Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55.623
Filter
1.
Carbohydr Polym ; 339: 122284, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823935

ABSTRACT

Interactions between human gut microbiota and dietary fibres (DF) are influenced by the complexity and diversity of both individual microbiota and sources of DF. Based on 480 in vitro fermentations, a full factorial experiment was performed with six faecal inocula representing two enterotypes and three DF sources with nanometer, micrometer, and millimeter length-scales (apple pectin, apple cell walls and apple particles) at two concentrations. Increasing DF size reduced substrate disappearance and fermentation rates but not biomass growth. Concentrated DF enhanced butyrate production and lactate cross-feeding. Enterotype differentiated final microbial compositions but not biomass or fermentation metabolite profiles. Individual donor microbiota differences did not influence DF type or concentration effects but were manifested in the promotion of different functional microbes within each population with the capacity to degrade the DF substrates. Overall, consistent effects (independent of donor microbiota variation) of DF type and concentration on kinetics of substrate degradation, microbial biomass production, gas kinetics and metabolite profiles were found, which can form the basis for informed design of DF for desired rates/sites and consequences of gut fermentation. These results add further evidence to the concept that, despite variations between individuals, the human gut microbiota represents a community with conserved emergent properties.


Subject(s)
Dietary Fiber , Feces , Fermentation , Gastrointestinal Microbiome , Pectins , Pectins/metabolism , Dietary Fiber/metabolism , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Humans , Feces/microbiology , Malus/metabolism , Adult , Male , Female , Bacteria/metabolism , Bacteria/classification , Biomass
2.
Carbohydr Polym ; 339: 122292, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823937

ABSTRACT

Through adaptive laboratory evolution (ALE) of Sphingomonas sp. ATCC 31555, fermentation for production of low-molecular-weight welan gum (LMW-WG) was performed using glycerol as sole carbon source. During ALE, GPC-MALS analysis revealed a gradual decrease in WG molecular weight with the increase of adaptation cycles, accompanied by changes in solution conformation. LMW-WG was purified and structurally analyzed using GPC-MALS, monosaccharide composition analysis, infrared spectroscopy, NMR analysis, atomic force microscopy, and scanning electron microscopy. Subsequently, LMW-WG obtains hydration, transparency, antioxidant activity, and rheological properties. Finally, an in vitro simulation colon reactor was used to evaluate potential prebiotic properties of LMW-WG as dietary fiber. Compared with WG produced using sucrose as substrate, LMW-WG exhibited a fourfold reduction in molecular weight while maintaining moderate viscosity. Structurally, L-Rha nearly completely replaced L-Man. Furthermore, LMW-WG demonstrated excellent hydration, antioxidant activity, and high transparency. It also exhibited resistance to saliva and gastrointestinal digestion, showcasing a favorable colonization effect on Bifidobacterium, making it a promising symbiotic agent.


Subject(s)
Antioxidants , Fermentation , Glycerol , Molecular Weight , Sphingomonas , Glycerol/chemistry , Glycerol/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Sphingomonas/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Viscosity , Prebiotics , Bifidobacterium/metabolism
3.
Environ Microbiol ; 26(6): e16660, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822592

ABSTRACT

Over 6 years, we conducted an extensive survey of spontaneous grape fermentations, examining 3105 fungal microbiomes across 14 distinct grape-growing regions. Our investigation into the biodiversity of these fermentations revealed that a small number of highly abundant genera form the core of the initial grape juice microbiome. Consistent with previous studies, we found that the region of origin had the most significant impact on microbial diversity patterns. We also discovered that certain taxa were consistently associated with specific geographical locations and grape varieties, although these taxa represented only a minor portion of the overall diversity in our dataset. Through unsupervised clustering and dimensionality reduction analysis, we identified three unique community types, each exhibiting variations in the abundance of key genera. When we projected these genera onto global branches, it suggested that microbiomes transition between these three broad community types. We further investigated the microbial community composition throughout the fermentation process. Our observations indicated that the initial microbial community composition could predict the diversity during the early stages of fermentation. Notably, Hanseniaspora uvarum emerged as the primary non-Saccharomyces species within this large collection of samples.


