Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 812
Filter
1.
Birth Defects Res ; 116(5): e2333, 2024 May.
Article in English | MEDLINE | ID: mdl-38716581

ABSTRACT

OBJECTIVE: This study aims to determine if 5,10-methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) and methionine synthase reductase (MTRR A66G) gene polymorphisms were associated with fatty acid (FA) levels in mothers of fetuses with neural tube defects (NTDs) and whether these associations were modified by environmental factors. METHODS: Plasma FA composition was assessed using capillary gas chromatography. Concentrations of studied FA were compared between 42 mothers of NTDs fetuses and 30 controls as a function of each polymorphism by the Kruskal-Wallis nonparametric test. RESULTS: In MTHFR gene C677T polymorphism, cases with (CT + TT) genotype had lower monounsaturated FAs (MUFA) and omega-3 polyunsaturated FA (n-3 PUFA) levels, but higher omega-6 polyunsaturated FAs (n-6 PUFA) and omega-6 polyunsaturated FAs: omega-3 polyunsaturated FAs (n-6:n-3) ratio levels. In MTRR gene A66G polymorphism, cases with (AG + GG) genotype had lower MUFA levels, but higher PUFA and n-6 PUFA levels. Controls with (AG + GG) genotype had lower n-6 PUFA levels. In MTHFR gene C677T polymorphism, cases with smoking spouses and (CT + TT) genotype had lower MUFA and n-3 PUFA levels, but higher PUFA, n-6 PUFA, and n-6:n-3 ratio levels. Cases with (CT + TT) genotype and who used sauna during pregnancy had lower n-3 PUFA levels. In MTRR gene A66G polymorphism, cases with (AG + GG) genotype and who used sauna during pregnancy had higher PUFA and n-6 PUFA levels. CONCLUSIONS: Further research is required to clarify the association of FA metabolism and (MTHFR, MTRR) polymorphisms with NTDs.


Subject(s)
Fatty Acids , Ferredoxin-NADP Reductase , Genetic Predisposition to Disease , Methylenetetrahydrofolate Reductase (NADPH2) , Neural Tube Defects , Polymorphism, Single Nucleotide , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Female , Neural Tube Defects/genetics , Ferredoxin-NADP Reductase/genetics , Ferredoxin-NADP Reductase/metabolism , Adult , Fatty Acids/metabolism , Polymorphism, Single Nucleotide/genetics , Pregnancy , Genotype , Case-Control Studies , Risk Factors , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/genetics , Fatty Acids, Omega-6/metabolism , Fatty Acids, Omega-6/blood , Genetic Association Studies/methods
2.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791410

ABSTRACT

Bacillus subtilis ferredoxin:NADP+ oxidoreductase (BsFNR) is a thioredoxin reductase-type FNR whose redox properties and reactivity with nonphysiological electron acceptors have been scarcely characterized. On the basis of redox reactions with 3-acetylpyridine adenine dinucleotide phosphate, the two-electron reduction midpoint potential of the flavin adenine dinucleotide (FAD) cofactor was estimated to be -0.240 V. Photoreduction using 5-deazaflavin mononucleotide (5-deazaFMN) as a photosensitizer revealed that the difference in the redox potentials between the first and second single-electron transfer steps was 0.024 V. We examined the mechanisms of the reduction of several different groups of non-physiological electron acceptors catalyzed by BsFNR. The reactivity of quinones and aromatic N-oxides toward BsFNR increased when increasing their single-electron reduction midpoint redox potentials. The reactivity of nitroaromatic compounds was lower due to their lower electron self-exchange rate, but it exhibited the same trend. A mixed single- and two-electron reduction reaction was characteristic of quinones, whereas reactions involving nitroaromatics proceeded exclusively via the one-electron reduction reaction. The oxidation of FADH• to FAD is the rate-limiting step during the oxidation of fully reduced FAD. The calculated electron transfer distances in the reaction with nitroaromatics were close to those of other FNRs including the plant-type enzymes, thus demonstrating their similar active site accessibility to low-molecular-weight oxidants despite the fundamental differences in their structures.


