an academic outpatient hepatology clinic. The program contains multi-component group interventions, with didactic education and behavioral coaching, while leveraging peer-based learning and support. METHODS: A mixed-methods exploratory pilot study was conducted. Feasibility and acceptability of the clinical intervention were assessed by tracking recruitment, attendance, and retention of BRIDGE participants, patient interviews, and debriefing of clinician and staff views of the clinical program. Implementation metrics included program development time, workflow and scheduling logistics, and billing compliance for sustainability. Finally, patient parameters including changes in liver enzymes, FIB-4, weight, and BMI from pre- to post-BRIDGE were retrospectively analyzed. RESULTS: We included 57 participants (median age 57, interquartile range (IQR) 50 - 65 years), 38 (67%) female, 38 (67%) white, and 40% had public insurance. Thirty-three (58%) participants completed all six sessions, while 43 (75%) attended at least five sessions. Patients who completed all sessions were older (median age 61 vs 53.5; p = 0.01). Gender, race/ethnicity, and insurance type were not significantly associated with missed sessions, and patients had similar rates of completion regardless of weight, BMI, or stage of liver disease. Barriers to completion included personal illness, family reasons, work commitments, or insurance issues. Prior to BRIDGE, median BMI was 31.9 (SD 29 - 36), with a median weight loss of 2 pounds (IQR -2 - 6) after BRIDGE. CONCLUSION: The BRIDGE telehealth SMA program was feasible, well-attended, and positively reviewed. This pilot study informs future iterations of program development and evaluation of outcome measures.


Subject(s)
Patient Education as Topic , Shared Medical Appointments , Telemedicine , Humans , Pilot Projects , Female , Male , Middle Aged , Patient Education as Topic/methods , Fatty Liver/therapy , Aged , Feasibility Studies , Adult , Program Evaluation
9.
BMC Endocr Disord ; 24(1): 84, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849804

ABSTRACT

BACKGROUND: We aimed to examine sex-specific associations between sex- and thyroid-related hormones and the risk of metabolic dysfunction-associated fatty liver disease (MAFLD) in patients with type 2 diabetes mellitus (T2DM). METHODS: Cross-sectional analyses of baseline information from an ongoing cohort of 432 T2DM patients (185 women and 247 men) in Xiamen, China were conducted. Plasma sex-related hormones, including estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone, and total testosterone (TT), and thyroid-related hormones, including free triiodothyronine (FT3), free thyroxine (FT4), thyroid-stimulating hormone (TSH), and parathyroid hormone (PTH), were measured using chemiluminescent immunoassays. MAFLD was defined as the presence of hepatic steatosis (diagnosed by either hepatic ultrasonography scanning or fatty liver index (FLI) score > 60) since all subjects had T2DM in the present study. RESULTS: Prevalence of MAFLD was 65.6% in men and 61.1% in women with T2DM (P = 0.335). For men, those with MAFLD showed significantly decreased levels of FSH (median (interquartile range (IQR)):7.2 (4.9-11.1) vs. 9.8 (7.1-12.4) mIU/ml) and TT (13.2 (10.4-16.5) vs. 16.7 (12.8-21.6) nmol/L) as well as increased level of FT3 (mean ± standard deviation (SD):4.63 ± 0.68 vs. 4.39 ± 0.85 pmol/L) than those without MAFLD (all p-values < 0.05). After adjusting for potential confounding factors, FSH and LH were negative, while progesterone was positively associated with the risk of MAFLD in men, and the adjusted odds ratios (ORs) (95% confidence intervals (CIs)) were 0.919 (0.856-0.986), 0.888 (0.802-0.983), and 8.069 (2.019-32.258) (all p-values < 0.05), respectively. In women, there was no statistically significant association between sex- or thyroid-related hormones and the risk of MAFLD. CONCLUSION: FSH and LH levels were negative, whereas progesterone was positively associated with the risk of MAFLD in men with T2DM. Screening for MAFLD and monitoring sex-related hormones are important for T2DM patients, especially in men.