Subject(s)
Biodiversity , Fermentation , Fungi , Mycobiome , Vitis , Vitis/microbiology , Fungi/classification , Fungi/genetics , Fungi/metabolism , Fungi/isolation & purification , Microbiota
4.
World J Microbiol Biotechnol ; 40(7): 228, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822927

ABSTRACT

Doramectin, an essential animal anthelmintic, is synthesized through the fermentation process of Streptomyces avermitilis. This study delves into the transcriptomic profiles of two strains, namely the doramectin-producing wild-type S. avermitilis N72 and its highly doramectin-producing mutant counterpart, S. avermitilis XY-62. Comparative analysis revealed 860 up-regulated genes and 762 down-regulated genes in the mutant strain, notably impacting the expression of key genes pivotal in doramectin biosynthesis, including aveA1, aveA2, aveA3, aveA4, aveE, and aveBI. These findings shed light on the molecular mechanisms underpinning the heightened doramectin production in S. avermitilis XY-62, presenting promising avenues for optimizing doramectin production processes.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Bacterial , Ivermectin , Mutation , Streptomyces , Transcriptome , Streptomyces/genetics , Streptomyces/metabolism , Ivermectin/analogs & derivatives , Ivermectin/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fermentation , Anthelmintics/metabolism
5.
Food Res Int ; 188: 114309, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823823

ABSTRACT

Previous studies have demonstrated that Ligilactobacillus salivarius CCFM 1266 exhibits anti-inflammatory properties and the capability to synthesize niacin. This study aimed to investigate the fermentative abilities of L. salivarius CCFM 1266 in fermented milk. Metabonomic analysis revealed that fermentation by L. salivarius CCFM 1266 altered volatile flavor compounds and metabolite profiles, including heptanal, nonanal, and increased niacin production. Genomic investigations confirmed that L. salivarius CCFM 1266 possess essential genes for the metabolism of fructose and mannose, affirming its proficiency in utilizing fructooligosaccharides and mannan oligosaccharides. The addition of fructooligosaccharides and mannan oligosaccharides during the fermentation process significantly facilitated the proliferation of L. salivarius CCFM 1266 in fermented milk, with growth exceeding 107 colony-forming units (CFU)/mL. This intervention not only augmented the microbial density but also modified the metabolite composition of fermented milk, resulting in an elevated presence of advantageous flavor compounds such as nonanal, 2,3-pentanedione, and 3-methyl-2-butanone. However, its influence on improving the texture of fermented milk was observed to be minimal. Co-fermentation of L. salivarius CCFM 1266 with commercial fermentation starters indicated that L. salivarius CCFM 1266 was compatible, similarly altering metabolite composition and increasing niacin content in fermented milk. In summary, the findings suggest that L. salivarius CCFM 1266 holds substantial promise as an adjunctive fermentation starter, capable of enhancing the nutritional diversity of fermented milk products.


Subject(s)
Cultured Milk Products , Fermentation , Ligilactobacillus salivarius , Metabolomics , Metabolomics/methods , Ligilactobacillus salivarius/metabolism , Cultured Milk Products/microbiology , Niacin/metabolism , Food Microbiology , Dairy Products/microbiology , Taste , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Animals
6.
Food Res Int ; 188: 114442, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823830

ABSTRACT

The long-term stability of red wine color depends on the formation of polymeric pigments from anthocyanins. Although there is still a lot of uncertainty about the specific structure of this diverse group of pigments, there is consensus that they are reaction products of anthocyanins and other polyphenols. Interactions between anthocyanins and pectic polysaccharides have been suggested to stabilize anthocyanins. This study explores the impact of such interactions by adding pectin during red winemaking. The results demonstrate that these interactions induce the formation of additional polymeric pigments which enhance the pigment stability during fermentation and aging. While initial pigment formation is higher in wines with added pectin, a notable proportion of the complexes degrades in the later stages of fermentation. Presumably, tannins form insoluble complexes with pectin, reducing tannin concentration by more than 300 mg/L. Anthocyanin concentrations decrease by over 400 mg/L, and polymeric pigments double. Anthocyanins that form polymeric pigments with pectic polysaccharides expand the range of pigments in red wines with possible consequences for the sensory properties of the wine. These findings highlight the complex interactions between pectin, anthocyanins, and tannins, and their influence on pigment formation and wine composition during fermentation and aging.


