Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.225
Filter
1.
ACS Infect Dis ; 10(5): 1793-1807, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38648355

ABSTRACT

Chagas disease, caused by Trypanosoma cruzi, stands as the primary cause of dilated cardiomyopathy in the Americas. Macrophages play a crucial role in the heart's response to infection. Given their functional and phenotypic adaptability, manipulating specific macrophage subsets could be vital in aiding essential cardiovascular functions including tissue repair and defense against infection. PPARα are ligand-dependent transcription factors involved in lipid metabolism and inflammation regulation. However, the role of fenofibrate, a PPARα ligand, in the activation profile of cardiac macrophages as well as its effect on the early inflammatory and fibrotic response in the heart remains unexplored. The present study demonstrates that fenofibrate significantly reduces not only the serum activity of tissue damage biomarker enzymes (LDH and GOT) but also the circulating proportions of pro-inflammatory monocytes (CD11b+ LY6Chigh). Furthermore, both CD11b+ Ly6Clow F4/80high macrophages (MΦ) and recently differentiated CD11b+ Ly6Chigh F4/80high monocyte-derived macrophages (MdMΦ) shift toward a resolving phenotype (CD206high) in the hearts of fenofibrate-treated mice. This shift correlates with a reduction in fibrosis, inflammation, and restoration of ventricular function in the early stages of Chagas disease. These findings encourage the repositioning of fenofibrate as a potential ancillary immunotherapy adjunct to antiparasitic drugs, addressing inflammation to mitigate Chagas disease symptoms.


Subject(s)
Chagas Cardiomyopathy , Fenofibrate , Macrophages , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Animals , Mice , Chagas Cardiomyopathy/drug therapy , Macrophages/drug effects , Myocardium/pathology , Male , Trypanosoma cruzi/drug effects , Mice, Inbred C57BL , Disease Models, Animal , Myocarditis/drug therapy , Myocarditis/parasitology
2.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474282

ABSTRACT

We investigated the age-related effects of the lipid-lowering drug fenofibrate on renal stress-associated effectors. Young and old rats were fed standard chow with 0.1% or 0.5% fenofibrate. The kidney cortex tissue structure showed typical aging-related changes. In old rats, 0.1% fenofibrate reduced the thickening of basement membranes, but 0.5% fenofibrate exacerbated interstitial fibrosis. The PCR array for stress and toxicity-related targets showed that 0.1% fenofibrate mildly downregulated, whereas 0.5% upregulated multiple genes. In young rats, 0.1% fenofibrate increased some antioxidant genes' expression and decreased the immunoreactivity of oxidative stress marker 4-HNE. However, the activation of cellular antioxidant defenses was impaired in old rats. Fenofibrate modulated the expression of factors involved in hypoxia and osmotic stress signaling similarly in both age groups. Inflammatory response genes were variably modulated in the young rats, whereas old animals presented elevated expression of proinflammatory genes and TNFα immunoreactivity after 0.5% fenofibrate. In old rats, 0.1% fenofibrate more prominently than in young animals induced phospho-AMPK and PGC1α levels, and upregulated fatty acid oxidation genes. Our results show divergent effects of fenofibrate in young and old rat kidneys. The activation of multiple stress-associated effectors by high-dose fenofibrate in the aged kidney warrants caution when applying fenofibrate therapy to the elderly.


Subject(s)
Fenofibrate , Humans , Rats , Animals , Aged , Fenofibrate/pharmacology , Antioxidants/pharmacology , Kidney/metabolism , Hypolipidemic Agents/pharmacology , Gene Expression
3.
Clin Cancer Res ; 30(9): 1916-1933, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38363297

ABSTRACT

PURPOSE: Head and neck cancer (HNC) improvements are stagnant, even with advances in immunotherapy. Our previous clinical trial data show that altered fatty acid (FA) metabolism correlates with outcome. We hypothesized that pharmacologic and dietary modulation of FA catabolism will affect therapeutic efficacy. EXPERIMENTAL DESIGN: We performed in vivo and in vitro experiments using PPARα agonism with fenofibrate (FF) or high oleic acid diets (OAD) with radiotherapy, generating metabolomic, proteomic, stable isotope tracing, extracellular flux analysis, and flow-cytometric data to investigate these alterations. RESULTS: FF improved antitumor efficacy of high dose per fraction radiotherapy in HNC murine models, whereas the OAD reversed this effect. FF-treated mice on the control diet had evidence of increased FA catabolism. Stable isotope tracing showed less glycolytic utilization by ex vivo CD8+ T cells. Improved efficacy correlated with intratumoral alterations in eicosanoid metabolism and downregulated mTOR and CD36. CONCLUSIONS: Metabolic intervention with increased FA catabolism improves the efficacy of HNC therapy and enhances antitumoral immune response.