Subject(s)
Diabetes Mellitus, Type 2 , Thyroid Hormones , Humans , Male , Female , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Middle Aged , Cross-Sectional Studies , Thyroid Hormones/blood , China/epidemiology , Risk Factors , Aged , Gonadal Steroid Hormones/blood , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Biomarkers/blood , Adult , Follow-Up Studies , Sex Factors , Prognosis , Fatty Liver/blood , Fatty Liver/epidemiology , Fatty Liver/etiology
10.
Eur J Gastroenterol Hepatol ; 36(7): 961-969, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38829946

ABSTRACT

Fatty liver disease (FLD) affects approximately 25% of global adult population. Metabolic-associated fatty liver disease (MAFLD) is a term used to emphasize components of metabolic syndrome in FLD. MAFLD does not exclude coexistence of other liver disease, but impact of coexisting MAFLD is unclear. We investigated prevalence and characteristics of MAFLD in patients with biopsy-proven autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), or toxic liver disease. Liver histopathology and clinical data from Helsinki University Hospital district (1.7 million inhabitants) between 2009 and 2019 were collected from patients with AIH, PBC, PSC, or toxic liver disease at the time of diagnosis. MAFLD was diagnosed as macrovesicular steatosis ≥5% together with obesity, type-2 diabetes, or signs of metabolic dysregulation. Of 648 patients included, steatosis was observed in 15.6% (n = 101), of which 94.1% (n = 95) was due to MAFLD. Prevalence of coexisting MAFLD in the four liver diseases varied between 12.4 and 18.2% (P = 0.483). Fibrosis was more severe in MAFLD among patients with toxic liver disease (P = 0.01). Histopathological characteristics otherwise showed similar distribution among MAFLD and non-FLD controls. Alcohol consumption was higher in MAFLD group among patients with AIH or PBC (P < 0.05 for both). In AIH, smoking was more common in patients with coexisting MAFLD (P = 0.034). Prevalence of coexisting MAFLD in other primary liver diseases is lower than reported in general population. Histopathology of MAFLD patients did not clearly differ from non-FLD ones. Alcohol and smoking were associated with MAFLD in AIH.


Subject(s)
Cholangitis, Sclerosing , Hepatitis, Autoimmune , Liver Cirrhosis, Biliary , Humans , Male , Female , Middle Aged , Hepatitis, Autoimmune/complications , Hepatitis, Autoimmune/epidemiology , Prevalence , Liver Cirrhosis, Biliary/epidemiology , Liver Cirrhosis, Biliary/complications , Cholangitis, Sclerosing/complications , Cholangitis, Sclerosing/epidemiology , Adult , Finland/epidemiology , Aged , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/epidemiology , Fatty Liver/epidemiology , Fatty Liver/pathology , Fatty Liver/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Obesity/complications , Obesity/epidemiology , Metabolic Syndrome/epidemiology , Metabolic Syndrome/complications , Biopsy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Retrospective Studies , Risk Factors
11.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38829196

ABSTRACT

BACKGROUND: There is a need for novel noninvasive markers for metabolic dysfunction-associated steatotic liver disease (MASLD) to stratify patients at high risk for liver-related events including liver cancer and decompensation. In the present study, we used proteomic analysis of proteins in extracellular vesicles (EVs) to identify new biomarkers that change with fibrosis progression and can predict the development of liver-related events. METHODS: We analyzed serum EVs from 50 patients with MASLD assessed for liver fibrosis by biopsy and identified proteins that altered with advanced fibrosis. A further evaluation was conducted on another cohort of 463 patients with MASLD with biopsy. RESULTS: Eight candidate proteins were identified by proteomic analysis of serum EVs. Among them, serum levels of Fibulin-3, Fibulin-1, and Ficolin 1 correlated with their EV levels. In addition, serum Fibulin-3 and serum Fibulin-1 levels changed significantly with advanced fibrosis. Using another cohort with biopsy, we found that the serum Fibulin-3 concentration was significantly greater in those with advanced fibrosis but that the serum Fibulin-1 concentration was not significantly different. Multivariate Cox proportional hazards analysis revealed that a higher Fibrosis-4 (FIB-4) index and higher serum Fibulin-3 concentration were independent risk factors for liver-related events. When the cutoff value for the serum Fibulin-3 concentration was 6.0 µg/mL according to the Youden index of AUROCs, patients with high serum Fibulin-3 significantly more frequently developed liver-related events than did other patients. Validation using another cohort of 226 patients with clinically diagnosed MASLD confirmed that high serum Fibulin-3 levels are associated with a greater frequency of liver-related events. CONCLUSIONS: Serum Fibulin-3 was identified as a biomarker for predicting liver-related events in patients with MASLD.