Subject(s)
Anthocyanins , Fermentation , Pectins , Tannins , Wine , Anthocyanins/chemistry , Anthocyanins/analysis , Pectins/chemistry , Wine/analysis , Tannins/chemistry , Color , Food Handling/methods , Pigments, Biological/chemistry , Polymers/chemistry
7.
Food Res Int ; 188: 114476, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823866

ABSTRACT

Kimchi cabbage, the key ingredient in kimchi, is cultivated year-round to meet high production demands. This study aimed to examine the effects of seasonal harvesting (spring, summer, fall, and winter) on the microbial and metabolic profiles of kimchi during 30 days of fermentation. Lactic acid bacteria distribution is notably influenced by seasonal variations, with Latilactobacillus dominant in fall-harvested kimchi group and Weissella prevailing in spring, summer, and winter. The microbial communities of spring and fall group exhibited similar profiles before fermentation, whereas the microbial communities and metabolic profiles of spring and summer group were similar after 30 days of fermentation. Seasonal disparities in metabolite concentrations, including glutamic acid, serine, and cytosine, persist throughout fermentation. This study provides a comprehensive understanding of the substantial impact of seasonal harvesting of kimchi cabbage on the microbial and metabolic characteristics of kimchi, providing valuable insights into producing kimchi with diverse qualities.


Subject(s)
Brassica , Fermentation , Fermented Foods , Food Microbiology , Seasons , Brassica/microbiology , Brassica/metabolism , Fermented Foods/microbiology , Fermented Foods/analysis , Metabolome , Microbiota , Weissella/metabolism
8.
Food Res Int ; 188: 114484, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823870

ABSTRACT

The aim of the present study was to provide a first characterization of lacto-fermented garlic manufactured by local small-scale artisanal producers in the Lower Silesia Region (Poland). The lacto-fermented garlic samples showed high nutritional features in terms of antioxidant activity. A total of 86 compounds, belonging to various chemical classes, were identified by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS). Most of these compounds belonged to six main classes, being sulfur compounds, esters and acetates, oxygenated monoterpenes, monoterpene hydrocarbons, and alcohols. Aldehydes, acids, ketones, furans, and phenols were also identified. In the analyzed samples, counts up to 8 log cfu g-1 were observed for lactic acid bacteria. Metataxonomic analysis revealed the presence of Levilactobacillus, Lactiplantibacillus, Latilactobacillus, Secundilactobacillus, Weissella, Leuconostoc, Lactococcus, Pediococcus, and Lacticaseibacillus among the major taxa. These results were confirmed by the isolation and characterization of viable lactic acid bacteria. Indeed, the presence of the closest relatives to Lacticaseibacillus casei group, Pediococcus parvulus, Levilactobacillus brevis, Levilactobacillus parabrevis, and Lactiplantibacillus plantarum group was observed. A good acidification performance in salty garlic-based medium was observed for all the isolates that, between 8 and 15 days of fermentation, reached pH values comprised between 4 and 3.5, depending on the tested species. Of note, 15 out of the 37 lactic acid bacteria isolates (Levilactobacillus parabrevis, Pediococcus parvulus, Lactiplantibacillus plantarum group, and Lacticaseibacillus casei group) showed the presence of the hdcA gene of Gram-positive bacteria encoding for histidine decarboxylase. Furthermore, for 8 out of the 37 isolates the in-vitro exopolysaccharides production was observed. No isolate showed inhibitory activity against the three Listeria innocua strains used as surrogate for Listeria monocytogenes.


