Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.162
Filter
1.
Bratisl Lek Listy ; 125(6): 387-391, 2024.
Article in English | MEDLINE | ID: mdl-38757597

ABSTRACT

INTRODUCTION: Avascular necrosis of the femoral head (AVNFH) is an osteonecrosis type caused by ischaemic osteocyte loss of femoral head, and its exact pathomechanism is still unknown. Neutrophil, lymphocyte, monocyte, platelet levels in complete blood count and ratios between these levels have been used by almost all medical disciplines as accesible and reliable biomarkers of immune response. Aim of this study is to identify the effects of neutrophil/lymphocyte (NL), monocyte/lymphocyte (ML), platelet/lymphocyte (PLT/L) ratios on prognosis and stage in patients with avascular necrosis of the femoral head (AVNFH). MATERIALS AND METHODS: A total of 106 (30 female; 76 male) patients aged 18 and over diagnosed with avascular necrosis of femoral head between 2012-2022 years were retrospectively evaluated. Study was planned after a total of 106 (30 female, 76 male) healthy patients with consent to participate who were demographically equal to the study group were included in the control group. Patients in the study group were divided into 3 groups as Stage I, II and III according to the Ficat-Arlet classification. RESULTS: In terms of neutrophil counts; neutrophil values of study and control groups were 4.94±1.89 and 4,21±1,17; respectively. There was statistically significant difference between counts (p<0.05). In terms of neutrophil/lymphocyte ratio, NL ratio was statistically significantly higher in study group (2.11±0.85) than control group (1.75±0.44). Cut-off value of NL ratio was 2.13 according to the ROC analysis (sensitivity 47.17% (95% CI (37.4-57.1)); specificity=84.91% 95% GA (76.6-91.1)). Sensitivity and specificity of cut-off value was statistically significant. There was no difference between groups created according to Ficat-Arlet in terms of hemogram parameters. DISCUSSION: NL may indicate AVNFH; however, other parameters are considered as inadequate for identifying an independent marker in AVNFH due to ineffective immune response. Future studies with larger samples which allow standard and multi-dimensional analysis are needed (Tab. 4, Fig. 5, Ref. 20).


Subject(s)
Femur Head Necrosis , Lymphocytes , Monocytes , Neutrophils , Humans , Female , Male , Femur Head Necrosis/blood , Femur Head Necrosis/pathology , Neutrophils/pathology , Prognosis , Adult , Retrospective Studies , Monocytes/pathology , Lymphocytes/pathology , Middle Aged , Blood Platelets/pathology , Platelet Count , Leukocyte Count , Lymphocyte Count , Biomarkers/blood
2.
Cells ; 13(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38727312

ABSTRACT

We investigated the impact of mesenchymal stem cell (MSC) therapy on treating bilateral human hip osteonecrosis, analyzing 908 cases. This study assesses factors such as tissue source and cell count, comparing core decompression with various cell therapies. This research emphasizes bone repair according to pre-treatment conditions and the specificities of cell therapy in osteonecrosis repair, indicating a potential for improved bone repair strategies in hips without femoral head collapse. This study utilized a single-center retrospective analysis to investigate the efficacy of cellular approaches in the bone repair of osteonecrosis. It examined the impact on bone repair of tissue source (autologous bone marrow concentrate, allogeneic expanded, autologous expanded), cell quantity (from none in core decompression alone to millions in cell therapy), and osteonecrosis stage and volume. Excluding hips with femoral head collapse, it focused on patients who had bilateral hip osteonecrosis, both pre-operative and post-operative MRIs, and a follow-up of over five years. The analysis divided these patients into seven groups based on match control treatment variations in bilateral hip osteonecrosis, primarily investigating the outcomes between core decompression, washing effect, and different tissue sources of MSCs. Younger patients (<30 years) demonstrated significantly better repair volumes, particularly in stage II lesions, than older counterparts. Additionally, bone repair volume increased with the number of implanted MSCs up to 1,000,000, beyond which no additional benefits were observed. No significant difference was observed in repair outcomes between different sources of MSCs (BMAC, allogenic, or expanded cells). The study also highlighted that a 'washing effect' was beneficial, particularly for larger-volume osteonecrosis when combined with core decompression. Partial bone repair was the more frequent event observed, while total bone repair of osteonecrosis was rare. The volume and stage of osteonecrosis, alongside the number of injected cells, significantly affected treatment outcomes. In summary, this study provides comprehensive insights into the effectiveness and variables influencing the use of mesenchymal stem cells in treating human hip osteonecrosis. It emphasizes the potential of cell therapy while acknowledging the complexity and variability of results based on factors such as age, cell count, and disease stage.


Subject(s)
Femur Head Necrosis , Mesenchymal Stem Cell Transplantation , Humans , Mesenchymal Stem Cell Transplantation/methods , Male , Female , Adult , Middle Aged , Femur Head Necrosis/therapy , Femur Head Necrosis/pathology , Retrospective Studies , Mesenchymal Stem Cells/cytology , Cell Count , Young Adult , Aged , Treatment Outcome , Adolescent , Magnetic Resonance Imaging
3.
J Cell Mol Med ; 28(10): e18385, 2024 May.
Article in English | MEDLINE | ID: mdl-38801405