Subject(s)
Biomarkers , Calcium-Binding Proteins , Extracellular Matrix Proteins , Extracellular Vesicles , Proteomics , Humans , Male , Female , Middle Aged , Biomarkers/blood , Extracellular Matrix Proteins/blood , Extracellular Vesicles/metabolism , Calcium-Binding Proteins/blood , Liver Cirrhosis/blood , Fatty Liver/blood , Adult , Aged , Disease Progression
12.
Front Endocrinol (Lausanne) ; 15: 1411706, 2024.
Article in English | MEDLINE | ID: mdl-38846491

ABSTRACT

Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) constitutes the commonest cause of chronic liver disorder worldwide, whereby affecting around one third of the global population. This clinical condition may evolve into Metabolic Dysfunction-Associated Steatohepatitis (MASH), fibrosis, cirrhosis and hepatocellular carcinoma (HCC), in a predisposed subgroup of patients. The complex pathogenesis of MASLD is severely entangled with obesity, dyslipidemia and type 2 diabetes (T2D), so far so nutritional and lifestyle recommendations may be crucial in influencing the risk of HCC and modifying its prognosis. However, the causative association between HCC onset and the presence of metabolic comorbidities is not completely clarified. Therefore, the present review aimed to summarize the main literature findings that correlate the presence of inherited or acquired hyperlipidemia and metabolic risk factors with the increased predisposition towards liver cancer in MASLD patients. Here, we gathered the evidence underlining the relationship between circulating/hepatic lipids, cardiovascular events, metabolic comorbidities and hepatocarcinogenesis. In addition, we reported previous studies supporting the impact of triglyceride and/or cholesterol accumulation in generating aberrancies in the intracellular membranes of organelles, oxidative stress, ATP depletion and hepatocyte degeneration, influencing the risk of HCC and its response to therapeutic approaches. Finally, our pursuit was to emphasize the link between HCC and the presence of cardiometabolic abnormalities in our large cohort of histologically-characterized patients affected by MASLD (n=1538), of whom 86 had MASLD-HCC by including unpublished data.


Subject(s)
Carcinoma, Hepatocellular , Cardiometabolic Risk Factors , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/epidemiology , Liver Neoplasms/etiology , Fatty Liver/complications , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Risk Factors
13.
Eur J Sport Sci ; 24(6): 824-833, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38874978

ABSTRACT

We investigated the associations of low handgrip strength (HGS, i.e., a marker of muscular fitness) with liver fat content (LFC) and serum liver enzymes in a population-based setting. We used data from 2700 participants (51.7% women), aged 21-90 years, from two independent cohorts of the population-based Study of Health in Pomerania (SHIP-START-2 and SHIP-TREND-0). Cross-sectional, multivariable adjusted regression models were performed to examine the associations of HGS with LFC, measured by magnetic resonance imaging and serum liver enzymes. We found significant inverse associations of HGS with both LFC and serum liver enzymes. Specifically, a 10-kg lower HGS was associated with a 0.59% (95% confidence interval [CI]: 0.24-0.94; p = 0.001) higher LFC, a 0.051 µkatal/L (95% CI: 0.005-0.097; p = 0.031) higher gamma-glutamyltransferase (GGT) concentration and a 0.010 µkatal/L (95% CI: 0.001-0.020; p = 0.023) higher aspartate aminotransferase (AST) concentration. The adjusted odds-ratio for prevalent hepatic steatosis (defined by a MRI-PDFF ≥5.1%) per 10-kg lower HGS was 1.21 (95% CI: 1.04-1.40; p = 0.014). When considering only obese individuals, those with low HGS had a 1.58% (95% CI: 0.18-2.98; p = 0.027) higher mean LFC and higher chance of prevalent hepatic steatosis (adjusted OR 1.74, 95% CI: 1.15-2.62; p = 0.009) compared to individuals with high HGS. We found similar associations in individuals with overweight, but not in those with normal weight. Lower HGS was strongly associated with both higher LFC and higher serum GGT and AST concentrations. Future studies might clarify whether these findings reflect adverse effects of a sedentary lifestyle or aging on the liver.