Subject(s)
Fermentation , Food Microbiology , Garlic , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Garlic/chemistry , Antioxidants/analysis , Lactobacillales/metabolism , Lactobacillales/isolation & purification , Fermented Foods/microbiology , Fermented Foods/analysis
9.
Food Res Int ; 188: 114483, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823869

ABSTRACT

The Monascus-fermented cheese (MC) is a unique cheese product that undergoes multi-strain fermentation, imparting it with distinct flavor qualities. To clarify the role of microorganisms in the formation of flavor in MC, this study employed SPME (arrow)-GC-MS, GC-O integrated with PLS-DA to investigate variations in cheese flavors represented by volatile flavor compounds across 90-day ripening periods. Metagenomic datasets were utilized to identify taxonomic and functional changes in the microorganisms. The results showed a total of 26 characteristic flavor compounds in MC at different ripening periods (VIP>1, p < 0.05), including butanoic acid, hexanoic acid, butanoic acid ethyl ester, hexanoic acid butyl ester, 2-heptanone and 2-octanone. According to NR database annotation, the genera Monascus, Lactococcus, Aspergillus, Lactiplantibacillus, Staphylococcus, Flavobacterium, Bacillus, Clostridium, Meyerozyma, and Enterobacter were closely associated with flavor formation in MC. Ester compounds were linked to Monascus, Meyerozyma, Staphylococcus, Lactiplantibacillus, and Bacillus. Acid compounds were linked to Lactococcus, Lactobacillus, Staphylococcus, and Bacillus. The production of methyl ketones was closely related to the genera Monascus, Staphylococcus, Lactiplantibacillus, Lactococcus, Bacillus, and Flavobacterium. This study offers insights into the microorganisms of MC and its contribution to flavor development, thereby enriching our understanding of this fascinating dairy product.


Subject(s)
Cheese , Fermentation , Food Microbiology , Metagenomics , Monascus , Taste , Volatile Organic Compounds , Cheese/microbiology , Cheese/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Monascus/metabolism , Monascus/genetics , Monascus/growth & development , Metagenomics/methods , Gas Chromatography-Mass Spectrometry , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Flavoring Agents/metabolism
10.
Food Res Int ; 188: 114497, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823877

ABSTRACT

The spontaneous Baijiu fermentation system harbors a complex microbiome that is highly dynamic in time and space and varies depending on the Jiuqu starters and environmental factors. The intricate microbiota presents in the fermentation environment is responsible for carrying out various reactions. These reactions necessitate the interaction among the core microbes to influence the community function, ultimately shaping the distinct Baijiu styles through the process of spontaneous fermentation. Numerous studies have been conducted to enhance our understanding of the diversity, succession, and function of microbial communities with the aim of improving fermentation manipulation. However, a comprehensive and critical assessment of the core microbes and their interaction remains one of the significant challenges in the Baijiu fermentation industry. This paper focuses on the fermentation properties of core microbes. We discuss the state of the art of microbial traceability, highlighting the crucial role of environmental and starter microbiota in the Baijiu brewing microbiome. Also, we discuss the various interactions between microbes in the Baijiu production system and propose a potential conceptual framework that involves constructing predictive network models to simplify and quantify microbial interactions using co-culture models. This approach offers effective strategies for understanding the core microbes and their interactions, thus beneficial for the management of microbiota and the regulation of interactions in Baijiu fermentation processes.


Subject(s)
Fermentation , Food Microbiology , Microbiota , Microbiota/physiology , Microbial Interactions/physiology , Beer/microbiology , Bacteria/metabolism , Bacteria/classification
11.
Food Res Int ; 188: 114501, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823874

ABSTRACT

This study investigated the effects of different pickle brines and glycine additions on biogenic amine formation in pickle fermentation. The results showed that the brines with higher biogenic amine content led to the production of more biogenic amines in the simulated pickle fermentation system. This was related to the abundance of biogenic amine-producing microorganisms in the microbial communities of the brines. Metagenome analysis of the brines and metatranscriptome analysis of the fermentation systems showed that putrescine was primarily from Lactobacillus, Oenococcus, and Pichia, while histamine and tyramine were primarily from Lactobacillus and Tetragenococcus. Addition of glycine significantly reduced the accumulation of biogenic amines in the simulated pickle fermentation system by as much as 70 %. The addition of glycine had no inhibitory effect on the amine-producing microorganisms, but it down-regulated the transcription levels of the genes for enzymes related to putrescine synthesis in Pichia, Lactobacillus, and Oenococcus, as well as the histidine decarboxylase genes in Lactobacillus and Tetragenococcus. Catalytic reaction assay using crude solutions of amino acid decarboxylase extracted from Lactobacillus brevis showed that the addition of glycine inhibited 45 %-55 % of ornithine decarboxylase and tyrosine decarboxylase activities. This study may provide a reference for the study and control of the mechanism of biogenic amine formation in pickle fermentation.