ABSTRACT

Autophagy may play an important role in the occurrence and development of glucocorticoid-induced osteonecrosis of the femoral head (GC-ONFH). Lithium is a classical autophagy regulator, and lithium can also activate osteogenic pathways, making it a highly promising therapeutic agent for GC-ONFH. We aimed to evaluate the potential therapeutic effect of lithium on GC-ONFH. For in vitro experiments, primary osteoblasts of rats were used for investigating the underlying mechanism of lithium's protective effect on GC-induced autophagy levels and osteogenic activity dysfunction. For in vivo experiments, a rat model of GC-ONFH was used for evaluating the therapeutic effect of oral lithium on GC-ONFH and underlying mechanism. Findings demonstrated that GC over-activated the autophagy of osteoblasts and reduced their osteogenic activity. Lithium reduced the over-activated autophagy of GC-treated osteoblasts through PI3K/AKT/mTOR signalling pathway and increased their osteogenic activity. Oral lithium reduced the osteonecrosis rates in a rat model of GC-ONFH, and restrained the increased expression of autophagy related proteins in bone tissues through PI3K/AKT/mTOR signalling pathway. In conclusion, lithium can restrain over-activated autophagy by activating PI3K/AKT/mTOR signalling pathway and up-regulate the expression of genes for bone formation both in GC induced osteoblasts and in a rat model of GC-ONFH. Lithium may be a promising therapeutic agent for GC-ONFH. However, the role of autophagy in the pathogenesis of GC-ONFH remains controversial. Studies are still needed to further explore the role of autophagy in the pathogenesis of GC-ONFH, and the efficacy of lithium in the treatment of GC-ONFH and its underlying mechanisms.


Subject(s)
Autophagy , Femur Head Necrosis , Glucocorticoids , Lithium , Osteoblasts , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Autophagy/drug effects , Glucocorticoids/pharmacology , Glucocorticoids/adverse effects , Rats , Femur Head Necrosis/chemically induced , Femur Head Necrosis/pathology , Femur Head Necrosis/drug therapy , Femur Head Necrosis/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Lithium/pharmacology , Osteoblasts/drug effects , Osteoblasts/metabolism , Male , Osteogenesis/drug effects , Rats, Sprague-Dawley , Proto-Oncogene Proteins c-akt/metabolism , Disease Models, Animal , Phosphatidylinositol 3-Kinases/metabolism , Femur Head/pathology , Femur Head/drug effects , Femur Head/metabolism , Osteonecrosis/chemically induced , Osteonecrosis/pathology , Osteonecrosis/drug therapy , Osteonecrosis/metabolism , Osteonecrosis/prevention & control
4.
Aging (Albany NY) ; 16(9): 7928-7945, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38696318

ABSTRACT

Recently, there has been growing interest in using cell therapy through core decompression (CD) to treat osteonecrosis of the femoral head (ONFH). Our study aimed to investigate the effectiveness and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in treating steroid-induced ONFH. We constructed a steroid-induced ONFH rabbit model as well as dexamethasone (Dex)-treated bone microvascular endothelial cells (BMECs) model of human femoral head. We injected hUCMSCs into the rabbit femoral head via CD. The effects of hUCMSCs on steroid-induced ONFH rabbit model and Dex-treated BMECs were evaluated via micro-CT, microangiography, histology, immunohistochemistry, wound healing, tube formation, and western blotting assay. Furthermore, we conducted single-cell RNA sequencing (scRNA-seq) to examine the characteristics of endothelial cells, the activation of signaling pathways, and inter-cellular communication in ONFH. Our data reveal that hUCMSCs improved the femoral head microstructure and bone repair and promoted angiogenesis in the steroid-induced ONFH rabbit model. Importantly, hUCMSCs improved the migration ability and angioplasty of Dex-treated BMECs by secreting COL6A2 to activate FAK/PI3K/AKT signaling pathway via integrin α1ß1.


Subject(s)
Dexamethasone , Endothelial Cells , Femur Head Necrosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Rabbits , Femur Head Necrosis/chemically induced , Femur Head Necrosis/therapy , Femur Head Necrosis/pathology , Humans , Mesenchymal Stem Cells/metabolism , Endothelial Cells/metabolism , Mesenchymal Stem Cell Transplantation/methods , Dexamethasone/pharmacology , Umbilical Cord/cytology , Femur Head/pathology , Disease Models, Animal , Neovascularization, Physiologic , Signal Transduction
5.
Int J Biol Macromol ; 270(Pt 1): 132127, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718991

ABSTRACT

Femoral head necrosis is a debilitating disorder that typically caused by impaired blood supply to the hip joint. In this study, a novel injectable hydrogel based on Oxidized Carboxymethyl Cellulose (OCMC)-Carboxymethyl Chitosan (CMCS) polymers containing an angiogenesis stimulator peptide (QK) with a non-toxic crosslinking interaction (Schiff based reaction) was synthesized to enhance angiogenesis following femoral head necrosis in an animal model. The physicochemical features of fabricated injectable hydrogel were analyzed by FTIR, swelling and degradation rate, rheometry, and peptide release. Also, the safety and efficacy were evaluated following an in vitro hydrogel injection study and an avascular necrosis (AVN) animal model. According to the results, the hydrogel exhibited an appropriate swelling ratio and water uptake (>90 %, 24 h) as well as a suitable degradation rate over 21 days accompanied by a continuous peptide release. Also, data showed that hydrogels containing QK peptide boosted the proliferation, differentiation, angiogenesis, and osteogenic potential of both Bone Marrow mesenchymal Stem Cells (BM-MSCs) and human umbilical vein endothelial cells (HUVECs) (****p < 0.0001 and ***p < 0.001, respectively). Furthermore, molecular and histological evaluations significantly demonstrated the overexpression of Runx2, Osteocalcin, Collagen I, VEGF and CD34 genes (**p < 0.01 and ***p < 0.001, respectively), and also femoral head necrosis was effectively prohibited, and more blood vessels were detected in defect area by OCMC-CMCS hydrogel containing QK peptide (bone trabeculae >9000, ***p < 0.001). In conclusion, the findings demonstrate that OCMC-CMCS-QK injectable hydrogel could be considered as an impressive therapeutic construct for femoral head AVN healing.