Subject(s)
Head and Neck Neoplasms , Oleic Acid , PPAR alpha , Animals , PPAR alpha/agonists , Mice , Oleic Acid/pharmacology , Humans , Head and Neck Neoplasms/immunology , Fenofibrate/pharmacology , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Fatty Acids/metabolism , Disease Models, Animal
4.
Eur J Med Res ; 29(1): 113, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336772

ABSTRACT

Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the central nervous system (CNS). The underlying pathophysiology of MS is the destruction of myelin sheath by immune cells. The formation of myelin plaques, inflammation, and injury of neuronal myelin sheath characterizes its neuropathology. MS plaques are multiple focal regions of demyelination disseminated in the brain's white matter, spinal cords, deep grey matter, and cerebral cortex. Fenofibrate is a peroxisome proliferative activated receptor alpha (PPAR-α) that attenuates the inflammatory reactions in MS. Fenofibrate inhibits differentiation of Th17 by inhibiting the expression of pro-inflammatory signaling. According to these findings, this review intended to illuminate the mechanistic immunoinflammatory role of fenofibrate in mitigating MS neuropathology. In conclusion, fenofibrate can attenuate MS neuropathology by modulating different pathways, including oxidative stress, autophagy, mitochondrial dysfunction, inflammatory-signaling pathways, and neuroinflammation.


Subject(s)
Fenofibrate , Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Central Nervous System , Neurons/pathology , Inflammation/pathology
5.
Phytomedicine ; 126: 155450, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368794

ABSTRACT

BACKGROUND: Shen Shuai Ⅱ Recipe (SSR) is clinically used to treat chronic kidney diseases (CKDs) with remarkable efficacy and safety. In earlier research, we found the anti-inflammatory, antioxidant, and mitochondrial protective properties of SSR in hypoxic kidney injury model, which is closely related to its renal protection. Further work is needed to understand the underlying molecular mechanisms. PURPOSE: Further investigation of the mechanisms of action of SSR against renal interstitial fibrosis (RIF) building on previous research leads. METHODS: Rats receiving CKD model surgery were given with Fenofibrate or SSR once a day for eight weeks. In vitro, the NRK-52E cells were treated with SSR in the presence or absence of 10 µM Sc75741, 0.5 µM PMA, or 1 µM fenofibrate under 1% O2. The effects of SSR on NF-κB/NLRP3 inflammatory cascade, secretion of pro-inflammatory cytokines, fatty acid oxidation (FAO), and renal tubular injury were determined by immunoblotting, luminex liquid suspension chip assay, transmission electron microscopy, and Oil red O staining. Next, we delivered PPARα-interfering sequences to kidney tissue and NRK-52E cells by adeno-associated virus (AAV) injection and siRNA transfection methods. Finally, we evaluated the effect of renal tubular cells on fibroblast activation by co-culture method. RESULTS: SSR attenuated the release of IL-18, VEGF, and MCP1 cytokines, inhibited the activation of NF-κB/NLRP3 cascade, increased the PPARα, CPT-1α, CPT-2, ACADL, and MCAD protein expression, and improved the lipid accumulation. Further studies have demonstrated that one of the ways in which SSR suppresses the inflammatory response to protect renal tubular cells is through the restoration of PPARα-mediated FAO. In addition, by means of co-culture ways, the results demonstrated that SSR attenuated secretion of inflammatory mediators in NRK-52E cells by PPARα/NF-κB/NLRP3 pathway, thereby inhibiting renal fibroblast activation. CONCLUSION: SSR inhibits RIF by suppressing inflammatory response of hypoxia-exposed RTECs through PPARα-mediated FAO.


Subject(s)
Fenofibrate , Renal Insufficiency, Chronic , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , PPAR alpha/metabolism , NF-kappa B/metabolism , Fenofibrate/metabolism , Fenofibrate/pharmacology , Kidney , Inflammation/metabolism , Cytokines/metabolism , Fatty Acids/metabolism , Fibrosis , Fibroblasts/metabolism
6.
BMC Pharmacol Toxicol ; 25(1): 7, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38173037

ABSTRACT

BACKGROUND: To comprehend the influences of fenofibrate on hepatic lipid accumulation and mitochondrial function-related signaling pathways in mice with non-alcoholic fatty liver disease (NAFLD) secondary to high-fat diets together with free fatty acids-influenced HepG2 cells model. MATERIALS AND METHODS: A random allocation of male 6-week C57BL/6J mice into three groups was done, including controls, model (14 weeks of a high-fat diet), and fenofibrate [similar to the model one with administered 0.04 g/(kg.d) fenofibrate by gavage at 11 weeks for 4 weeks] groups, which contained 10 mice each. This study verified NAFLD pathogenesis via mitochondrial functions in hepatic pathological abnormalities, liver index and weight, body weight, serum biochemical indexes, oxidative stress indicators, mitochondrial function indexes, and related signaling pathways. The effect of fenofibrate intervention was investigated in NAFLD model mice. In vitro, four groups based on HepG2 cells were generated, including controls, the FFA model (1.5 mmol/L FFA incubation for 24 h), LV-PGC-1α intervention (similar to the FFA model one after PPARGC1A lentivirus transfection), and LV control intervention (similar to the FFA model one after negative control lentivirus transfection) groups. The study investigated the mechanism of PGC-1α related to lipid decomposition and mitochondrial biosynthesis by Oil red O staining, colorimetry and western blot. RESULTS: In vivo experiments, a high-fat diet achieved remarkable changes regarding liver weight, liver index, serum biochemical indicators, oxidative stress indicators, liver pathological changes, mitochondrial function indicators, and body weight of the NAFLD model mice while fenofibrate improved the objective indicators. In the HepG2 cells model, the lipid accumulation increased significantly within the FFA model group, together with aggravated hepatocytic damage and boosted oxidative stress levels. Moreover, FFA induced excessive mitosis into fragmented in mitochondrial morphology, ATP content in cells decreased, mtDNA replication fold decreased, the expression of lipid decomposition protein PPARα reduced, mitochondrial biosynthesis related protein PGC-1α, NRF-1 and TFAM decreased. PGC-1α overexpression inhibited lipid deposition by improving mitochondrial biosynthesis and lipid decomposition. CONCLUSION: Fenofibrate up-regulated PPARα/PGC-1α signaling pathway, promoted mitochondrial ß-oxidation, reduced oxidative stress damage and lipid accumulation of liver. PGC-1α overexpression enhanced mitochondrial biosynthesis and ATP production, and reduced HepG2 intracellular accumulation of lipids and oxidative stress.