Subject(s)
Biogenic Amines , Fermentation , Glycine , Glycine/metabolism , Biogenic Amines/metabolism , Salts , Putrescine/metabolism , Tyramine/metabolism , Food Microbiology , Lactobacillus/metabolism , Lactobacillus/genetics , Fermented Foods/microbiology , Pichia/metabolism , Pichia/genetics
12.
Vitae (Medellín) ; 31(1): 1-11, 2024-05-03. Ilustraciones
Article in English | LILACS, COLNAL | ID: biblio-1553606

ABSTRACT

Background: Mild Colombian coffees are recognized worldwide for their high-quality coffee cup. However, there have been some failures in post-harvest practices, such as coffee grain fermentation. These failures could occasionally lead to defects and inconsistencies in quality products and economic losses for coffee farmers. In Colombia, one of the fermentation methods most used by coffee growers is wet fermentation, conducted by submerging the de-pulped coffee beans for enough time in water tanks to remove the mucilage. Objectives: We evaluated the effect of the water (g)/de-pulped coffee (g) ratio (I: 0/25, II: 10/25, III: 20/25) and final fermentation time (24, 48, and 72 hours) on the total number of microbial groups. We also identified microorganisms of interest as starter cultures. Methods: We used a completely randomized experimental design with two factors; the effect of the water (g)/de-pulped coffee (g) ratio (I: 0/25, II: 10/25, III: 20/25) and final fermentation time (24, 48, and 72 hours), for 9 treatments with two replicates. During the coffee fermentation (1,950 g), the pH and °Brix were monitored. Total counts of different microbial groups (mesophiles, coliforms, lactic-acid bacteria, acetic-acid bacteria, and yeasts) were performed. Various isolates of microorganisms of interest as starter cultures (lactic-acid bacteria and yeasts) were identified using molecular sequencing techniques. Results: 21 lactic-acid bacteria (LAB) isolates and 22 yeasts were obtained from the different mini-batch fermentation systems. The most abundant lactic-acid bacteria species found were Lactiplantibacillus plantarum (46%) and Levilactobacillus brevis (31%). Pichia kluivery (39%) and Torulaspora delbrueckii (22%) were the most abundant yeast species. Conclusion The studied factors did not have effect over the microorganism's development. The identified bacterial and yeasts species have potential as starter cultures for better-quality coffees and in fermentation-related applications.


Antecedentes: Los cafés suaves lavados colombianos son reconocidos a nivel mundial por su buena puntuación sensorial; sin embargo, se han detectado fallas en las prácticas de postcosecha, como lo es la fermentación de los granos de café. Dichas fallas pueden causar defectos y carecer de consistencia en la calidad del producto, ocasionando pérdidas económicas para los caficultores. En Colombia, uno de los métodos más usados por los caficultores es la fermentación húmeda, la cual consiste en sumergir los granos de café despulpado en tanques con agua por un período de tiempo que permita la remoción del mucílago. Objetivos: La presente investigación evaluó la incidencia que tienen la proporción agua/granos despulpados de café (I: 0/25, II: 10/25, III: 20/25) y el tiempo final de fermentación (24, 48 y 72 horas) en el recuento final de grupos microbianos. Por otra parte, se identificaron taxonómicamente microorganismos de interés para su uso como cultivos iniciadores. Métodos: Mini-lotes consistieron en café despulpado (1950 g) puesto en recipientes de plástico abiertos y sumergidos en agua. Se aplicó un diseño experimental completamente aleatorizado de dos factores (proporción agua/ granos de café despulpado y tiempo) a tres niveles, para un total de nueve tratamientos con dos replicas. Durante las fermentaciones de café (1,950 g), el pH y los grados ºBrix, fueron monitoreados. Se realizaron los recuentos totales de los diferentes grupos microbianos: mesófilos, coliformes, bacterias ácido-lácticas, bacterias ácido-acéticas y levaduras. Se identificaron molecularmente diferentes aislados con potencial para ser usados como cultivos iniciadores (bacterias ácido-lácticas y levaduras). Resultados: Los resultados obtenidos mostraron que no hubo diferencia estádisticamente significativa entre los tratamientos aplicados y el recuento final de microorganismos. Un total de 21 aislados de bacterias ácido-lácticas (BAL) y 22 levaduras lograron obtenerse a partir de los diferentes sistemas de fermentación en mini-lote. Las especies de bacterias ácido-lácticas con mayor porcentaje acorde a su identificación taxonómica, corresponden a Lactiplantibacillus plantarum (46%), Levilactobacillus brevis (31%). Las especies de levaduras con mayor porcentaje acorde a su identificación taxonómica corresponden a Pichia kluivery (39%) y Torulaspora delbrueckii (22%). Conclusión Los factores estudiados no afectaron el crecimiento de ninguno de los grupos microbianos presentes en la fermentacion del café. Las especies de microorganismos identificados tienen potencial para se usados como cultivos starter o en aplicaciones dentro de las ciencias de fermentación.