Subject(s)
Carboxymethylcellulose Sodium , Chitosan , Femur Head Necrosis , Human Umbilical Vein Endothelial Cells , Hydrogels , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Carboxymethylcellulose Sodium/chemistry , Carboxymethylcellulose Sodium/pharmacology , Animals , Humans , Femur Head Necrosis/drug therapy , Femur Head Necrosis/pathology , Human Umbilical Vein Endothelial Cells/drug effects , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Osteogenesis/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Cell Proliferation/drug effects , Wound Healing/drug effects , Injections , Neovascularization, Physiologic/drug effects , Cell Differentiation/drug effects , Male , Rabbits , Disease Models, Animal
6.
Expert Opin Investig Drugs ; 33(4): 405-414, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431280

ABSTRACT

INTRODUCTION: Osteonecrosis of the femoral head (ONFH) is a refractory disease requiring joint replacement in young patients. Regenerative therapies have been developed. AREAS COVERED: This study surveyed clinical trials on regenerative medicine for ONFH. We extracted clinical trials on non-traumatic ONFH from the websites of five publicly available major registries (EuropeanUnion Clinical Trials Register ([EU-CTR],ClinicalTrials.gov, Chinese ClinicalTrial Registry [ChiCTR], University Hospital Medical InformationNetwork - Clinical Trial Registry [UMIN-CTR] and Australian New Zealand Clinical Trials Registry [ANZCTR]).The trials were classified into six categories based on purpose: surgical treatment, non-drug conservative treatment, conservative drug treatment, therapeutic strategy, diagnosis and pathogenesis, and regenerative therapy.) We extracted 169 clinical trials on ONFH. Of these, 37 were on regenerative medicine, including 29 on cell therapy. Surgical treatment was the most common treatment, followed by regenerative therapy.There were 9 clinical trials registered in the EU-CTR, with 5 on regenerative medicine; 79 trials registered on ClinicalTrials.gov, with 24 on regenerativemedicine; 54 trials registered in the ChiCTR, with 6 on regenerative medicine. EXPERT OPINION: The focus of the joint-preserving surgery has shifted to regenerative therapy based on using cell therapy in early-stage ONFH. The global standardisation of regenerative therapy is still ongoing.


Subject(s)
Femur Head Necrosis , Humans , Australia , Cell- and Tissue-Based Therapy , Femur Head/pathology , Femur Head/surgery , Femur Head Necrosis/therapy , Femur Head Necrosis/diagnosis , Femur Head Necrosis/pathology , Regenerative Medicine , Clinical Trials as Topic
7.
Bone ; 183: 117074, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513307

ABSTRACT

BACKGROUND: Steroid-induced osteonecrosis of the femoral head (SONFH) is a prevalent and incapacitating condition that affects the hip joint. Unfortunately, early diagnostic and treatment measures are limited. METHODS: Our study employed Tandem Mass Tag (TMT) labeling mass spectrometry (MS)-based quantitative proteome to compare the proteins of femoral head tissues in patients with SONFH with those of patients who sustained femoral neck fracture (FNF). We investigated the level and effects of glucose transporter member 1 (GLUT1) in SONFH patients and MC3T3-E1 cells and examined the function and molecular mechanism of GLUT1 in the context of SONFH using in vivo and in vitro approaches. RESULTS: The SONFH group exhibited significant changes in protein expression levels compared to the fracture group. Specifically, we observed the up-regulation of 86 proteins and the down-regulation of 138 proteins in the SONFH group. Among the differentially expressed proteins, GLUT1 was down-regulated and associated with glucose metabolic processes in the SONFH group. Further analysis using Parallel Reaction Monitoring (PRM), WB, and PCR confirmed that the protein was significantly down-regulated in both femoral head tissue samples from SONFH patients and dexamethasone-treated MC3T3-E1 cells. Moreover, overexpression of GLUT1 effectively reduced glucocorticoid (GC)-induced apoptosis and the suppression of osteoblast proliferation and osteogenic differentiation in MC3T3-E1 cells, as well as GC-induced femoral head destruction in GC-induced ONFH rat models. Additionally, our research demonstrated that GC down-regulated GLUT1 transcription via glucocorticoid receptors in MC3T3-E1 cells. CONCLUSIONS: GLUT1 was down-regulated in patients with SONFH; furthermore, down-regulated GLUT1 promoted apoptosis and inhibited osteoblast ossification in dexamethasone-induced MC3T3-E1 cells and contributed to GC-induced femoral head destruction in a SONFH rat model. Glucocorticoids inhibited the transcriptional activity of GLUT1, leading to a reduction in the amount and activity of GLUT1 in the cells and ultimately promoting apoptosis and inhibiting osteoblast ossification via the GC/GR/GLUT1 axis in SONFH.