Subject(s)
Fenofibrate , Non-alcoholic Fatty Liver Disease , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , PPAR alpha/genetics , PPAR alpha/metabolism , Mice, Inbred C57BL , Liver , Mitochondria/metabolism , Signal Transduction , Body Weight , Lipids , Adenosine Triphosphate/metabolism , Diet, High-Fat/adverse effects
7.
Toxicol Appl Pharmacol ; 483: 116818, 2024 02.
Article in English | MEDLINE | ID: mdl-38215994

ABSTRACT

The recurrence and metastasis in breast cancer within 3 years after the chemotherapies or surgery leads to poor prognosis with approximately 1-year overall survival. Large-scale scanning research studies have shown that taking lipid-lowering drugs may assist to reduce the risk of death from many cancers, since cholesterol in lipid rafts are essential for maintain integral membrane structure and functional signaling regulation. In this study, we examined five lipid-lowering drugs: swertiamarin, gemfibrozil, clofibrate, bezafibrate, and fenofibrate in triple-negative breast cancer, which is the most migration-prone subtype. Using human and murine triple-negative breast cancer cell lines (Hs 578 t and 4 T1), we found that fenofibrate displays the highest potential in inhibiting the colony formation, wound healing, and transwell migration. We further discovered that fenofibrate reduces the activity of pro-metastatic enzymes, matrix metalloproteinases (MMP)-9 and MMP-2. In addition, epithelial markers including E-cadherin and Zonula occludens-1 are increased, whereas mesenchymal markers including Snail, Twist and α-smooth muscle actin are attenuated. Furthermore, we found that fenofibrate downregulates ubiquitin-dependent GDF-15 degradation, which leads to enhanced GDF-15 expression that inhibits cell migration. Besides, nuclear translocation of FOXO1 is also upregulated by fenofibrate, which may responsible for GDF-15 expression. In summary, fenofibrate with anti-cancer ability hinders TNBC from migration and invasion, and may be beneficial to repurposing use of fenofibrate.


Subject(s)
Fenofibrate , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Triple Negative Breast Neoplasms/metabolism , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Growth Differentiation Factor 15/pharmacology , Growth Differentiation Factor 15/therapeutic use , Cell Line, Tumor , Cell Movement , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use , Epithelial-Mesenchymal Transition , Lipids , Cell Proliferation
8.
Oncogene ; 43(2): 136-150, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37973951

ABSTRACT

Impaired macroautophagy/autophagy flux has been implicated in the treatment of prostate cancer (PCa). However, the mechanism underlying autophagy dysregulation in PCa remains unknown. In the current study, we investigated the role of diacylglycerol acyltransferases 1 (DGAT1) and its potential effects on cellular energy homeostasis and autophagy flux in PCa. The results of immunohistochemical staining suggested that DGAT1 expression was positively corrected with tumor stage and node metastasis, indicating DGAT1 is an important factor involved in the development and progression of PCa. Furthermore, targeting DGAT1 remarkably inhibited cell proliferation in vitro and suppressed PCa growth in xenograft models by triggering severe oxidative stress and subsequently autophagy flux blockage. Mechanically, DGAT1 promoted PCa progression by maintaining cellular energy homeostasis, preserving mitochondrial function, protecting against reactive oxygen species, and subsequently promoting autophagy flux via regulating lipid droplet formation. Moreover, we found that fenofibrate exhibits as an upstream regulator of DGAT1. Fenofibrate performed its anti-PCa effect involved the aforementioned mechanisms, and partially dependent on the regulation of DGAT1. Collectively. These findings indicate that DGAT1 regulates PCa lipid droplets formation and is essential for PCa progression. Targeting DGAT1 might be a promising method to control the development and progression of PCa. Schematic representation of DGAT1 affects autophagy flux by regulating lipid homeostasis and maintaining mitochondrial function in prostate cancer (PCa). PCa is characterized up-regulation of DGAT1, leading to the translocation of free fatty acids into lipid droplets, thereby preventing PCa cell from lipotoxicity. Inhibition of DGAT1 suppresses growth of PCa by inducing oxidative stress and subsequently autophagy flux blockage. Further, the current results revealed that fenofibrate exhibits as an upstream regulator of DGAT1, and fenofibrate plays an anti-PCa role partially dependent on the regulation of DGAT1, suggesting a potential therapeutic approach to ameliorate this refractory tumor.