Subject(s)
Aspartate Aminotransferases , Hand Strength , Liver , gamma-Glutamyltransferase , Humans , Middle Aged , Female , Male , Adult , Aged , Cross-Sectional Studies , Aspartate Aminotransferases/blood , Liver/enzymology , Aged, 80 and over , gamma-Glutamyltransferase/blood , Young Adult , Germany/epidemiology , Magnetic Resonance Imaging , Sedentary Behavior , Fatty Liver/blood , Alanine Transaminase/blood
14.
Environ Sci Technol ; 58(24): 10458-10469, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836430

ABSTRACT

Hepatic steatosis is the first step in a series of events that drives hepatic disease and has been considerably associated with exposure to fine particulate matter (PM2.5). Although the chemical constituents of particles matter in the negative health effects, the specific components of PM2.5 that trigger hepatic steatosis remain unclear. New strategies prioritizing the identification of the key components with the highest potential to cause adverse effects among the numerous components of PM2.5 are needed. Herein, we established a high-resolution mass spectrometry (MS) data set comprising the hydrophobic organic components corresponding to 67 PM2.5 samples in total from Taiyuan and Guangzhou, two representative cities in North and South China, respectively. The lipid accumulation bioeffect profiles of the above samples were also obtained. Considerable hepatocyte lipid accumulation was observed in most PM2.5 extracts. Subsequently, 40 of 695 components were initially screened through machine learning-assisted data filtering based on an integrated bioassay with MS data. Next, nine compounds were further selected as candidates contributing to hepatocellular steatosis based on absorption, distribution, metabolism, and excretion evaluation and molecular dockingin silico. Finally, seven components were confirmed in vitro. This study provided a multilevel screening strategy for key active components in PM2.5 and provided insight into the hydrophobic PM2.5 components that induce hepatocellular steatosis.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Particulate Matter , Fatty Liver/chemically induced , Humans , China , Air Pollutants
15.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38836615

ABSTRACT

About half of the world population carries at least one allele of the Ala92-DIO2, which slows down the activity of the type 2 deiodinase (D2), the enzyme that activates T4 to T3. Carrying the Ala92-DIO2 allele has been associated with increased body mass index and insulin resistance, but this has not been reproduced in all populations. To test if the genetic background affects the impact of this polymorphism, here we studied the genetically distant C57Bl/6J (B6) and FVB/N (FVB) mice carrying the Ala92-Dio2 allele as compared to control mice carrying the Thr92-Dio2 allele. Whereas B6-Ala92-Dio2 and B6-Thr92-Dio2 mice-fed chow or high-fat diet-behaved metabolically similar in studies using indirect calorimetry, glucose- and insulin tolerance tests, and measuring white adipose tissue (WAT) weight and liver steatosis, major differences were observed between FVB-Ala92-Dio2 and FVB-Thr92-Dio2 mice: carrying the Ala92-Dio2 allele (on a chow diet) resulted in hypercholesterolemia, smaller WAT pads, hepatomegaly, steatosis, and transcriptome changes in the interscapular brown adipose tissue (iBAT) typical of ER stress and apoptosis. Acclimatization at thermoneutrality (30 °C) eliminated most of the metabolic phenotype, indicating that impaired adaptive (BAT) thermogenesis can be involved. In conclusion, the metabolic impact of carrying the Ala92-Dio2 allele depends greatly on the genetic background of the mouse, varying from no phenotype in B6 mice to a major phenotype in FVB mice. These results will help the planning of future clinical trials studying the Thr92Ala-DIO2 polymorphism and may explain why some clinical studies performed in different populations across the globe have obtained inconsistent results.


Subject(s)
Iodide Peroxidase , Iodothyronine Deiodinase Type II , Mice, Inbred C57BL , Animals , Male , Iodide Peroxidase/genetics , Mice , Diet, High-Fat , Genetic Background , Adipose Tissue, White/metabolism , Adipose Tissue, Brown/metabolism , Polymorphism, Genetic , Insulin Resistance/genetics , Fatty Liver/genetics
16.
EBioMedicine ; 104: 105184, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838471