Subject(s)
Femur Head Necrosis , Glucocorticoids , Osteonecrosis , Animals , Humans , Rats , Dexamethasone , Femur Head/metabolism , Femur Head/pathology , Femur Head Necrosis/chemically induced , Femur Head Necrosis/metabolism , Femur Head Necrosis/pathology , Glucocorticoids/adverse effects , Glucose Transporter Type 1/metabolism , Osteogenesis , Osteonecrosis/chemically induced , Proteomics , Steroids/adverse effects
8.
J Cell Physiol ; 239(5): e31224, 2024 May.
Article in English | MEDLINE | ID: mdl-38481029

ABSTRACT

With the prevalence of coronavirus disease 2019, the administration of glucocorticoids (GCs) has become more widespread. Treatment with high-dose GCs leads to a variety of problems, of which steroid-induced osteonecrosis of the femoral head (SONFH) is the most concerning. Since hypoxia-inducible factor 1α (HIF-1α) is a key factor in cartilage development and homeostasis, it may play an important role in the development of SONFH. In this study, SONFH models were established using methylprednisolone (MPS) in mouse and its proliferating chondrocytes to investigate the role of HIF-1α in cartilage differentiation, extracellular matrix (ECM) homeostasis, apoptosis and glycolysis in SONFH mice. The results showed that MPS successfully induced SONFH in vivo and vitro, and MPS-treated cartilage and chondrocytes demonstrated disturbed ECM homeostasis, significantly increased chondrocyte apoptosis rate and glycolysis level. However, compared with normal mice, not only the expression of genes related to collagens and glycolysis, but also chondrocyte apoptosis did not demonstrate significant differences in mice co-treated with MPS and HIF-1α inhibitor. And the effects observed in HIF-1α activator-treated chondrocytes were similar to those induced by MPS. And HIF-1α degraded collagens in cartilage by upregulating its downstream target genes matrix metalloproteinases. The results of activator/inhibitor of endoplasmic reticulum stress (ERS) pathway revealed that the high apoptosis rate induced by MPS was related to the ERS pathway, which was also affected by HIF-1α. Furthermore, HIF-1α affected glucose metabolism in cartilage by increasing the expression of glycolysis-related genes. In conclusion, HIF-1α plays a vital role in the pathogenesis of SONFH by regulating ECM homeostasis, chondrocyte apoptosis, and glycolysis.


Subject(s)
Apoptosis , Cartilage , Chondrocytes , Glucocorticoids , Glycolysis , Homeostasis , Hypoxia-Inducible Factor 1, alpha Subunit , Methylprednisolone , Animals , Male , Mice , Apoptosis/drug effects , Cartilage/metabolism , Cartilage/pathology , Cartilage/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Disease Models, Animal , Extracellular Matrix/metabolism , Femur Head/pathology , Femur Head/metabolism , Femur Head Necrosis/chemically induced , Femur Head Necrosis/pathology , Femur Head Necrosis/metabolism , Femur Head Necrosis/genetics , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , Glycolysis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Methylprednisolone/adverse effects , Methylprednisolone/pharmacology , Mice, Inbred C57BL
9.
Bone ; 181: 117030, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38309414

ABSTRACT

Osteonecrosis of the femoral head (ONFH) is a debilitating condition characterized by subchondral bone necrosis, which frequently culminates in joint destruction. Although total hip arthroplasty is conventionally practiced to remediate ONFH, for patients under the age of 60, the outcomes can be suboptimal. Chronic inflammation, particularly that mediated by interleukin-6 (IL-6), has been conjectured to be a potential mechanism underlying the etiology of ONFH. This study aimed at exploring the interplay between IL-6, the canonical Wnt signaling pathway, and ONFH to provide insights for potential therapeutic interventions. Human ONFH specimens depicted an elevation in ß-catenin expression in the transitional layer, while IL-6 levels were pronounced in the same region. Subsequently, mouse models of ischemic osteonecrosis were treated with an anti-sclerostin antibody to assess its effects on bone metabolism and cellular processes. Histological analysis revealed that the administration of anti-sclerostin antibodies effectuated early recovery from bone necrosis, reduced empty lacunae, and suppressed IL-6 expression. The treatment evidently initiated the activation of the Wnt/ß-catenin signaling pathway, presenting a potential mechanism associated with IL-6-mediated inflammation. Furthermore, the antibody upregulated osteoblast formation, downregulated osteoclast formation, and increased bone volume. Micro-CT imaging demonstrated increased bone volume, prevented epiphyseal deformity, and improved compression strength. Therefore, this study yields significant findings, indicating the potency of anti-sclerostin antibodies in effectively modulating the Wnt/ß-catenin pathway, associating with IL-6 expression, and preventing post-ONFH bone collapse. Additionally, this preclinical investigation in mouse models offers an avenue for prospective research on potential therapeutic interventions against human ONFH.


Subject(s)
Femur Head Necrosis , Osteonecrosis , Mice , Animals , Humans , Interleukin-6 , beta Catenin/metabolism , Femur Head Necrosis/pathology , Prospective Studies , Osteonecrosis/prevention & control , Osteonecrosis/metabolism , Inflammation/pathology , Femur Head/pathology
10.
Sci Rep ; 14(1): 4140, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38374383

ABSTRACT

The present study aimed to compare clinical and radiological differences of ONFH patients who were treated with denosumab, and a control group. A total of 178 patients (272 hips) with symptomatic, nontraumatic ONFH were divided into a denosumab group (98 patients, 146 hips) and a control group (80 patients, 126 hips). Patients in the denosumab group received a 60 mg subcutaneous dose of denosumab every 6 months. For the clinical assessments, Harris hip scores (HHS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) were evaluated. Plain radiographs and MRI were performed before and a minimum of 1 year after administration of denosumab, which were evaluated for radiological results including femoral head collapse (≥ 2 mm) and volume change of necrotic lesion. Femoral head collapse occurred in 36 hips (24.7%) in the denosumab group, and 48 hips (38.1%) in the control group, which was statistically significant (P = 0.012). Twenty-three hips (15.8%) in the denosumab group and 29 hips (23%) in the control group required THA, which showed no significant difference (P = 0.086). At the final follow-up, 71.9% of hips in the denosumab group had a good or excellent HHS compared with 48.9% in the control group, showing a significant difference (P = 0.012). The denosumab group showed a significantly higher rate of necrotic lesion volume reductions compared with the control group (P < 0.001). Denosumab can significantly reduce the volume of necrotic lesions and prevent femoral head collapse in patients with ARCO stage I or II ONFH.


