Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Mol Cell Biochem ; 473(1-2): 247-262, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32661772

ABSTRACT

Reverse cholesterol transport (RCT) and transintestinal cholesterol efflux (TICE) are two important pathways for body cholesterol elimination. We studied these pathways in an animal model of diabetes and obesity (ob/ob) where HDL function is compromised as a result of hyperglycemia, low-grade inflammation and oxidative stress. Co-treatment of ob/ob mice with PPAR-α (fenofibrate) and LXR (T0901317) agonists increased fecal cholesterol by 12-fold; PPAR-α and LXR agonists individually showed 2.6- and 4.0-fold fecal cholesterol excretion, respectively. We investigated the mechanism of synergistic efficacy of PPAR-α and LXR agonists in fecal cholesterol excretion. LXR agonist and the combination of PPAR-α and LXR agonists had greater HDL-C elevation. Ex vivo cholesterol efflux showed correlation with the fecal cholesterol excretion but was not sufficient to explain 12-fold increases in the fecal cholesterol in the co-treated mice. Therefore, we examined TICE to explain the 12-fold increases in the fecal cholesterol. A strong positive correlation of fecal cholesterol with ATP binding cassette transporter G5 (ABCG5) and G8 and a negative correlation with NPC1L1 was observed. ABCG5, G8 and NPC1L1 are involved in intestinal cholesterol absorption. The extent of influence of PPAR-α and LXR agonists on RCT and TICE was distinctly different. PPAR-α agonist increased fecal cholesterol primarily by influencing TICE, while LXR agonist influenced fecal cholesterol excretion via both RCT and TICE mechanisms. Synergistic efficacy on fecal cholesterol excretion following co-treatment with PPAR-α and LXR agonists occurred through a combination of RCT, TICE, and the key enzyme in bile synthesis, cholesterol 7-α hydroxylase (cyp7a1). These results suggest that cholesterol efflux, biliary cholesterol excretion, and TICE collectively contributed to the 12-fold increases in the fecal cholesterol excretion in ob/ob mice co-treated with PPAR-α and LXR agonists.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism , Cholesterol/metabolism , Feces , Fenofibrate/pharmacology , Hydrocarbons, Fluorinated/pharmacology , Lipoproteins/metabolism , Liver X Receptors , Membrane Transport Proteins/metabolism , PPAR alpha , Sulfonamides/pharmacology , Animals , Drug Synergism , Fenofibrate/agonists , Hydrocarbons, Fluorinated/agonists , Liver X Receptors/agonists , Liver X Receptors/metabolism , Male , Mice , Mice, Obese , PPAR alpha/agonists , PPAR alpha/metabolism , Sulfonamides/agonists
2.
Article in English | MEDLINE | ID: mdl-31669201

ABSTRACT

The present study was conducted to evaluate the efficacy of fenofibrate and pioglitazone in a mouse model of amyloidogenesis induced by amyloidß (ßA) peptide. Mice were injected intracerebroventricularly with ßA1-40 (400 pmol/mouse) once, followed by treatment with fenofibrate (300 mg/kg), pioglitazone (30 mg/kg),or both. After 21 days of daily treatment, memory impairment and cognitive function were evaluated by Morris water maze (MWM), Y-maze and object recognition tests. On the 22nd day, mice were sacrificed, and their hippocampi were dissected to determine the levels of α- and ß-secretase, peroxisome proliferator-activated receptor (PPARα and ß), Wnt and ß-catenin. Significant memory impairment and cognitive dysfunction were observed in the mouse model group. This finding was associated with a significant increase in α- and ß-secretase levels and a significant decrease in Wnt, ß-catenin, and PPARα and ß levels. Neuronal damage was also evident after histopathological examination. Treatment with fenofibrate, pioglitazone and their combination resulted in a significant improvement in the behavioural and neurochemical changes induced by ßA injection. The present findings indicate that the combined administration of fenofibrate and pioglitazone was more effective than monotherapy in ameliorating the behavioural, neurochemical and histopathological changes in amyloidogenesis model mice and provide a promising therapeutic approach in the management of Alzheimer's disease complicated by diabetes and hypercholesterolemia.


Subject(s)
Alzheimer Disease/prevention & control , Amyloid Precursor Protein Secretases/metabolism , Fenofibrate/agonists , Neuroprotective Agents/agonists , PPAR alpha/agonists , PPAR alpha/metabolism , PPAR gamma/agonists , Pioglitazone/agonists , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Peptides/pharmacology , Animals , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/prevention & control , Hippocampus/metabolism , Infusions, Intraventricular , Male , Memory Disorders/chemically induced , Memory Disorders/prevention & control , Mice , PPAR gamma/metabolism , Peptide Fragments/administration & dosage , Peptide Fragments/pharmacology , Wnt Signaling Pathway/drug effects
3.
Rio de Janeiro; s.n; 2010. 138 p. ilus, tab.
Thesis in Portuguese | LILACS | ID: lil-601469