Subject(s)
Humans , Fermentation , Yeasts , Microbiological Techniques , Coffea , Lactobacillales
13.
An Acad Bras Cienc ; 96(1): e20230658, 2024.
Article in English | MEDLINE | ID: mdl-38808815

ABSTRACT

In the present study, the effect of xanthan gum was evaluated on the metabolic activity and survival of two probiotic strains, namely B. lactis and L. casei using in vitro assay and skim milk model system. In vitro assay was carried out identifying by pH, optical cell density (OD), and formation of postbiotics (lactic, acetic, propionic, and butyric acids) in different basal media including glucose, inulin, and xanthan gum as carbon source. The highest pH values were recorded for control (without carbon source) and media with xanthan gum, whereas the media with glucose and xanthan gum had the highest OD values. In comparison to strains, B. lactis had higher pH and lower OD values than L. casei. It was found that xanthan gum supported the formation of postbiotics as a result of bacterial fermentation. In the skim milk model system, xanthan gum did not negatively affect probiotic viability, and the counts of both strains were above the required level for health benefits (8 log cfu g-1) after 28-day storage. The use of xanthan gum in skim milk matrix positively affected techno-functional properties such as syneresis, color, and textural parameters of samples.


Subject(s)
Milk , Polysaccharides, Bacterial , Probiotics , Polysaccharides, Bacterial/pharmacology , Animals , Milk/chemistry , Milk/microbiology , Lacticaseibacillus casei/drug effects , Bifidobacterium animalis , Hydrogen-Ion Concentration , Fermentation
14.
Adv Microb Physiol ; 84: 51-82, 2024.
Article in English | MEDLINE | ID: mdl-38821634

ABSTRACT

Formic acid (HCOOH) and dihydrogen (H2) are characteristic products of enterobacterial mixed-acid fermentation, with H2 generation increasing in conjunction with a decrease in extracellular pH. Formate and acetyl-CoA are generated by radical-based and coenzyme A-dependent cleavage of pyruvate catalysed by pyruvate formate-lyase (PflB). Formate is also the source of H2, which is generated along with carbon dioxide through the action of the membrane-associated, cytoplasmically-oriented formate hydrogenlyase (FHL-1) complex. Synthesis of the FHL-1 complex is completely dependent on the cytoplasmic accumulation of formate. Consequently, formate determines its own disproportionation into H2 and CO2 by the FHL-1 complex. Cytoplasmic formate levels are controlled by FocA, a pentameric channel that translocates formic acid/formate bidirectionally between the cytoplasm and periplasm. Each protomer of FocA has a narrow hydrophobic pore through which neutral formic acid can pass. Two conserved amino acid residues, a histidine and a threonine, at the center of the pore control directionality of translocation. The histidine residue is essential for pH-dependent influx of formic acid. Studies with the formate analogue hypophosphite and amino acid variants of FocA suggest that the mechanisms of formic acid efflux and influx differ. Indeed, current data suggest, depending on extracellular formate levels, two separate uptake mechanisms exist, both likely contributing to maintain pH homeostasis. Bidirectional formate/formic acid translocation is dependent on PflB and influx requires an active FHL-1 complex. This review describes the coupling of formate and H2 production in enterobacteria.