Subject(s)
Fenofibrate , Prostatic Neoplasms , Humans , Male , Autophagy , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Fenofibrate/metabolism , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Oxidative Stress , Prostate/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism
9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1025-1035, 2024 02.
Article in English | MEDLINE | ID: mdl-37566308

ABSTRACT

Primary hepatic carcinoma (PHC) is a leading threat to cancer patients with few effective treatment strategies. OPN is found to be an oncogene in hepatocellular carcinoma (HCC) with potential as a treating target for PHC. Fenofibrate is a lipid-lowering drug with potential anti-tumor properties, which is claimed with suppressive effects on OPN expression. Our study proposes to explore the molecular mechanism of fenofibrate in inhibiting HCC. OPN was found extremely upregulated in 6 HCC cell lines, especially Hep3B cells. Hep3B and Huh7 cells were treated with 75 and 100 µM fenofibrate, while OPN-overexpressed Hep3B cells were treated with 100 µM fenofibrate. Decreased clone number, elevated apoptotic rate, reduced number of migrated cells, and shortened migration distance were observed in fenofibrate-treated Hep3B and Huh7 cells, which were markedly abolished by the overexpression of OPN. Furthermore, the facilitating effect against apoptosis and the inhibitory effect against migration of fenofibrate in Hep3B cells were abolished by 740 Y-P, an agonist of PI3K. Hep3B xenograft model was established, followed by treated with 100 mg/kg and 200 mg/kg fenofibrate, while OPN-overexpressed Hep3B xenograft was treated with 200 mg/kg fenofibrate. The tumor growth was repressed by fenofibrate, which was notably abolished by OPN overexpression. Furthermore, the inhibitory effect of fenofibrate on the PI3K/AKT/Twist pathway in Hep3B cells and Hep3B xenograft model was abrogated by OPN overexpression. Collectively, fenofibrate suppressed progression of hepatoma downregulating OPN through inhibiting the PI3K/AKT/Twist pathway.


Subject(s)
Carcinoma, Hepatocellular , Fenofibrate , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Osteopontin/genetics , Apoptosis , Cell Line, Tumor , Cell Proliferation
10.
Life Sci ; 336: 122321, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38042280

ABSTRACT

AIMS: Alcoholic liver disease (ALD) can develop into cirrhosis and hepatocellular carcinoma but no specific drugs are available. Fenofibrate is therapeutically effective in ALD, however, the exact mechanism remains unknown. We explored the hub genes of ALD and the role of fenofibrate in ALD. MAIN METHODS: The hub genes of ALD were screened by bioinformatics method, and their functional enrichment, signalling pathways, target genes and their correlation with immune microenvironment and pathogenic genes were analysed. We also analysed the binding affinity of fenofibrate to proteins of hub genes using molecular docking techniques, and the effects on hub gene expression, lipid deposition, oxidative stress and inflammation in the liver of National Institute on Alcohol Abuse and Alcoholism (NIAAA) model mice. The regulatory effects of fenofibrate on MOXD1 and PDZK1P1 were investigated after gene silencing of peroxisome proliferator-activated receptor-α (Ppar-α). KEY FINDINGS: Hub genes identified, including monooxygenase DBH-like 1 (MOXD1), PDZK1-interacting protein 1 (PDZK1IP1) and solute carrier 51 ß (SLC51B), are highly predictive for ALD. Hepatic MOXD1 and PDZK1IP1 expression was elevated in patients with ALD and NIAAA model mice, with no significant difference in SLC51B expression between the groups. Fenofibrate binds tightly to MOXD1 and PDZK1IP1, inhibits their hepatic expression independently of PPAR-α signalling, and ameliorates lipid deposition, oxidative stress and inflammatory responses in NIAAA model mice. SIGNIFICANCE: MOXD1 and PDZK1IP1 are key genes in ALD progression; fenofibrate improves liver damage in NIAAA model mice by downregulating their expression. Our findings provide insight for improving diagnostic and therapeutic strategies for ALD.