Subject(s)
Bacillus subtilis , Ferredoxin-NADP Reductase , Oxidation-Reduction , Ferredoxin-NADP Reductase/metabolism , Ferredoxin-NADP Reductase/chemistry , Bacillus subtilis/enzymology , Xenobiotics/metabolism , Xenobiotics/chemistry , Flavin-Adenine Dinucleotide/metabolism , Flavin-Adenine Dinucleotide/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Potentiometry , Oxidants/chemistry , Quinones/metabolism , Quinones/chemistry , Electron Transport
3.
Biochemistry (Mosc) ; 89(3): 562-573, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38648773

ABSTRACT

The contents of homocysteine (HCy), cyanocobalamin (vitamin B12), folic acid (vitamin B9), and pyridoxine (vitamin B6) were analyzed and the genotypes of the main gene polymorphisms associated with folate metabolism (C677T and A1298C of the MTHFR gene, A2756G of the MTR gene and A66G of the MTRR gene) were determined in children at the onset of multiple sclerosis (MS) (with disease duration of no more than six months), healthy children under 18 years (control group), healthy adults without neurological pathology, adult patients with MS at the onset of disease, and adult patients with long-term MS. A significant increase in the HCy levels was found in children at the MS onset compared to healthy children of the corresponding age. It was established that the content of HCy in children has a high predictive value. At the same time, an increase in the HCy levels was not accompanied by the deficiency of vitamins B6, B9, and B12 in the blood. The lack of correlation between the laboratory signs of vitamin deficiency and HCy levels may be due to the polymorphic variants of folate cycle genes. An increased HCy level should be considered as a marker of functional disorders of folate metabolism accompanying the development of pathological process in pediatric MS. Our finding can be used to develop new approaches to the prevention of demyelination in children and treatment of pediatric MS.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase , Folic Acid , Homocysteine , Methylenetetrahydrofolate Reductase (NADPH2) , Multiple Sclerosis , Humans , Homocysteine/blood , Homocysteine/metabolism , Multiple Sclerosis/blood , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Folic Acid/blood , Folic Acid/metabolism , Female , Male , Child , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/deficiency , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Adult , Adolescent , Vitamin B Deficiency/complications , Vitamin B Deficiency/metabolism , Vitamin B Deficiency/blood , Ferredoxin-NADP Reductase/genetics , Ferredoxin-NADP Reductase/metabolism , Vitamin B 12/blood , Vitamin B 12/metabolism , Age of Onset
4.
FEBS Lett ; 598(6): 670-683, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38433717

ABSTRACT

Ferredoxin/flavodoxin-NADPH reductases (FPRs) catalyze the reversible electron transfer between NADPH and ferredoxin/flavodoxin. The Acinetobacter sp. Ver3 isolated from high-altitude Andean lakes contains two isoenzymes, FPR1ver3 and FPR2ver3. Absorption spectra of these FPRs revealed typical features of flavoproteins, consistent with the use of FAD as a prosthetic group. Spectral differences indicate distinct electronic arrangements for the flavin in each enzyme. Steady-state kinetic measurements show that the enzymes display catalytic efficiencies in the order of 1-6 µm-1·s-1, although FPR1ver3 exhibited higher kcat values compared to FPR2ver3. When flavodoxinver3 was used as a substrate, both reductases exhibited dissimilar behavior. Moreover, only FPR1ver3 is induced by oxidative stimuli, indicating that the polyextremophile Ver3 has evolved diverse strategies to cope with oxidative environments.


Subject(s)
Ferredoxins , Flavodoxin , Flavodoxin/metabolism , NADP/metabolism , Ferredoxins/metabolism , Ferredoxin-NADP Reductase/chemistry , Ferredoxin-NADP Reductase/metabolism , Protein Isoforms , Kinetics
5.
Chembiochem ; 25(5): e202300738, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38141230