Subject(s)
Denosumab , Femur Head Necrosis , Humans , Denosumab/therapeutic use , Retrospective Studies , Femur Head/diagnostic imaging , Femur Head/pathology , Femur Head Necrosis/diagnostic imaging , Femur Head Necrosis/drug therapy , Femur Head Necrosis/pathology , Hip/pathology , Treatment Outcome
11.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(1): 119-124, 2024 Jan 15.
Article in Chinese | MEDLINE | ID: mdl-38225851

ABSTRACT

Objective: To summarize the research progress on the role of macrophage-mediated osteoimmune in osteonecrosis of the femoral head (ONFH) and its mechanisms. Methods: Recent studies on the role and mechanism of macrophage-mediated osteoimmune in ONFH at home and abroad were extensively reviewed. The classification and function of macrophages were summarized, the osteoimmune regulation of macrophages on chronic inflammation in ONFH was summarized, and the pathophysiological mechanism of osteonecrosis was expounded from the perspective of osteoimmune, which provided new ideas for the treatment of ONFH. Results: Macrophages are important immune cells involved in inflammatory response, which can differentiate into classically activated type (M1) and alternatively activated type (M2), and play specific functions to participate in and regulate the physiological and pathological processes of the body. Studies have shown that bone immune imbalance mediated by macrophages can cause local chronic inflammation and lead to the occurrence and development of ONFH. Therefore, regulating macrophage polarization is a potential ONFH treatment strategy. In chronic inflammatory microenvironment, inhibiting macrophage polarization to M1 can promote local inflammatory dissipation and effectively delay the progression of ONFH; regulating macrophage polarization to M2 can build a local osteoimmune microenvironment conducive to bone repair, which is helpful to necrotic tissue regeneration and repair to a certain extent. Conclusion: At present, it has been confirmed that macrophage-mediated chronic inflammatory immune microenvironment is an important mechanism for the occurrence and development of ONFH. It is necessary to study the subtypes of immune cells in ONFH, the interaction between immune cells and macrophages, and the interaction between various immune cells and macrophages, which is beneficial to the development of potential therapeutic methods for ONFH.


Subject(s)
Femur Head Necrosis , Osteonecrosis , Humans , Femur Head/pathology , Osteonecrosis/therapy , Macrophages/pathology , Inflammation , Femur Head Necrosis/pathology
12.
Medicine (Baltimore) ; 103(2): e36281, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38215113

ABSTRACT

To investigate the imaging performance of radiography, digital tomographic fusion (DTS), computed tomography (CT), and magnetic resonance imaging (MRI) in the diagnosis of early avascular necrosis of the femoral head (ANFH). A total of 220 patients with ANFH who visited our hospital from January 2020 to January 2022 were included in the study. X-ray, DTS, CT, and MRI examinations of both hips were performed for all patients. The trabecular structure, bone density changes, femoral head morphology, and joint space changes were observed using the aforementioned imaging modalities. The staging was performed according to the Association Research Circulation Osseous (ARCO) criteria. The diagnostic detection rate of each imaging modality, and the sensitivity, specificity, positive predictive value, and negative predictive value of each examination for diagnosing early ANFH were calculated and compared. Patients were diagnosed with stage I (n = 65), stage II (n = 85), stage III (n = 32), and stage IV (n = 38) ANFH. For MRI, the detection rate (97.7%), sensitivity (94.7%), specificity (88.6%), positive predictive value (95.9%), and negative predictive value (92.5%), for diagnosing early ANFH, were significantly higher than those of other imaging methods (P < .05). MRI is the most accurate and sensitive imaging method for diagnosing early ANFH and has important clinical applications.


Subject(s)
Femur Head Necrosis , Humans , Femur Head Necrosis/diagnostic imaging , Femur Head Necrosis/pathology , X-Rays , Femur Head/diagnostic imaging , Femur Head/pathology , Magnetic Resonance Imaging , Tomography, X-Ray Computed
13.
J Orthop Sci ; 29(2): 552-558, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36797126

ABSTRACT

BACKGROUND: The location of the lateral boundary of the necrotic lesion to the weight-bearing portion of the acetabulum (Type classification) is an important factor for collapse in osteonecrosis of the femoral head (ONFH). Recent studies also reported the significance of the location of the anterior boundary of the necrotic lesion on the occurrence of collapse. We aimed to assess the effects of the location of both anterior and lateral boundaries of the necrotic lesion on collapse progression in ONFH. METHODS: We recruited 55 hips with post-collapse ONFH from 48 consecutive patients, who were conservatively followed for more than one year. Using a plain lateral radiograph (Sugioka's lateral view), the location of the anterior boundary of the necrotic lesion to the weight-bearing portion of the acetabulum was classified as follows: Anterior-area I (two hips) occupying the medial one-third or less; Anterior-area II (17 hips) occupying the medial two-thirds or less; and Anterior-area III (36 hips) occupying greater than the medial two-thirds. The amount of femoral head collapse was measured by biplane radiographs at the onset of hip pain and each follow-up period, and Kaplan-Meier survival curves with collapse progression (≥1 mm) as the endpoint were produced. The probability of collapse progression was also assessed by the combination of Anterior-area and Type classifications. RESULTS: Collapse progression was observed in 38 of the 55 hips (69.0%). The survival rate of hips with Anterior-area III/Type C2 was significantly lower. Among hips with Type B/C1, collapse progression occurred more frequently in hips with Anterior-area III (21 of 24 hips) than in hips with Anterior-area I/II (3 of 17 hips, P < 0.0001). CONCLUSIONS: Adding the location of the anterior boundary of the necrotic lesion to Type classification was useful to predict collapse progression especially in hips with Type B/C1.