Subject(s)
Fatty Liver, Alcoholic , Fenofibrate , Hypercholesterolemia , Liver Diseases, Alcoholic , Mice , Humans , Animals , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Fatty Liver, Alcoholic/drug therapy , Molecular Docking Simulation , Liver/metabolism , Inflammation/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Hypercholesterolemia/metabolism , Liver Diseases, Alcoholic/pathology , Lipids/pharmacology , Membrane Proteins/metabolism
11.
Lipids Health Dis ; 22(1): 215, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049842

ABSTRACT

BACKGROUND: Chronic interstitial fibrosis is the primary barrier against the long-term survival of transplanted kidneys. Extending the lifespan of allografts is vital for ensuring the long-term health of patients undergoing kidney transplants. However, few targets and their clinical applications have been identified. Moreover, whether dyslipidemia facilitates fibrosis in renal allograft remains unclear. METHODS: Blood samples were collected from patients who underwent kidney transplantation. Correlation analyses were conducted between the Banff score and body mass index, and serum levels of triacylglycerol, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. A rat model of renal transplantation was treated with the lipid-lowering drug, fenofibrate, and kidney fibrosis levels were determined by histochemical staining. Targeted metabolomic detection was conducted in blood samples from patients who underwent kidney transplantation and were divided into fibrotic and non-fibrotic groups. Rats undergoing renal transplantation were fed either an n-3 or n-6 polyunsaturated fatty acid (PUFA)-enriched diet. Immunohistochemical and Masson's trichrome staining were used to determine the degree of fibrosis. RESULTS: Hyperlipidemia was associated with fibrosis development. Treatment with fenofibrate contributed to improve fibrosis in a rat model of renal transplantation. Moreover, n-3 PUFAs from fibrotic group showed significant downregulation compared to patients without fibrotic renal allografts, and n-3 PUFAs-enriched diet contributed to delayed fibrosis in a rat model of renal transplantation. CONCLUSIONS: This study suggests that hyperlipidemia facilitates fibrosis of renal allografts. Importantly, a new therapeutic approach was provided that may delay chronic interstitial fibrosis in transplanted kidneys by augmenting the n-3 PUFA content in the diet.


Subject(s)
Fatty Acids, Omega-3 , Fenofibrate , Hyperlipidemias , Kidney Transplantation , Humans , Rats , Animals , Kidney Transplantation/adverse effects , Fenofibrate/pharmacology , Kidney/pathology , Fibrosis , Allografts , Hyperlipidemias/pathology , Cholesterol
12.
Sci Rep ; 13(1): 22558, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110453

ABSTRACT

Diabetes mellitus (DM) is a common chronic metabolic disease in humans and household cats that is characterized by persistent hyperglycemia. DM is associated with dysfunction of the intestinal barrier. This barrier is comprised of an epithelial monolayer that contains a network of tight junctions that adjoin cells and regulate paracellular movement of water and solutes. The mechanisms driving DM-associated barrier dysfunction are multifaceted, and the direct effects of hyperglycemia on the epithelium are poorly understood. Preliminary data suggest that fenofibrate, An FDA-approved peroxisome proliferator-activated receptor-alpha (PPARα) agonist drug attenuates intestinal barrier dysfunction in dogs with experimentally-induced DM. We investigated the effects of hyperglycemia-like conditions and fenofibrate treatment on epithelial barrier function using feline intestinal organoids. We hypothesized that glucose treatment directly increases barrier permeability and alters tight junction morphology, and that fenofibrate administration can ameliorate these deleterious effects. We show that hyperglycemia-like conditions directly increase intestinal epithelial permeability, which is mitigated by fenofibrate. Moreover, increased permeability is caused by disruption of tight junctions, as evident by increased junctional tortuosity. Finally, we found that increased junctional tortuosity and barrier permeability in hyperglycemic conditions were associated with increased protein kinase C-α (PKCα) activity, and that fenofibrate treatment restored PKCα activity to baseline levels. We conclude that hyperglycemia directly induces barrier dysfunction by disrupting tight junction structure, a process that is mitigated by fenofibrate. We further propose that counteracting modulation of PKCα activation by increased intracellular glucose levels and fenofibrate is a key candidate regulatory pathway of tight junction structure and epithelial permeability.


Subject(s)
Fenofibrate , Hyperglycemia , Intestinal Diseases , Humans , Cats , Animals , Dogs , Glucose/pharmacology , Glucose/metabolism , Protein Kinase C-alpha/metabolism , Fenofibrate/pharmacology , Intestines , Hyperglycemia/metabolism , Intestinal Diseases/metabolism , Tight Junctions/metabolism , Intestinal Mucosa/metabolism , Permeability
13.
Nutr Diabetes ; 13(1): 19, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935669

ABSTRACT

BACKGROUND: Fenofibrate is a hypolipidemic peroxisome proliferator-activated receptor α (PPARα) agonist used clinically to reduce hypercholesterolemia and hypertriglyceridemia. OBJECTIVE: We investigated the effects of fenofibrate on insulin resistance and tissue inflammation in a high-fat diet (HFD)-fed ovariectomized (OVX) C57BL/6J mice, a mouse model of obese postmenopausal women. METHODS: Female OVX mice were randomly divided into 3 groups and received a low-fat diet, an HFD, or an HFD supplemented with 0.05% (w/w) fenofibrate for 9 weeks. Parameters of insulin resistance and tissue inflammation were measured using blood analysis, histological analysis, immunohistochemistry, and quantitative real-time polymerase chain reaction. RESULTS: When fenofibrate was administered to HFD-fed OVX mice for 9 weeks, we observed reductions in body weight gain, adipose tissue mass, and the size of visceral adipocytes without the change of food intake. Fenofibrate improved mild hyperglycemia, severe hyperinsulinemia, and glucose tolerance in these mice. It also reduced pancreatic islet size and insulin-positive ß-cell area to levels similar to those in OVX mice fed a low-fat diet. Concomitantly, administration of fenofibrate not only suppressed pancreatic lipid accumulation but also decreased CD68-positive macrophages in both the pancreas and visceral adipose tissue. Treatment with fenofibrate reduced tumor necrosis factor α (TNFα) mRNA levels in adipose tissue and lowered serum TNFα levels. CONCLUSION: These results suggest that fenofibrate treatment attenuates insulin resistance in part by reducing tissue inflammation and TNFα expression in HFD-fed OVX mice.