ABSTRACT

Adrenodoxin reductase (AdxR) plays a pivotal role in electron transfer, shuttling electrons between NADPH and iron/sulfur adrenodoxin proteins in mitochondria. This electron transport system is essential for P450 enzymes involved in various endogenous biomolecules biosynthesis. Here, we present an in-depth examination of the kinetics governing the reduction of human AdxR by NADH or NADPH. Our results highlight the efficiency of human AdxR when utilizing NADPH as a flavin reducing agent. Nevertheless, akin to related flavoenzymes such as cytochrome P450 reductase, we observe that low NADPH concentrations hinder flavin reduction due to intricate equilibrium reactions between the enzyme and its substrate/product. Remarkably, the presence of MgCl2 suppresses this complex kinetic behavior by decreasing NADPH binding to oxidized AdxR, effectively transforming AdxR into a classical Michaelis-Menten enzyme. We propose that the addition of MgCl2 may be adapted for studying the reductive half-reactions of other flavoenzymes with NADPH. Furthermore, in vitro experiments provide evidence that the reduction of the yeast flavin monooxygenase Coq6p relies on an electron transfer chain comprising NADPH-AdxR-Yah1p-Coq6p, where Yah1p shuttles electrons between AdxR and Coq6p. This discovery explains the previous in vivo observation that Yah1p and the AdxR homolog, Arh1p, are required for the biosynthesis of coenzyme Q in yeast.


Subject(s)
Ferredoxin-NADP Reductase , Ferredoxins , Humans , Ferredoxin-NADP Reductase/metabolism , NADP/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquinone , Flavins/metabolism
6.
Bioelectrochemistry ; 153: 108459, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37263168

ABSTRACT

In this study, photobioelectrodes based on a ferredoxin-modified photosystem I (PSI-Fd) from Thermosynechococcus vestitus have been prepared and characterized regarding the direct electron transfer between PSI-Fd and the electrode. The modified PSI with the covalently linked ferredoxin (Fd) on its stromal side has been immobilized on indium-tin-oxide (ITO) electrodes with a 3-dimensional inverse-opal structure. Compared to native PSI, a lower photocurrent and a lower onset potential of the cathodic photocurrent have been observed. This can be mainly attributed to a different adsorption behavior of the PSI-Fd-construct onto the 3D ITO. However, the overall behavior is rather similar to PSI. First experiments have been performed for applying this PSI-Fd photobioelectrode for enzyme-driven NADPH generation. By coupling the electrode system with ferredoxin-NADP+-reductase (FNR), first hints for the usage of photoelectrons for biosynthesis have been collected by verifying NADPH generation.


Subject(s)
Ferredoxins , Photosystem I Protein Complex , Photosystem I Protein Complex/chemistry , Ferredoxins/chemistry , Ferredoxins/metabolism , NADP/metabolism , Electron Transport , Ferredoxin-NADP Reductase/chemistry , Ferredoxin-NADP Reductase/metabolism , Electrodes
7.
J Biochem ; 174(4): 327-334, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37311065

ABSTRACT

Ferredoxin-NADP+ reductase (FNR) in plants receives electrons from ferredoxin (Fd) and converts NADP+ to NADPH. The affinity between FNR and Fd is weakened by the allosteric binding of NADP(H) on FNR, which is considered as a part of negative cooperativity. We have been investigating the molecular mechanism of this phenomenon and proposed that the NADP(H)-binding signal is transferred to the Fd-binding region across the two domains of FNR, NADP(H)-binding domain and FAD-binding domain. In this study, we analyzed the effect of altering the inter-domain interaction of FNR on the negative cooperativity. Four site-directed FNR mutants at the inter-domain region were prepared, and their NADPH-dependent changes in the Km for Fd and physical binding ability to Fd were investigated. Two mutants, in which an inter-domain hydrogen bond was changed to a disulfide bond (FNR D52C/S208C) and an inter-domain salt bridge was lost (FNR D104N), were shown to suppress the negative cooperativity by using kinetic analysis and Fd-affinity chromatography. These results showed that the inter-domain interaction of FNR is important for the negative cooperativity, suggesting that the allosteric NADP(H)-binding signal is transferred to Fd-binging region by conformational changes involving inter-domain interactions of FNR.


Subject(s)
Ferredoxin-NADP Reductase , Ferredoxins , Ferredoxin-NADP Reductase/genetics , Ferredoxin-NADP Reductase/metabolism , NADP/metabolism , Ferredoxins/metabolism , Kinetics
8.
Chembiochem ; 24(14): e202300025, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37093822