Subject(s)
Enterobacteriaceae , Fermentation , Formates , Hydrogen , Formates/metabolism , Hydrogen/metabolism , Enterobacteriaceae/metabolism , Enterobacteriaceae/genetics , Enterobacteriaceae/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Formate Dehydrogenases , Hydrogenase , Multienzyme Complexes
15.
Food Chem ; 452: 139613, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744125

ABSTRACT

This short communication is devoted to a fully-mechanized flow analysis system for the control of beer fermentation process. The developed system is based on microsolenoid flow controlling devices (valves and pumps) and a flow-through optoelectronic detector. All these components are powered and controlled by a Adruino-compatible microprocessor platform that creates an integrated, compact, and robust analytical tool. Multiplication of sample aspiration ports of the analytical system allows for simultaneous monitoring of several independently performed fermentation processes, as well as a single process at the different places of fermentation tank. To demonstrate its practical utility, the developed system has been applied for online and real-time monitoring of yeast propagation and distribution in beer worts in the course of various fermentation processes. Potentially, this flow analysis system can be easily expanded to the form of multianalyte monitor equipped with optoelectronic sensors and biosensors for the determination of other parameters and analytes.


Subject(s)
Beer , Fermentation , Beer/analysis , Beer/microbiology , Saccharomyces cerevisiae/metabolism , Biosensing Techniques/instrumentation , Biosensing Techniques/methods
16.
Food Chem ; 452: 139606, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744127

ABSTRACT

In this study, two pectic polysaccharides (PFP-T and PFP-UM) were extracted from fresh passion fruit peels using three-phase partitioning (TPP) and sequential ultrasound-microwave-assisted TPP methods, respectively, and their effects on the in vitro gastrointestinal digestion and fecal fermentation characteristics were examined. The results indicate that gastrointestinal digestion has a minimal effect on the physicochemical and structural characteristics of PFP-T and PFP-UM. However, during in vitro fecal fermentation, both undigested PFP-T and PFP-UM are significantly degraded and utilized by intestinal microorganisms, showing increased the total relative abundance of Firmicutes and Bacteroidota in the intestinal flora. Notably, compared with PFP-UM, PFP-T better promoted the reproduction of beneficial bacteria such as Prevotella, Megasphaera and Dialister, while suppressed the growth of harmful genera including Escherichia-Shigella, producing higher content of short-chain fatty acids. Therefore, our findings suggest that PFP-T derived from passion fruit peel has potential as a dietary supplement for promoting intestinal health.


Subject(s)
Bacteria , Digestion , Fermentation , Fruit , Passiflora , Passiflora/chemistry , Passiflora/metabolism , Fruit/chemistry , Fruit/metabolism , Bacteria/metabolism , Humans , Polysaccharides/metabolism , Polysaccharides/chemistry , Pectins/metabolism , Pectins/chemistry , Feces/microbiology , Feces/chemistry , Gastrointestinal Microbiome , Plant Extracts/chemistry , Plant Extracts/metabolism , Models, Biological
17.
Food Chem ; 452: 139589, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744130

ABSTRACT

The exopolysaccharide production from blueberry juice fermented were investigated. The highest exopolysaccharide yield of 2.2 ± 0.1 g/L (increase by 32.5 %) was reached under the conditions of temperature 26.5 °C, pH 5.5, inoculated quantity 5.4 %, and glucose addition 9.1 % using the artificial neural network and genetic algorithm. Under the optimal conditions, the viable cell counts and total acids were increased by 2.0 log CFU/mL and 1.6 times, respectively, while the content of phenolics and anthocyanin was decreased by 9.26 % and 7.86 %, respectively. The changes of these components affected the exopolysaccharide biosynthesis. The absorption bands of -OH and -CH associated with the main functional groups of exopolysaccharide were detected by Visible near-infrared spectroscopy. The prediction model based on spectrum results was constructed. Competitive adaptive reweighted sampling and the random forest were used to enhance the model's prediction performance with the value of RC = 0.936 and RP = 0.835, indicating a good predictability of exopolysaccharides content during fermentation.