Subject(s)
Fenofibrate , Hyperlipidemias , Insulin Resistance , Humans , Female , Mice , Animals , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Fenofibrate/metabolism , Tumor Necrosis Factor-alpha/metabolism , Mice, Obese , Liver/metabolism , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/metabolism , Inflammation/drug therapy , Inflammation/metabolism
14.
Eur J Pharmacol ; 961: 176172, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37939988

ABSTRACT

Maternal infections during pregnancy may increase the risk of psychiatric disorders in offspring. We recently demonstrated that activation of peroxisome proliferator-activate receptor-α (PPARα), with the clinically available agonist fenofibrate (FEN), attenuates the neurodevelopmental disturbances induced by maternal immune activation (MIA) in rat offspring. We hypothesized that fenofibrate might reduce MIA-induced cytokine imbalance using a MIA model based on the viral mimetic polyriboinosinic-polyribocytidilic acid [poly (I:C)]. By using the Bio-Plex Multiplex-Immunoassay-System, we measured cytokine/chemokine/growth factor levels in maternal serum and in the fetal brain of rats treated with fenofibrate, at 6 and 24 h after poly (I:C). We found that MIA induced time-dependent changes in the levels of several cytokines/chemokines/colony-stimulating factors (CSFs). Specifically, the maternal serum of the poly (I:C)/control (CTRL) group showed increased levels of (i) proinflammatory chemokine macrophage inflammatory protein 1-alpha (MIP-1α), (ii) tumor necrosis factor-alpha (TNF-α), the monocyte chemoattractant protein-1 (MCP-1), the macrophage (M-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Conversely, in the fetal brain of the poly (I:C)/CTRL group, interleukin 12p70 and MIP-1α levels were lower than in vehicle (veh)/CTRL group. Notably, MIP-1α, TNF-α, keratinocyte derived chemokine (GRO/KC), GM-CSF, and M-CSF levels were lower in the poly (I:C)/FEN than in poly (I:C)/CTRL rats, suggesting the protective role of the PPARα agonist. PPARα might represent a therapeutic target to attenuate MIA-induced inflammation.


Subject(s)
Fenofibrate , Schizophrenia , Humans , Female , Pregnancy , Rats , Animals , Cytokines , Granulocyte-Macrophage Colony-Stimulating Factor , Chemokine CCL3 , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Macrophage Colony-Stimulating Factor , PPAR alpha , Schizophrenia/drug therapy , Tumor Necrosis Factor-alpha , Chemokines , Poly I-C/pharmacology
15.
Drug Des Devel Ther ; 17: 3439-3452, 2023.
Article in English | MEDLINE | ID: mdl-38024539

ABSTRACT

Purpose: This study aimed to determine the effect and its mechanism of fenofibrate on retinal pigment epithelium (RPE) injury induced by excessive fat in vitro and in vivo. Methods: ARPE-19 cells were co-incubated with palmitic acid (PA) and fenofibric acid (the active form of fenofibrate after metabolism in vivo) and mice fed with high-fat diet (HFD) were supplemented with fenofibrate. The following methods were used: Western blot and immunofluorescent staining to determine expressions of reactive oxygen species (ROS)-associated factors and proinflammatory cytokines; electroretinogram (ERG) c-wave to evaluate RPE function; TUNEL staining to detect the apoptotic cell in RPE tissue. Additionally, ARPE19 cells were treated with PI3K/AKT inhibitor or agonist to investigate the mechanism of fenofibric acid inhibiting PA-induced RPE damage. Results: We found that the application of PA inhibited RPE cell viability in a dose-dependent manner, and increased the levels of NAPDH oxidase 4 (NOX4), 3-nitrotyrosin (3-NT), intracellular adhesion molecule-1(ICAM1), tumor necrosis factor alpha (TNFα) and vascular endothelial growth factor (VEGF) at 400µM. The application of fenofibric acid resulted in the inhibition of NOX4, 3-NT, TNFα, ICAM1 and VEGF expression in ARPE-19 cells treated with PA. Moreover, wortmannin, as a selective inhibitor of PI3K/AKT pathway, abolished the effects of fenofibrate on the oxidative stress and inflammation in ARPE-19 cells. In addition, 740Y-P, a selective agonist of PI3K/AKT pathway, enhanced the protective action of fenofibrate. Meanwhile, in vivo dosing of fenofibrate ameliorated the downregulated amplitudes of ERG c-wave in HFD-fed mice and suppressed the HFD-induced oxidative injury and inflammatory response in RPE tissues. Conclusion: Our results suggested that fenofibrate ameliorated RPE cell damage induced by excessive fat in vitro and in vivo, in part, through activation of the PI3K/AKT signaling pathway.