Subject(s)
Femur Head Necrosis , Femur Head , Humans , Femur Head/diagnostic imaging , Femur Head/pathology , Retrospective Studies , Femur Head Necrosis/diagnostic imaging , Femur Head Necrosis/etiology , Femur Head Necrosis/pathology , Hip/pathology , Hip Joint/pathology
14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009118

ABSTRACT

OBJECTIVE@#To summarize the research progress on the role of macrophage-mediated osteoimmune in osteonecrosis of the femoral head (ONFH) and its mechanisms.@*METHODS@#Recent studies on the role and mechanism of macrophage-mediated osteoimmune in ONFH at home and abroad were extensively reviewed. The classification and function of macrophages were summarized, the osteoimmune regulation of macrophages on chronic inflammation in ONFH was summarized, and the pathophysiological mechanism of osteonecrosis was expounded from the perspective of osteoimmune, which provided new ideas for the treatment of ONFH.@*RESULTS@#Macrophages are important immune cells involved in inflammatory response, which can differentiate into classically activated type (M1) and alternatively activated type (M2), and play specific functions to participate in and regulate the physiological and pathological processes of the body. Studies have shown that bone immune imbalance mediated by macrophages can cause local chronic inflammation and lead to the occurrence and development of ONFH. Therefore, regulating macrophage polarization is a potential ONFH treatment strategy. In chronic inflammatory microenvironment, inhibiting macrophage polarization to M1 can promote local inflammatory dissipation and effectively delay the progression of ONFH; regulating macrophage polarization to M2 can build a local osteoimmune microenvironment conducive to bone repair, which is helpful to necrotic tissue regeneration and repair to a certain extent.@*CONCLUSION@#At present, it has been confirmed that macrophage-mediated chronic inflammatory immune microenvironment is an important mechanism for the occurrence and development of ONFH. It is necessary to study the subtypes of immune cells in ONFH, the interaction between immune cells and macrophages, and the interaction between various immune cells and macrophages, which is beneficial to the development of potential therapeutic methods for ONFH.


Subject(s)
Humans , Femur Head/pathology , Osteonecrosis/therapy , Macrophages/pathology , Inflammation , Femur Head Necrosis/pathology
15.
Jt Dis Relat Surg ; 35(1): 72-84, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38108168

ABSTRACT

OBJECTIVES: This study aimed to determine whether vitamin C (VC) and vitamin E (VE) can effectively protect the femoral head and reduce the risk of developing osteonecrosis in rats that have been treated with steroids. MATERIALS AND METHODS: The study was conducted on 30 young adult male Sprague-Dawley rats (mean weight: 356±18 g; range, 330 to 375 g), which were randomly assigned to one of five groups. The control group received saline solution, while the other groups were given lipopolysaccharide/methylprednisolone (LPS/MPS) to induce osteonecrosis. Three groups in which osteonecrosis was induced were also intraperitoneally administered either VC, VE, or both once a day for four weeks. Intracardiac blood samples were taken at the end of the fourth week for biochemical examination, and the rats were then sacrificed under general anesthesia. After sacrification, right femurs were removed for histopathological, immunohistochemical, and radiologic examinations. RESULTS: The results showed that the mean trabecular number increased significantly in the VC+VE group. There was a substantial decrease observed in the mean trabecular separation within the LPS/MPS group compared to the control group, although trabecular separation decreased in all three vitamin groups compared to the LPS/MPS group. The surface area/bone volume was significantly increased in the VC+VE group compared to the LPS/MPS group. Histological, immunohistochemical, and radiological examinations showed that the administration of VC and VE significantly reduced oxidative stress, inflammation, and microvascular dysfunction in rats with steroid-induced femoral head osteonecrosis. CONCLUSION: This study suggests that VC, VE, and particularly VC+VE have a protective effect on the femoral head in rats with steroid-induced femoral head osteonecrosis. These findings may lead to new treatment options for patients.


Subject(s)
Ascorbic Acid , Femur Head Necrosis , Humans , Rats , Male , Animals , Ascorbic Acid/adverse effects , Femur Head/pathology , Lipopolysaccharides , Rats, Sprague-Dawley , Femur Head Necrosis/chemically induced , Femur Head Necrosis/prevention & control , Femur Head Necrosis/pathology , Methylprednisolone , Steroids , Vitamins/adverse effects
16.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6128-6141, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114220