ABSTRACT

Photosynthetic organisms like plants, algae, and cyanobacteria use light for the regeneration of dihydronicotinamide dinucleotide phosphate (NADPH). The process starts with the light-driven oxidation of water by photosystem II (PSII) and the released electrons are transferred via the cytochrome b6 f complex towards photosystem I (PSI). This membrane protein complex is responsible for the light-driven reduction of the soluble electron mediator ferredoxin (Fd), which passes the electrons to ferredoxin NADP+ reductase (FNR). Finally, NADPH is regenerated by FNR at the end of the electron transfer chain. In this study, we established a clickable fusion system for in vitro NADPH regeneration with PSI-Fd and PSI-Fd-FNR, respectively. For this, we fused immunity protein 7 (Im7) to the C-terminus of the PSI-PsaE subunit in the cyanobacterium Synechocystis sp. PCC 6803. Furthermore, colicin DNase E7 (E7) fusion chimeras of Fd and FNR with varying linker domains were expressed in Escherichia coli. Isolated Im7-PSI was coupled with the E7-Fd or E7-Fd-FNR fusion proteins through high-affinity binding of the E7/Im7 protein pair. The corresponding complexes were tested for NADPH regeneration capacity in comparison to the free protein systems demonstrating the general applicability of the strategy.


Subject(s)
Photosystem I Protein Complex , Synechocystis , NADP/metabolism , Photosystem I Protein Complex/chemistry , Photosystem I Protein Complex/metabolism , Ferredoxin-NADP Reductase/metabolism , Ferredoxins/metabolism , Electron Transport
9.
Mol Cell Proteomics ; 22(4): 100521, 2023 04.
Article in English | MEDLINE | ID: mdl-36858286

ABSTRACT

Lysine methylation is a conserved and dynamic regulatory posttranslational modification performed by lysine methyltransferases (KMTs). KMTs catalyze the transfer of mono-, di-, or tri-methyl groups to substrate proteins and play a critical regulatory role in all domains of life. To date, only one KMT has been identified in cyanobacteria. Here, we tested all of the predicted KMTs in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis), and we biochemically characterized sll1526 that we termed cKMT1 (cyanobacterial lysine methyltransferase 1) and determined that it can catalyze lysine methylation both in vivo and in vitro. Loss of cKMT1 alters photosynthetic electron transfer in Synechocystis. We analyzed cKMT1-regulated methylation sites in Synechocystis using a timsTOF Pro instrument. We identified 305 class I lysine methylation sites within 232 proteins, and of these, 80 methylation sites in 58 proteins were hypomethylated in ΔcKMT1 cells. We further demonstrated that cKMT1 could methylate ferredoxin-NADP(+) oxidoreductase (FNR) and its potential sites of action on FNR were identified. Amino acid residues H118 and Y219 were identified as key residues in the putative active site of cKMT1 as indicated by structure simulation, site-directed mutagenesis, and KMT activity measurement. Using mutations that mimic the unmethylated forms of FNR, we demonstrated that the inability to methylate K139 residues results in a decrease in the redox activity of FNR and affects energy transfer in Synechocystis. Together, our study identified a new KMT in Synechocystis and elucidated a methylation-mediated molecular mechanism catalyzed by cKMT1 for the regulation of energy transfer in cyanobacteria.


Subject(s)
Cyanobacteria , Ferredoxins , Synechocystis , Energy Transfer , Ferredoxin-NADP Reductase/chemistry , Ferredoxin-NADP Reductase/genetics , Ferredoxin-NADP Reductase/metabolism , Ferredoxins/chemistry , Ferredoxins/metabolism , Lysine , Methyltransferases/metabolism , NADP/metabolism , Synechocystis/metabolism , Cyanobacteria/metabolism
10.
J Phys Chem Lett ; 14(4): 1096-1102, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36700861

ABSTRACT

The fully reduced flavin cofactor (FADred) in ferredoxin-NADP+ oxidoreductase (FNR) is a functional intermediate that displays different catalytic and steady-state spectral properties for enzymes from Bacillus subtilis (BsFNR), Chlorobaculum tepidum (CtFNR), and Rhodopseudomonas palustris (RpFNR). Using ultrafast spectroscopy, we reveal that at physiological pH, photoexcited FADred in BsFNR and RpFNR exhibits unprecedentedly fast decays (dominantly in 6 and 8 ps, respectively), whereas in CtFNR the decay is much slower (∼400 ps), as in other flavoproteins. Correlating these observations with the protonation states of FADred and the dynamic properties of the protein environment, we conclude that the excited state of neutral FADred can be intrinsically short-lived even in proteins, contrasting with the well-documented behavior of the anionic form that systematically displays markedly increased excited-state lifetime upon binding to proteins. This work provides new insight into the photochemistry of fully reduced flavins, which are emerging as functional initial states in bioengineered photocatalysts.