Subject(s)
Fenofibrate , Mice , Animals , Fenofibrate/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Up-Regulation , Phosphatidylinositol 3-Kinases/metabolism , Vascular Endothelial Growth Factor A/metabolism , Retinal Pigment Epithelium/metabolism , Tumor Necrosis Factor-alpha/metabolism , Signal Transduction , Oxidative Stress
16.
Eur J Pharmacol ; 960: 176159, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37898287

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a major liver disease subtype worldwide, is commonly associated with insulin resistance and obesity. NAFLD is characterized by an excessive hepatic lipid accumulation, as well as hepatic steatosis. Fenofibrate is a peroxisome proliferator-activated receptor α agonist widely used in clinical therapy to effectively ameliorate the development of NAFLD, but its mechanism of action is incompletely understood. Here, we found that fenofibrate dramatically modulate the gut microbiota composition of high-fat diet (HFD)-induced NAFLD mouse model, and the change of gut microbiota composition is dependent on TFEB-autophagy axis. Furthermore, we also found that fenofibrate improved hepatic steatosis, and increased the activation of TFEB, which severed as a regulator of autophagy, thus, the protective effects of fenofibrate against NAFLD are depended on TFEB-autophagy axis. Our study demonstrates the host gene may influence the gut microbiota and highlights the role of TFEB and autophagy in the protective effect of NAFLD. This work expands our understanding of the regulatory interactions between the host and gut microbiota and provides novel strategies for alleviating obesity.


Subject(s)
Fenofibrate , Gastrointestinal Microbiome , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Insulin Resistance/genetics , Liver , Obesity/drug therapy , Diet, High-Fat/adverse effects , Autophagy , Mice, Inbred C57BL
17.
J Physiol Pharmacol ; 74(2)2023 Apr.
Article in English | MEDLINE | ID: mdl-37453093

ABSTRACT

The aim of this study was to examine the effects of the hypolipemic drug fenofibrate (FF) and aging on the expression of factors/enzymes involved in brown adipose tissue (BAT) function and browning of white adipose tissue epididymal (eWAT) and subcutaneous (sWAT) depots. Young-adult and old male Wistar rats were fed standard chow (control) or supplemented with 0.1% or 0.5% FF for 30 days. Tissue samples were analysed for gene expression and protein content, and stained with Oil Red O or hematoxylin and eosin. In BAT of young rats, 0.5% FF increased only Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 1 (CITED1) protein content and Fgf21 and Gpr109A mRNA expression. The expression of oxidative metabolism related genes (Pgc1α, Cpt1b, Mcad) decreased after 0.5% FF. In BAT of old rats, FF did not affect UCP1 and CITED1 content and had little effect on gene expression. Oil Red O staining of BAT revealed no changes in lipid droplet area upon treatment in either age group. In eWAT of young rats, 0.1FF elevated UCP1 protein content and Ucp1, Pgc-1α, and Mcad expression, whereas 0.5% FF increased PPARα content and Pgc-1α, Cpt1b, Mcad, and Gpr109A levels. In eWAT of old rats, only 0.1FF increased Pgc1α and Mcad expression. In both age groups median cell area of eWAT adipocytes was reduced after 0.5% FF. In sWAT Ucp1 gene expression was very low and UCP1 protein was undetectable. FF upregulated Ucp1, Cited1, Eva1, and Cpt1b expression in sWAT of young rats, with diminished effects in old rats. In both age groups 0.5% FF increased Fgf21 expression in sWAT. Median cell area of sWAT adipocytes decreased only in young rats treated with 0.5% FF. Our results reveal that fenofibrate differentially affects gene expression in BAT, with diminished effects in old compared to young rats. In WAT of young rats FF modestly stimulates the expression of factors/enzymes involved in lipid oxidative metabolism and browning. Aging reduces both these effects. Gpr109A may present a novel gene target upregulated by FF in BAT and eWAT.


Subject(s)
Fenofibrate , Rats , Male , Animals , Rats, Wistar , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/pharmacology , Fenofibrate/pharmacology , Fenofibrate/metabolism , Adipose Tissue, White/metabolism
18.
Am J Cardiovasc Drugs ; 23(5): 547-558, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37524955

ABSTRACT

BACKGROUND: Pemafibrate is a novel fibrate class drug that is a highly potent and selective agonist of peroxisome proliferator-activated receptor α (PPARα). We performed the first ever network meta-analysis containing the largest ever group of patients to test the efficacy of pemafibrate in improving lipid levels compared with fenofibrate and placebo in patients with dyslipidemia. METHODS: Potentially relevant clinical trials were identified in Medline, PubMed, Embase, clinicaltrials.gov, and Cochrane Controlled Trials registry. Nine randomized controlled trials met the inclusion criteria out of 40 potentially available articles. The primary effect outcome was a change in the levels of triglycerides (TG), high-density lipoproteins (HDL), or low-density lipoproteins (LDL) before and after the treatment. RESULTS: A total of 12,359 subjects were included. The mean patient age was 54.73 (years), the mean ratio for female patients was 18.75%, and the mean examination period was 14.22 weeks. The dose for pemafibrate included in our study was 0.1, 0.2, or 0.4 mg twice daily, whereas the dose for fenofibrate was 100 mg/day. Data showed a significant reduction in TG and a mild increase in HDL levels across the pemafibrate group at different doses and fenofibrate 100 mg group (with greatest effect observed with pemafibrate 0.1 mg twice daily). A mild increase in LDL was also observed in all groups, but the increase in LDL in the 0.1 mg twice daily dose group was statistically insignificant. CONCLUSION: Pemafibrate 0.1 mg twice daily dose led to highest reduction in TG levels and the highest increase in HDL levels compared with other doses of pemafibrate, fenofibrate, and placebo.