ABSTRACT

The approach combining disease, syndrome, and symptom was employed to investigate the characteristic changes of blood stasis syndrome in a rat model of steroid-induced osteonecrosis of the femoral head(SONFH) during disease onset and progression. Seventy-two male SD rats were randomized into a healthy control group and a model group. The rat model of SONFH was established by injection of lipopolysaccharide(LPS) in the tail vein at a dose of 20 µg·kg~(-1)·d~(-1) on days 1 and 2 and gluteal intramuscular injection of methylprednisolone sodium succinate(MPS) at a dose of 40 mg·kg~(-1)·d~(-1) on days 3-5, while the healthy control group received an equal volume of saline. The mechanical pain test, tongue color RGB technique, gait detection, open field test, and inclined plane test were employed to assess hip pain, tongue color, limping, joint activity, and lower limb strength, respectively, at different time points within 21 weeks of modeling. At weeks 2, 4, 8, 12, 16, and 21 after modeling, histopathological changes of the femoral head were observed by hematoxylin-eosin(HE) staining and micro-CT scanning; four coagulation items were measured by rotational thromboelastometry; and enzyme-linked immunosorbent assay(ELISA) was employed to determine the levels of six blood lipids, vascular endothelial growth factor(VEGF), endothelin-1(ET-1), nitric oxide(NO), tissue-type plasminogen activator(t-PA), plasminogen activator inhibitor factor-1(PAI-1), bone gla protein(BGP), alkaline phosphatase(ALP), receptor activator of nuclear factor-κB(RANKL), osteoprotegerin(OPG), and tartrate-resistant acid phosphatase 5b(TRAP5b) in the serum, as well as the levels of 6-keto-prostaglandin 1α(6-keto-PGF1α) and thromboxane B2(TXB2) in the plasma. The results demonstrated that the pathological alterations in the SONFH rats were severer over time. The bone trabecular area ratio, adipocyte number, empty lacuna rate, bone mineral density(BMD), bone volume/tissue volume(BV/TV), trabecular thickness(Tb.Th), trabecular number(Tb.N), bone surface area/bone volume(BS/BV), and trabecular separation(Tb.Sp) all significantly increased or decreased over the modeling time after week 4. Compared with the healthy control group, the mechanical pain threshold, gait swing speed, stride, standing time, and walking cycle of SONFH rats changed significantly within 21 weeks after modeling, with the greatest difference observed 12 weeks after modeling. The time spent in the central zone, rearing score, and maximum tilt angle in the open field test of SONFH rats also changed significantly over the modeling time. Compared with the healthy control group, the R, G, and B values of the tongue color of the model rats decreased significantly, with the greatest difference observed 11 weeks after modeling. The levels of total cholesterol(TC), total triglycerides(TG), low-density lipoprotein-cholesterol(LDL-C), and apoprotein B(ApoB) in the SONFH rats changed significantly 4 and 8 weeks after modeling. The levels of VEGF, ET-1, NO, t-PA, PAI-1, 6-keto-PGF1α, TXB2, four coagulation items, and TXB2/6-keto-PGF1α ratio in the serum of SONFH rats changed significantly 4-16 weeks after modeling, with the greatest differences observed 12 weeks after modeling. The levels of BGP, TRAP5b, RANKL, OPG, and RANKL/OPG ratio in the serum of SONFH rats changed significantly 8-21 weeks after modeling. During the entire onset and progression of SONFH in rats, the blood stasis syndrome characteristics such as hyperalgesia, tongue color darkening, gait abnormalities, platelet, vascular, and coagulation dysfunctions were observed, which gradually worsened and then gradually alleviated in the disease course(2-21 weeks), with the most notable differences occurred around 12 weeks after modeling.


Subject(s)
Femur Head Necrosis , Femur Head , Rats , Male , Animals , Femur Head/diagnostic imaging , Femur Head/pathology , Plasminogen Activator Inhibitor 1/adverse effects , Vascular Endothelial Growth Factor A , Femur Head Necrosis/chemically induced , Femur Head Necrosis/diagnostic imaging , Femur Head Necrosis/pathology , Rats, Sprague-Dawley , Steroids , Pain , Cholesterol
17.
Cells ; 12(18)2023 09 14.
Article in English | MEDLINE | ID: mdl-37759498

ABSTRACT

Avascular necrosis of the femoral head (ANFH) is a painful disorder characterized by the cessation of blood supply to the femoral head, leading to its death and subsequent joint collapse. Influenced by several risk factors, including corticosteroid use, excessive alcohol intake, hypercholesterolemia, smoking and some inflammatory disorders, along with cancer, its clinical consequences are thrombus formation due to underlying inflammation and endothelial dysfunction, which collaborates with coagulopathy and impaired angiogenesis. Nonetheless, angiogenesis resolves the obstructed free flow of the blood by providing alternative routes. Clinical manifestations of early stage of ANFH mimic cysts or lesions in subchondral bone, vasculitis and transient osteoporosis of the hip, rendering it difficult to diagnose, complex to understand and complicated to cure. To date, the treatment methods for ANFH are controversial as no foolproof curative strategy is available, and these depend upon different severity levels of the ANFH. From an in-depth understanding of the pathological determinants of ANFH, it is clear that impaired angiogenesis, coagulopathy and endothelial dysfunction contribute significantly. The present review has set two aims, firstly to examine the role and relevance of this molecular triad (impaired angiogenesis, coagulopathy and endothelial dysfunction) in ANFH pathology and secondly to propose some putative therapeutic strategies, delineating the fact that, for the better management of ANFH, a combined strategy to curtail this molecular triangle must be composed rather than focusing on individual contributions.