ABSTRACT

BACKGROUND: The increasing prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) incurs substantial morbidity, mortality and healthcare costs. Detection and clinical intervention at early stages of disease improves prognosis; however, we are currently limited by a lack of reliable diagnostic tests for population screening and monitoring responses to therapy. To address this unmet need, we investigated human invariant Natural Killer T cell (iNKT) activation by fat-loaded hepatocytes, leading to the discovery that circulating soluble CD46 (sCD46) levels accurately predict hepatic steatosis. METHODS: sCD46 in plasma was measured using a newly developed immuno-competition assay in two independent cohorts: Prospective living liver donors (n = 156; male = 66, female = 90) and patients with liver tumours (n = 91; male = 58, female = 33). sCD46 levels were statistically evaluated as a predictor of hepatic steatosis. FINDINGS: Interleukin-4-secreting (IL-4+) iNKT cells were over-represented amongst intrahepatic lymphocytes isolated from resected human liver samples. IL-4+ iNKT cells preferentially developed in cocultures with a fat-loaded, hepatocyte-like cell line, HepaRG. This was attributed to induction of matrix metalloproteases (MMP) in fat-loaded HepaRG cells and primary human liver organoids, which led to indiscriminate cleavage of immune receptors. Loss of cell-surface CD46 resulted in unrepressed differentiation of IL-4+ iNKT cells. sCD46 levels were elevated in patients with hepatic steatosis. Discriminatory cut-off values for plasma sCD46 were found that accurately classified patients according to histological steatosis grade. INTERPRETATION: sCD46 is a reliable clinical marker of hepatic steatosis, which can be conveniently and non-invasively measured in serum and plasma samples, raising the possibility of using sCD46 levels as a diagnostic method for detecting or grading hepatic steatosis. FUNDING: F.B. was supported by the Else Kröner Foundation (Award 2016_kolleg.14). G.G. was supported by the Bristol Myers Squibb Foundation for Immuno-Oncology (Award FA-19-009). N.S. was supported by a Wellcome Trust Fellowship (211113/A/18/Z). J.A.H. received funding from the European Union's Horizon 2020 research and innovation programme (Award 860003). J.M.W. received funding from the Else Kröner Foundation (Award 2015_A10).


Subject(s)
Biomarkers , Humans , Male , Biomarkers/blood , Female , Middle Aged , Natural Killer T-Cells/metabolism , Hepatocytes/metabolism , Fatty Liver/diagnosis , Fatty Liver/blood , Fatty Liver/metabolism , Adult , Aged
17.
Pharmacol Rev ; 76(4): 561-563, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876495

ABSTRACT

Steatotic liver disease (SLD) is a highly prevalent chronic liver disease with significant challenges for global health. The pathophysiology of SLD involves an interplay among genetic, endocrine, and metabolic factors. Successful management of SLD entails accurate diagnosis and disease monitoring through noninvasive methods such as advanced imaging techniques and biomarkers. Many emerging pharmacotherapies for SLD are now in the pipeline, which target different pathways like collagen turnover, fibrogenesis, inflammation, and metabolism. The recent approval of resmetirom for noncirrhotic metabolic dysfunction-associated steatohepatitis (MASH) has been a milestone in addressing the unmet medical need for an efficacious SLD treatment. Finally, the potential of personalized medicine approaches and interdisciplinary cooperation in improving patient outcomes and reducing disease burden should be strongly pursued. SIGNIFICANCE STATEMENT: The healthcare burden due to steatotic liver disease (SLD) is enormous. This perspective sheds light on the recent advances in understanding the pathophysiology and diagnosis of SLD as well as promising drug development approaches.


Subject(s)
Fatty Liver , Humans , Animals , Fatty Liver/therapy , Fatty Liver/drug therapy , Fatty Liver/metabolism , Drug Development , Precision Medicine
18.
Trials ; 25(1): 374, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858768

ABSTRACT

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a predominant chronic liver condition globally and is strongly associated with obesity, diabetes mellitus, and dyslipidemia. Essential phospholipids (EPL) are recommended as supportive treatment for managing liver conditions, including MASLD or metabolic dysfunction-associated steatohepatitis, cirrhosis, and viral hepatitis. While efficacy of EPL as an adjunctive therapy in MASLD treatment has been established earlier, certain aspects of its usage such as the impact of standard-of-care parameters, effect of EPL on quality of life (QoL) and change in symptoms evaluation in patients with MASLD remain unexplored. The proposed trial aims to assess the efficacy and safety of EPL and the subsequent QoL of patients with MASLD associated with type 2 diabetes mellitus (T2DM) and/or hyperlipidemia and/or obesity. METHODS: This is a multicenter, multinational, double-blind, randomized, two-arm, placebo-controlled, parallel-group, phase IV clinical trial. The trial is being conducted in approximately 190 patients who are randomized on a 1:1 basis either to the EPL arm (Essentiale® 1800 mg/day orally + standard of care) or placebo arm (placebo + standard of care). The primary outcome is to assess the efficacy of EPL on hepatic steatosis, as measured by transient elastography, from baseline to 6 months. The secondary outcomes include change in QoL parameters, as measured by the Chronic Liver Disease Questionnaire-metabolic dysfunction-associated steatotic liver disease/ metabolic dysfunction-associated steatohepatitis and change in symptom evaluation (using the Global Overall Symptom scale) from baseline to 6 months for symptoms, including asthenia, feeling depressed, abdominal pain/discomfort, or fatigue. DISCUSSION: The current protocol design will allow to comprehensively explore the efficacy of EPL added to the standard of care on hepatic steatosis and QoL and its safety in patients with MASLD associated with T2DM and/or hyperlipidemia and/or obesity by assessing various outcome measures. TRIAL REGISTRATION: European Union Clinical Trials Register, EudraCT, 2021-006069-39. Registered on March 13, 2022.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Liver , Hyperlipidemias , Multicenter Studies as Topic , Obesity , Quality of Life , Randomized Controlled Trials as Topic , Humans , Diabetes Mellitus, Type 2/complications , Double-Blind Method , Obesity/complications , Hyperlipidemias/complications , Treatment Outcome , Phospholipids , Clinical Trials, Phase IV as Topic , Male , Adult , Female , Middle Aged
19.
Anal Chim Acta ; 1312: 342747, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834275