Subject(s)
Dyslipidemias , Fenofibrate , Female , Humans , Middle Aged , Butyrates/therapeutic use , Dyslipidemias/drug therapy , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use , Network Meta-Analysis , Triglycerides , Male
19.
Can J Physiol Pharmacol ; 101(11): 565-573, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37433224

ABSTRACT

Telomere length, a marker of ageing, is susceptible to developmental programming that may cause its accelerated attrition. Metabolic syndrome triggers telomere attrition. Fenofibrate, a peroxisome proliferator-activated receptor-alpha agonist, is protective against telomere attrition. We investigated the impact of fenofibrate administered during suckling on the lipid profile and leucocyte telomere lengths of rats fed a high-fructose diet post-weaning. Suckling Sprague-Dawley pups (n = 119) were allocated to four groups and gavaged with either 10 mL·kg-1 body mass 0.5% dimethyl sulfoxide, 100 mg·kg-1 body mass fenofibrate, fructose (20%, w / v), or a combination of fenofibrate and fructose for 15 days. Upon weaning, each of the initial groups was split into two subgroups: one had plain water while the other had fructose solution (20%, w / v) to drink for 6 weeks. Blood was collected for DNA extraction and relative leucocyte telomere length determination by real-time PCR. Plasma triglycerides and cholesterol were also quantified. The treatments had no effect (p > 0.05) on body mass, cholesterol concentration, and relative leucocyte telomere lengths in both sexes. Post-weaning fructose increased triglyceride concentrations (p < 0.05) in female rats. Fenofibrate administered during suckling did not affect ageing nor did it prevent high fructose-induced hypertriglyceridaemia in female rats.


Subject(s)
Fenofibrate , Male , Rats , Animals , Female , Fenofibrate/pharmacology , Fructose/adverse effects , Rats, Sprague-Dawley , Diet , Cholesterol , Triglycerides
20.
Biomed Pharmacother ; 165: 115095, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37413905

ABSTRACT

One of the most significant chemotherapeutic side effects of cisplatin (Cis) that limits its use and efficacy is testicular toxicity. Thus, the objective of the present study was to investigate the possible ameliorative effect of Fenofibrate (Fen), Diosmetin (D), and their combination against cis-mediated testicular damage. Fifty-four adult male albino rats were randomly allocated into nine groups (6 rats each): Control group, Fen (100 mg/kg), D20 (20 mg/kg), D40 (40 mg/kg), Cis group (7 mg/kg), Cis +Fen group (7 mg/kg+100 mg/kg), Cis+D20 group (7 mg/kg+20 mg/kg), Cis+D40 group (7 mg/kg+40 mg/kg), Cis+Fen+D40 treated group (7 mg/kg+100 mg/kg+40 mg/kg). Relative testicular weight, epididymal sperm count and viability, serum testosterone level, testicular oxidative stress indices, mRNA expression of peroxisome proliferator-activated receptor alpha (PPAR-α), nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1), histopathological, and immunohistochemical alterations were assessed. Our results revealed that cis administration induced testicular oxidative and inflammatory damage as indicated by a substantial reduction in relative testicular weight, sperm parameters, serum testosterone levels, the antioxidant enzyme activity of catalase, and Johnson's histopathological score, PPAR-α/NRF-2/HO-1 and proliferating cell nuclear antigen (PCNA) immunoexpression with marked increment in malondialdehyde (MDA), Cosentino's score, nuclear factor kappa B (NF-κß p65), interleukin (IL)- 1ß and caspase 3 in testicular tissue. Interestingly, Fen and D diminished the harmful effects of cis on testes via upregulation of the antioxidant activities and downregulation of lipid peroxidation, apoptosis, and inflammation. Moreover, the combination therapy Fen/D40 also exhibited a more pronounced enhancement of previous markers than either treatment alone. In conclusion, because of their antioxidant, anti-inflammatory, and anti-apoptotic properties, cotreatment with Fen or D or their combination could be beneficial in reducing the harmful impacts of cis on testicular tissue, particularly in patients that receive cis chemotherapy.


Subject(s)
Fenofibrate , Testis , Rats , Male , Animals , Fenofibrate/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Heme Oxygenase-1/metabolism , Rats, Wistar , Semen/metabolism , Cisplatin/adverse effects , Signal Transduction , Oxidative Stress , PPAR alpha/metabolism , Testosterone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...