Subject(s)
Chlorobi , Ferredoxins , Ferredoxins/metabolism , Chlorobi/metabolism , NADP/metabolism , Flavins/metabolism , Ferredoxin-NADP Reductase/chemistry , Ferredoxin-NADP Reductase/metabolism , Oxidation-Reduction , Kinetics
11.
Proc Natl Acad Sci U S A ; 120(1): e2214123120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574703

ABSTRACT

Isocitrate dehydrogenase 1 (IDH1) naturally copurifies and crystallizes in a resting state with a molecule of its exchangeable cofactor, NADP+/NADPH, bound in each monomer of the homodimer. We report electrochemical studies with IDH1 that exploit this property to reveal the massive advantage of nanoconfinement to increase the efficiency of multistep enzyme-catalyzed cascade reactions. When coloaded with ferredoxin NADP+ reductase in a nanoporous conducting indium tin oxide film, IDH1 carries out the complete electrochemical oxidation of 6 mM isocitrate (in 4mL) to 2-oxoglutarate (2OG), using only the NADP(H) that copurified with IDH1 and was carried into the electrode pores as cargo-the system remains active for days. The entrapped cofactor, now quantifiable by cyclic voltammetry, undergoes ~160,000 turnovers during the process. The results from a variety of electrocatalysis experiments imply that the local concentrations of the two nanoconfined enzymes lie around the millimolar range. The combination of crowding and entrapment results in a 102 to 103-fold increase in the efficiency of NADP(H) redox cycling. The ability of the method to drive cascade catalysis in either direction (oxidation or reduction) and remove and replace substrates was exploited to study redox-state dependent differences in cofactor binding between wild-type IDH1 and the cancer-linked R132H variant that catalyzes the "gain of function" reduction of 2OG to 2-hydroxyglutarate instead of isocitrate oxidation. The combined results demonstrate the power of nanoconfinement for facilitating multistep enzyme catalysis (in this case energized and verified electrochemically) and reveal insights into the dynamic role of nicotinamide cofactors as redox (hydride) carriers.


Subject(s)
Ferredoxin-NADP Reductase , Isocitrate Dehydrogenase , NADP/metabolism , Biocatalysis , Isocitrates , Oxidation-Reduction , Ferredoxin-NADP Reductase/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Kinetics
12.
Plant Cell Environ ; 46(4): 1195-1206, 2023 04.
Article in English | MEDLINE | ID: mdl-36138316

ABSTRACT

Leaf-form ferredoxin-NADP+ oxidoreductases (LFNRs) function in the last step of the photosynthetic electron transport chain, exist as soluble proteins in the chloroplast stroma and are weakly associated with thylakoids or tightly anchored to chloroplast membranes. Arabidopsis thaliana has two LFNRs, and the chloroplast proteins AtTROL and AtTIC62 participate in anchoring AtLFNRs to the thylakoid membrane. By contrast, the membrane anchoring mechanism of rice (Oryza sativa) LFNRs has not been elucidated. Here, we investigated the membrane-anchoring mechanism of LFNRs and its physiological roles in rice. We characterized the rice protein OsTROL1 based on its homology to AtTROL. We determined that OsTROL1 is also a thylakoid membrane anchor and its loss leads to a compensatory increase in OsTIC62. OsLFNR1 attachment through a membrane anchor depends on OsLFNR2, unlike the Arabidopsis counterparts. In addition, OsTIC62 was more highly expressed in the dark than under light conditions, consistent with the increased membrane binding of OsLFNR in the dark. Moreover, we observed reciprocal stabilization between OsLFNRs and their membrane anchors. In addition, unlike in Arabidopsis, the loss of LFNR membrane anchor affects photosynthesis in rice. Overall, our study sheds light on the mechanisms anchoring LFNRs to membranes in rice and highlights differences with Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oryza , Arabidopsis/metabolism , Oryza/metabolism , Arabidopsis Proteins/metabolism , Ferredoxins/metabolism , NADP/metabolism , Chloroplasts/metabolism , Photosynthesis , Ferredoxin-NADP Reductase/metabolism , Plant Leaves/metabolism
13.
Int J Mol Sci ; 23(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36232598