ABSTRACT

Este trabalho teve o objetivo de estudar o efeito de medicamentos com diferentes ações agonista PPAR (rosiglitazona, fenofibrato e bezafibrato) sobre o perfil lipídico, glicídico e alterações na massa corporal e morfologia do tecido adiposo e pancreático em modelo de diabetes e sobrepeso induzido por dieta. Camundongos C57BL/6 (2 meses de idade) foram alimentados com dieta padrão (SC, n=10) ou dieta hiperlipídica rica em sacarose (HFHS, n=40) por 6 semanas. Logo após, os animais HFHS foram subdividos em: HFHS não tratado e HFHS tratado com rosiglitazona (HFHS-Ro), fenofibrato (HFHS-Fe) ou bezafibrato (HFHS-BZ) (5 semanas). Os camundongos alimentados com dieta HFHS apresentaram maior glicemia e insulina de jejum (+33% e +138%, respectivamente), intolerância à glicose, resistência à insulina, aumento da massa corporal (MC) (+20%) e adiposidade, hipertrofia de adipócitos e redução da imunocoloração para adiponectina no tecido adiposo. No pâncreas houve aumento da massa (+28%), acúmulo de gordura (+700%), hipertrofia da ilhota (+38%) e redução da imunocoloração para GLUT-2 (-60%). A rosiglitazona diminuiu a glicemia e insulina de jejum, porém induziu o ganho de MC e hipertrofia cardíaca. O fenofibrato estabilizou a MC, enquanto o bezafibrato levou a perda de MC. Apenas o bezafibrato impediu a hipertrofia da ilhota. A imunocoloração para GLUT-2 foi aumentada por todos os medicamentos, e não houve alterações na imunocoloração para o PPARalfa. Sinais morfológicos de pancreatite foram vistos no grupo HFHS-Fe, apesar dos níveis normais de amilase e lipase séricos. A rosiglitazona exacerbou a infiltração intrapancreática de gordura (+75% vs. HFHS), e o bezafibrato aumentou a imunocoloração para o PPARbeta/delta nas ilhotas pancreáticas. Em conclusão, o bezafibrato apresentou um efeito mais amplo sobre as alterações metabólicas, morfológicas e biométricas decorrentes da dieta HFHS, sugerindo que a inibição das três isoformas do PPAR seria melhor do que a inibição...


This work aimed to evaluate the effect of peroxisome proliferator-activated receptor (PPAR) agonists (rosiglitazone, fenofibrate and bezafibrate) on lipid and glucose metabolism, body mass, and adipose and pancreatic tissue morphology in a model of diet-induced type 2 diabetes and overweight in mice. Two-month-old male C57BL/6 mice were fed a standard chow (SC, n=10) or a high-fat high-sucrose chow (HFHS, n=40) for 6 weeks, and then HFHS-fed mice were subdivided by treatment: untreated HFHS and HFHS treated with rosiglitazone (HFHS-Ro), fenofibrate (HFHS-Fe), or bezafibrate (HFHS-Bz) (5 weeks on medication). HFHS-fed mice have altered fasting glucose (+33%) and insulin (+138%), GI, IR, increased body mass (+20%) and fat pad weight, adipocyte hypertrophy, and decreased adiponectin immunostain. They also presented increased pancreatic (+28%) mass, intrapancreatic fat (+700%), islet hypertrophy (+38%), and decreased GLUT-2 immunostain (-60%). Rosiglitazone reduced fasting glucose and insulin but induced weight gain and heart hypertrophy. Fenofibrate impaired body mass gain, while bezafibrate induced weight loss. Only bezafibrate impaired islet hypertrophy. GLUT-2 immunostain was improved by all treatments, and there were no alterations in PPAR-alfa stain. There were morphological signs of pancreatitis in fenofibrate-treated mice, although there was no alteration in serum amylase and lipase. Rosiglitazone exacerbated pancreatic fat infiltration (+75% vs. HFHS group), and bezafibrate increased PPAR-beta expression in pancreatic islets. In conclusion, bezafibrate showed a wider range of action on metabolic, morphologic, and biometric alterations due to HFHS intake, suggesting that inhibiting the three PPAR isoforms is better than inhititing each isoform alone. Rosiglitazone exacerbated body mass gain, pancreatic fat infiltration and induced heart hyperthophy as well, thus, precaution has to be taken in prescribing rosiglitazone to obese patients.


Subject(s)
Animals , Mice , Adiponectin , Bezafibrate/agonists , Dietary Fats , Fenofibrate/agonists , Lipid Metabolism , PPAR alpha/metabolism , PPAR-beta/metabolism , PPAR gamma/metabolism , Sucrose , Thiazolidinediones/agonists , /chemically induced , Cardiovascular Diseases/metabolism , Models, Animal , Pancreas/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...