Subject(s)
Blueberry Plants , Fermentation , Fruit and Vegetable Juices , Lactobacillales , Spectroscopy, Near-Infrared , Blueberry Plants/chemistry , Blueberry Plants/metabolism , Blueberry Plants/microbiology , Fruit and Vegetable Juices/analysis , Fruit and Vegetable Juices/microbiology , Lactobacillales/metabolism , Lactobacillales/growth & development , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/chemistry
18.
Food Chem ; 452: 139546, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744137

ABSTRACT

The purpose of the study was to illustrate the roles of three primary indexes, namely sunlight, ventilation and stirring, in the 'bask in sunlight and dewed at night' technique on the quality of shrimp paste, through a laboratory-scale design. The results showed that changes in the post-ripening fermentation conditions, especially sunlight, was instrumental in the physicochemical properties of the shrimp paste. E-nose and SPME-GC-MS were employed to assess the volatile flavor of post-ripening fermentation. A total of 29 key volatile aroma components played a crucial role in the development of post-ripening flavor in shrimp paste with or without sunlight. Lipidomic analysis revealed that sunlight promoted the oxidative degradation of FA, resulting in the production of a diverse range of flavor compounds that imparted the unique aroma of shrimp paste. The findings of this study will establish a theoretical basic for better control of the post-ripening fermentation of traditional shrimp paste.


Subject(s)
Fermentation , Flavoring Agents , Sunlight , Taste , Volatile Organic Compounds , Animals , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Penaeidae/chemistry , Penaeidae/growth & development , Penaeidae/metabolism , Penaeidae/microbiology , Shellfish/analysis , Shellfish/microbiology , Odorants/analysis , Gas Chromatography-Mass Spectrometry , Food Handling
19.
Environ Sci Pollut Res Int ; 31(24): 34839-34858, 2024 May.
Article in English | MEDLINE | ID: mdl-38744759

ABSTRACT

The sustainable economy has shown a renewed interest in acquiring access to the resources required to promote innovative practices that favor recycling and the reuse of existing, unconsidered things over newly produced ones. The production of biohydrogen through dark anaerobic fermentation of organic wastes is one of the intriguing possibilities for replacing fossil-based fuels through the circular economy. At present, plant-derived waste from the agro-based industry is the main global concern. When these wastes are improperly disposed of in landfills, they become the habitat for several pathogens. Additionally, it contaminates surface water as a result of runoff, and the leachate that is created from the waste enters groundwater and degrades its quality. However, cellulose and hemicellulose-rich plant wastes from agriculture fields and agro-based industries have been employed as the most efficient feedstock since carbohydrates are the primary substrate for the synthesis of biohydrogen. To produce biohydrogen from plant-derived wastes on a large scale, it is necessary to explore comprehensive knowledge of lab-scale parameters and pretreatment strategies. This paper summarizes the problems associated with the improper management of plant-derived wastes and discusses the recent developments in dark fermentation and substrate pretreatment techniques with the goal of gaining significant insight into the biohydrogen production process. It also highlights the utilization of anaerobic digestate, which is left over after biohydrogen gas as feedstock for the development of value-added products such as volatile fatty acids (VFA), biochar, and biofertilizer.


Subject(s)
Waste Management , Waste Management/methods , Fermentation , Biofuels , Hydrogen , Plants , Agriculture
20.
Biotechnol Adv ; 73: 108379, 2024.
Article in English | MEDLINE | ID: mdl-38754796

ABSTRACT

Biological production of hydrogen has a tremendous potential as an environmentally sustainable technology to generate a clean fuel. Among the different available methods to produce biohydrogen, dark fermentation features the highest productivity and can be used as a means to dispose of organic waste biomass. Within this approach, Clostridia have the highest theoretical H2 production yield. Nonetheless, most strains show actual yields far lower than the theoretical maximum: improving their efficiency becomes necessary for achieving cost-effective fermentation processes. This review aims at providing a survey of the metabolic network involved in H2 generation in Clostridia and strategies used to improve it through metabolic engineering. Together with current achievements, a number of future perspectives to implement these results will be illustrated.


Subject(s)
Clostridium , Fermentation , Hydrogen , Metabolic Engineering , Hydrogen/metabolism , Metabolic Engineering/methods , Clostridium/metabolism , Clostridium/genetics , Metabolic Networks and Pathways , Biofuels
SELECTION OF CITATIONS
SEARCH DETAIL
...