ABSTRACT

Nutritional status and gene polymorphisms of one-carbon metabolism confer a well-known interaction that in pregnant women may affect embryo viability and the health of the newborn. Folate metabolism directly impacts nucleotide synthesis and methylation, which is of increasing interest in the reproductive medicine field. Studies assessing the genetic influence of folate metabolism on IVF treatments have currently been performed in women using their own oocytes. Most of these patients seeking to have a child or undergoing IVF treatments are advised to preventively intake folate supplies that restore known metabolic imbalances, but the treatments could lead to the promotion of specific enzymes in specific women, depending on their genetic variance. In the present study, we assess the influence of candidate gene variants related to folate metabolism, such as Serine Hydroxymethyltransferase 1 SHMT1 (rs1979276 and rs1979277), Betaine-Homocysteine S-Methyltransferase BHMT (rs3733890), Methionine synthase reductase MTRR (rs1801394), Methylenetetrahydrofolate reductase MTHFR (rs1801131 and rs1801133), methionine synthase MTR (rs12749581), ATP Binding Cassette Subfamily B Member 1 ABCB1 (rs1045642) and folate receptor alpha FOLR1 (rs2071010) on the success of IVF treatment performed in women being recipients of donated oocytes. The implication of such gene variants seems to have no direct impact on pregnancy consecution after IVF; however, several gene variants could influence pregnancy loss events or pregnancy maintenance, as consequence of folic acid fortification.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase , Methylenetetrahydrofolate Reductase (NADPH2) , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Adenosine Triphosphate , Betaine-Homocysteine S-Methyltransferase/genetics , Betaine-Homocysteine S-Methyltransferase/metabolism , Carbon/metabolism , Female , Ferredoxin-NADP Reductase/genetics , Ferredoxin-NADP Reductase/metabolism , Fertilization in Vitro , Folate Receptor 1/genetics , Folic Acid/metabolism , Genotype , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Nucleotides/metabolism , Oocytes/metabolism , Polymorphism, Single Nucleotide , Pregnancy
14.
Genes (Basel) ; 13(10)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36292614

ABSTRACT

Introduction: Metabolism methionine and of folate play a vital function in cellular methylation reactions, DNA synthesis and epigenetic process.However, polymorphisms of methionine have received much attention in recent medical genetics research. Objectives: To ascertain whether the common polymorphisms of the MTRR (Methionine Synthase Reductase) A66G gene could play a role in affecting susceptibility to Chronic Myeloid Leukemia (CML) in Sudanese individuals. Methods: In a case-controlled study, we extracted and analyzed DNA from 200 CML patients and 100 healthy control subjects by the PCR-RFLP method. Results: We found no significant difference in age orgender between the patient group and controls. The MTRR A66G genotypes were distributed based on the Hardy-Weinberg equilibrium (p > 0.05). The variation of MTRR A66G was less significantly frequent in cases with CML (68.35%) than in controls (87%) (OR = 0.146, 95% CI = 0.162−0.662, p < 0.002). Additionally, AG and GG genotypes and G allele were reducing the CML risk (Odds ratio [OR] = 0.365; 95% CI [0.179−0.746]; p = 0.006; OR = 0.292; 95% CI [0.145−0.590]; p = 0.001 and OR = 0.146; 95% CI [0.162−0.662]; p = 0.002 and OR = 2.0; 95% CI [1.3853−2.817]; respectively, (p = 0.000)). Conclusions: Our data demonstrated that heterozygous and homozygous mutant genotypes of MTRR polymorphisms were associated with decreased risk of developing CML in the Sudanese population.


Subject(s)
Genetic Predisposition to Disease , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Ferredoxin-NADP Reductase/genetics , Ferredoxin-NADP Reductase/metabolism , Folic Acid , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Methionine/genetics
15.
Chem Commun (Camb) ; 58(83): 11713-11716, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36178369

ABSTRACT

The unique ability of the 'electrochemical leaf' (e-Leaf) to drive and control nanoconfined enzyme cascades bidirectionally, while directly monitoring their rate in real-time as electrical current, is exploited to achieve deracemisation and stereoinversion of secondary alcohols using a single electrode in one pot. Two alcohol dehydrogenase enzymes with opposing enantioselectivities, from Thermoanaerobacter ethanolicus (selective for S) and Lactobacillus kefir (selective for R) are driven bidirectionally via coupling to the fast and quasi-reversible interconversion of NADP+/NADPH catalysed by ferredoxin NADP+ reductase - all enzymes being co-entrapped in a nanoporous indium tin oxide electrode. Activity of the Lactobacillus kefir enzyme depends on the binding of a non-catalytic Mg2+, allowing it to be switched off after an oxidative half-cycle, by adding EDTA - the S-selective enzyme, with a tightly-bound Zn2+, remaining fully active. Racemate → S or R → S conversions are thus achieved in high yield with unprecedented ease.