ABSTRACT

BACKGROUND: Lipid droplets (LDs) polarity is intricately linked to diverse biological processes and diseases. The visualization of LDs-polarity is of vital importance but challenging due to the lack of high-specificity, high-sensitivity and large-Stokes shift probes for real-time tracking LDs-polarity in biological systems. RESULTS: Four D-π-A based fluorescent probes (TPA-TCF1-TPA-TCF4) have been developed by combining tricyanofuran (an electron acceptor, A) and triphenylamine (an electron donor, D) derivatives with different terminal groups. Among them, TPA-TCF1 and TPA-TCF4 exhibit excellent polar sensitivity, large Stokes shift (≥182 nm in H2O), and efficient LDs targeting ability. In particular, TPA-TCF4 is capable of monitoring the change of LDs-polarity during ferroptosis, inflammation, apoptosis of cancer cell, and fatty liver. SIGNIFICANCE: All these features render TPA-TCF4 a versatile tool for pharmacodynamic evaluation of anti-cancer drugs, in-depth understanding of the biological effect of LDs on ferroptosis, and medical diagnosis of LDs-polarity related diseases.


Subject(s)
Fatty Liver , Ferroptosis , Fluorescent Dyes , Inflammation , Lipid Droplets , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Humans , Ferroptosis/drug effects , Fatty Liver/drug therapy , Fatty Liver/metabolism , Fluorescent Dyes/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Structure
20.
FASEB J ; 38(11): e23717, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38837270

ABSTRACT

Selenoprotein I (Selenoi) is highly expressed in liver and plays a key role in lipid metabolism as a phosphatidylethanolamine (PE) synthase. However, the precise function of Selenoi in the liver remains elusive. In the study, we generated hepatocyte-specific Selenoi conditional knockout (cKO) mice on a high-fat diet to identify the physiological function of Selenoi. The cKO group exhibited a significant increase in body weight, with a 15.6% and 13.7% increase in fat accumulation in white adipose tissue (WAT) and the liver, respectively. Downregulation of the lipolysis-related protein (p-Hsl) and upregulation of the adipogenesis-related protein (Fasn) were observed in the liver of cKO mice. The cKO group also showed decreased oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure (p < .05). Moreover, various metabolites of the steroid hormone synthesis pathway were affected in the liver of cKO mice. A potential cascade of Selenoi-phosphatidylethanolamine-steroid hormone synthesis might serve as a core mechanism that links hepatocyte-specific Selenoi cKO to biochemical and molecular reactions. In conclusion, we revealed that Selenoi inhibits body fat accumulation and hepatic steatosis and elevates energy consumption; this protein could also be considered a therapeutic target for such related diseases.


Subject(s)
Fatty Liver , Hepatocytes , Mice, Knockout , Obesity , Animals , Mice , Obesity/metabolism , Obesity/genetics , Obesity/etiology , Hepatocytes/metabolism , Fatty Liver/metabolism , Fatty Liver/etiology , Fatty Liver/genetics , Fatty Liver/pathology , Selenoproteins/metabolism , Selenoproteins/genetics , Diet, High-Fat/adverse effects , Male , Liver/metabolism , Energy Metabolism , Lipid Metabolism , Mice, Inbred C57BL , Adipose Tissue, White/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...