Subject(s)
Femur Head Necrosis , Thrombosis , Vasculitis , Humans , Femur Head Necrosis/etiology , Femur Head Necrosis/pathology , Femur Head/pathology , Thrombosis/complications , Risk Factors , Vasculitis/complications
18.
Environ Res ; 238(Pt 1): 117116, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37709244

ABSTRACT

BACKGROUND: Steroid-induced Avascular Necrosis of the Femoral Head (SANFH) is a condition characterized by the necrosis of the femoral head caused by long-term or high-dose hormone usage. Studies have shown that the PI3K/AKT pathway plays a crucial regulatory role in the development of SANFH. The aim of this study is to determine how external environmental factors induce changes in endogenous hormone levels, how these changes lead to steroid-induced femoral head necrosis, and the interrelationship between the changes in PIK3R5 promoter methylation levels and the regulation of the associated signaling pathways. METHODS: Femoral head samples underwent molecular sequencing analysis. Candidate genes were screened by differential gene analysis and functional enrichment analysis.Methylation level of candidate gene PIK3R5 was verified by methylation-specific PCR(MS-PCR). SANFH model was constructed in New Zealand white rabbits, and the model results were verified by magnetic resonance imaging (MRI) and haematoxylin-eosin (HE) staining.The expression of PIK3R5, PI3K and AKT in rabbit models and human specimens was verified by real-time fluorescence quantitative PCR(RT-qPCR) and Western Blot(WB), respectively. RESULTS: Human femoral head sequencing results indicate distinct differences in the methylation level and mRNA expression of PIK3R5 in SANFH. MS-PCR results showed the methylation level of SANFH patients was significantly higher than that of the control group (P < 0.01). The RT-qPCR results showed that PIK3R5 and PI3K expression levels in the SANFH group were lower than those in the control group (P < 0.05), and the WB experiment results were consistent with the RT-qPCR results. The MRI and HE staining results showed that the rabbit model of SANFH was successfully constructed, and the results of RT-qPCR and WB were consistent with the results of human tissues. CONCLUSION: During the occurrence and development of SANFH, PIK3R5 gene regulates the PI3K/AKT pathway through methylation modification, promotes the oxidative stress response of cells, and accelerates the disease process.


Subject(s)
Femur Head Necrosis , Humans , Animals , Rabbits , Femur Head Necrosis/chemically induced , Femur Head Necrosis/genetics , Femur Head Necrosis/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Methylation , Femur Head/metabolism , Femur Head/pathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Steroids/toxicity , Steroids/metabolism , Hormones/metabolism
19.
J Orthop Surg Res ; 18(1): 564, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537614

ABSTRACT

BACKGROUND: Osteonecrosis of the femoral head (ONFH) is a prevalent orthopedic condition characterized by the disruption of blood supply to the femoral head, leading to ischemia of internal tissues, subchondral bone fractures, necrosis, and eventual collapse of the weight-bearing portion of the femoral head. This condition results in severe functional impairment, pain, and even disability of the hip joint. Existing animal models of ONFH have limitations in replicating the natural disease progression accurately. Thus, there is a critical need to develop a novel animal model capable of better simulating localized pressure on the human femoral head to facilitate ONFH-related research. METHODS: In this study, we present a novel approach for modeling ONFH, which involves integrating stress factors into the modeling process through the utilization of 3D printing technology and principles of biomechanics. A total of 36 animals were randomly assigned to six groups, where they received either the novel modeling technique or the traditional hormone induction method. Subsequently, an 8-week treatment period was implemented, followed by conducting micro-CT scans and histological evaluations to assess tissue outcomes. RESULTS: The study evaluated the cytotoxicity of the material used in the new model, and it was observed that the material did not exhibit any cytotoxic effects on cells. Additionally, the novel model successfully replicated the pathological features of ONFH, including femoral head collapse, along with a substantial presence of empty bone lacunae, cartilage defects, and subchondral bone fractures in the subchondral bone region. CONCLUSION: In conclusion, our study provides evidence that the new model shows the ability to simulate the progression of the disease, making it a valuable tool for research in this field and can contribute to the development of better treatment strategies for this debilitating condition. It holds great promise for advancing our understanding of the pathogenesis of ONFH and the potential therapeutic interventions for this challenging clinical problem.


Subject(s)
Femur Head Necrosis , Fractures, Bone , Osteonecrosis , Animals , Femur Head , Femur Head Necrosis/pathology , Fractures, Bone/pathology , Printing, Three-Dimensional , X-Ray Microtomography
20.
Toxicol Appl Pharmacol ; 475: 116649, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37536651

ABSTRACT

Steroid-induced avascular necrosis of femoral head (SANFH) is a common disorder worldwide with high disability. Overdose of glucocorticoid (GC) is the most common non-traumatic cause of SANFH. Up until now, there are limited therapeutic strategies for curing SANFH, and the mechanisms underlying SANFH progression remain unclear. Nevertheless, Osteogenic dysfunction is considered to be one of the crucial pathobiological mechanisms in the development of SANFH, which involves mouse bone marrow mesenchymal stem cells (BMSCs) apoptosis and osteogenic differentiation disorder. Ursolic acid (UA), an important component of the Chinese medicine formula Yougui Yin, has a wide range of pharmacological properties such as anti-tumor, anti-inflammatory and bone remodeling. Due to the positive effect of Yougui Yin on bone remodeling, the purpose of this study was to investigate the effects of UA on dexamethasone (DEX)-induced SANFH in vitro and vivo. In vitro, we demonstrated that UA can promote mouse BMSCs proliferation and resist DEX-induced apoptosis by CCK8, Western blotting, TUNEL and so on. In addition, vitro experiments such as ALP and Alizarin red staining assay showed that UA had a beneficial effect on the osteogenic differentiation of mouse BMSCs. In vivo, the results of H&E staining, immunohistochemistry staining, Elisa and micro-CT analysis showed that UA had a bone repair-promoting effect in SANFH model. Moreover, the results of Western blot and TUNEL experiments showed that UA could delay the disease progression of SANFH in mice by inhibiting apoptosis. Overall, our study suggests that UA is a potential compound for the treatment of SANFH.


Subject(s)
Femur Head Necrosis , Mice , Animals , Femur Head Necrosis/chemically induced , Femur Head Necrosis/drug therapy , Femur Head Necrosis/pathology , Osteogenesis , Cell Differentiation , Apoptosis , Steroids , Ursolic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...