Subject(s)
Alcohol Dehydrogenase , Ferredoxins , Alcohol Dehydrogenase/metabolism , Edetic Acid , Electrochemistry , Ferredoxin-NADP Reductase/metabolism , Lactobacillus , NADP/metabolism
16.
Protein Pept Lett ; 29(12): 1099-1107, 2022.
Article in English | MEDLINE | ID: mdl-36165521

ABSTRACT

BACKGROUND: The ionic interactions play an important role in the stabilization of the native conformation of proteins. Toxoplasma gondii Ferredoxin NADP+ Reductase (TgFNR) remains stable at pH 4.0. However, such modulation of ionic interactions leads to compaction and non-cooperativity in its folding. OBJECTIVE: To gain insights into the role of ionic interactions in the modulation of structure and thermodynamic stability of TgFNR. METHODS: Protein preparations, circular dichroism and fluorescence spectroscopy were used to determine salt-induced changes in the structure and stability of TgFNR. RESULTS: The kosmotropic salts (sodium fluoride and sodium sulphate) appear to induce the biphasic response on the structure and stability of TgFNR. At pH about 4.0, the addition of low concentrations of kosmotropic salts significantly perturbs the existing native-like secondary structure of TgFNR, whereas higher quantities of salt reversed the denaturing impact. This is a one-of-a-kind situation we are unaware of in any other protein. The urea-induced unfolding of TgFNR in the presence of a low dose of salt (100 mM) drastically affected the protein's thermodynamic stability at neutral pH. The increased salt concentrations, on the other hand, reversed the destabilizing effect. CONCLUSION: Our findings imply that electrostatic interactions are exceptionally significant for the TgFNR stability, however, render highly unusual behavior of Hofmeister series salts, indicating a possible crucial role of salt bridges in the stabilization of different conformations of the protein.


Subject(s)
Ferredoxin-NADP Reductase , Toxoplasma , Ferredoxin-NADP Reductase/chemistry , Ferredoxin-NADP Reductase/metabolism , Ferredoxins/metabolism , NADP/metabolism , Toxoplasma/metabolism , Salts/pharmacology , Salts/chemistry , Salts/metabolism , Protein Folding , Ions
17.
J Biochem ; 172(6): 377-383, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36162819

ABSTRACT

Ferredoxin-NADP+ reductase (FNR) in plants receives electrons from ferredoxin (Fd) and converts NADP+ to NADPH at the end of the photosynthetic electron transfer chain. We previously showed that the interaction between FNR and Fd was weakened by the allosteric binding of NADP(H) on FNR, which was considered as a part of negative cooperativity. In this study, we investigated the molecular mechanism of this phenomenon using maize (Zea mays L.) FNR and Fd, as the 3D structure of this Fd:FNR complex is available. Site-specific mutants of several amino acid residues on the Fd:FNR interface were analysed for the effect on the negative cooperativity, by kinetic analysis of Fd:FNR electron transfer activity and by Fd-affinity chromatography. Mutations of Fd Arg40Gln and FNR Glu154Gln that disrupt one of the salt bridges in the Fd:FNR complex suppressed the negative cooperativity, indicating the involvement of the ion pair of Fd Arg40 and FNR Glu154 in the mechanism of the negative cooperativity. Unexpectedly, either mutation of Fd Arg40Gln or FNR Glu154Gln tends to increase the affinity between Fd and FNR, suggesting the role of this ion pair in the regulation of the Fd:FNR affinity by NADPH, rather than the stabilization of the Fd:FNR complex.


Subject(s)
Ferredoxin-NADP Reductase , Ferredoxins , Ferredoxins/genetics , Ferredoxins/metabolism , Ferredoxin-NADP Reductase/genetics , Ferredoxin-NADP Reductase/metabolism , NADP/metabolism , Kinetics , Amino Acid Sequence , Zea mays/genetics
18.
Nat Commun ; 13(1): 4691, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35948538

ABSTRACT

Clostridium acetobutylicum is a promising biocatalyst for the renewable production of n-butanol. Several metabolic strategies have already been developed to increase butanol yields, most often based on carbon pathway redirection. However, it has previously demonstrated that the activities of both ferredoxin-NADP+ reductase and ferredoxin-NAD+ reductase, whose encoding genes remain unknown, are necessary to produce the NADPH and the extra NADH needed for butanol synthesis under solventogenic conditions. Here, we purify, identify and partially characterize the proteins responsible for both activities and demonstrate the involvement of the identified enzymes in butanol synthesis through a reverse genetic approach. We further demonstrate the yield of butanol formation is limited by the level of expression of CA_C0764, the ferredoxin-NADP+ reductase encoding gene and the bcd operon, encoding a ferredoxin-NAD+ reductase. The integration of these enzymes into metabolic engineering strategies introduces opportunities for developing a homobutanologenic C. acetobutylicum strain.


Subject(s)
Clostridium acetobutylicum , Butanols/metabolism , Clostridium/metabolism , Clostridium acetobutylicum/genetics , Clostridium acetobutylicum/metabolism , Electrons , Fermentation , Ferredoxin-NADP Reductase/metabolism , Ferredoxins/metabolism , NAD/metabolism , NADP/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism
19.
FEBS Open Bio ; 12(9): 1677-1687, 2022 09.
Article in English | MEDLINE | ID: mdl-35689519

ABSTRACT

Arabidopsis thaliana heme oxygenase-1 (AtHO-1), a metabolic enzyme in the heme degradation pathway, serves as a prototype for study of the bilin-related functions in plants. Past biological analyses revealed that AtHO-1 requires ferredoxin-NADP+ reductase (FNR) and ferredoxin for its enzymatic activity. Here, we characterized the binding and degradation of heme by AtHO-1, and found that ferredoxin is a dispensable component of the reducing system that provides electrons for heme oxidation. Furthermore, we reported the crystal structure of heme-bound AtHO-1, which demonstrates both conserved and previously undescribed features of plant heme oxygenases. Finally, the electron transfer pathway from FNR to AtHO-1 is suggested based on the known structural information.


Subject(s)
Arabidopsis , Ferredoxins , Arabidopsis/metabolism , Ferredoxin-NADP Reductase/metabolism , Ferredoxins/metabolism , Heme/chemistry , Heme/metabolism , Heme Oxygenase-1/metabolism
20.
Plant Physiol ; 189(4): 2128-2143, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35385122

ABSTRACT

In oxygenic photosynthesis, NADP+ acts as the final acceptor of the photosynthetic electron transport chain and receives electrons via the thylakoid membrane complex photosystem I (PSI) to synthesize NAPDH by the enzyme ferredoxin:NADP+ oxidoreductase. The NADP+/NADPH redox couple is essential for cellular metabolism and redox homeostasis. However, how the homeostasis of these two dinucleotides is integrated into chloroplast biogenesis remains largely unknown. Here, we demonstrate the important role of NADP+ supply for the biogenesis of PSI by examining the nad kinase 2 (nadk2) mutant in Arabidopsis (Arabidopsis thaliana), which demonstrates disrupted synthesis of NADP+ from NAD+ in chloroplasts. Although the nadk2 mutant is highly sensitive to light, the reaction center of photosystem II (PSII) is only mildly and likely only secondarily affected compared to the wild-type. Our studies revealed that the primary limitation of photosynthetic electron transport, even at low light intensities, occurs at PSI rather than at PSII in the nadk2 mutant. Remarkably, this primarily impairs the de novo synthesis of the two PSI core subunits PsaA and PsaB, leading to the deficiency of the PSI complex in the nadk2 mutant. This study reveals an unexpected molecular link between NADK activity and mRNA translation of psaA/B in chloroplasts that may mediate a feedback mechanism to adjust de novo biosynthesis of the PSI complex in response to a variable NADPH demand. This adjustment may be important to protect PSI from photoinhibition under conditions that favor acceptor side limitation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Electron Transport , Ferredoxin-NADP Reductase/metabolism , Light , NADP/metabolism , Photosynthesis , Photosystem I Protein Complex/genetics , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...