Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.359
Filter
1.
Elife ; 122024 May 28.
Article in English | MEDLINE | ID: mdl-38805550

ABSTRACT

Human H3N2 influenza viruses are subject to rapid antigenic evolution which translates into frequent updates of the composition of seasonal influenza vaccines. Despite these updates, the effectiveness of influenza vaccines against H3N2-associated disease is suboptimal. Seasonal influenza vaccines primarily induce hemagglutinin-specific antibody responses. However, antibodies directed against influenza neuraminidase (NA) also contribute to protection. Here, we analysed the antigenic diversity of a panel of N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. The antigenic breadth of these NAs was determined based on the NA inhibition (NAI) of a broad panel of ferret and mouse immune sera that were raised by infection and recombinant N2 NA immunisation. This assessment allowed us to distinguish at least four antigenic groups in the N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. Computational analysis further revealed that the amino acid residues in N2 NA that have a major impact on susceptibility to NAI by immune sera are in proximity of the catalytic site. Finally, a machine learning method was developed that allowed to accurately predict the impact of mutations that are present in our N2 NA panel on NAI. These findings have important implications for the renewed interest to develop improved influenza vaccines based on the inclusion of a protective NA antigen formulation.


Two proteins, the hemagglutinin and the neuraminidase, protrude from the surface of the influenza virus. Their detection by the immune system allows the host organism to mount defences against the viral threat. The virus evolves in response to this pressure, which manifests as changes in the appearance of its hemagglutinin and neuraminidase. This process, known as antigenic drift, leads to the proteins evading detection. It is also why flu vaccines require frequent updates, as they rely on 'training' the immune system to recognise the most important strains in circulation ­ primarily by exposing it to appropriate versions of hemagglutinin. While the antigenic drift of hemagglutinin has been extensively studied, much less is known about how the neuraminidase accumulates mutations, and how these affect the immune response. To investigate this question, Catani et al. selected 43 genetically distant neuraminidases from human viral samples isolated between 2009 and 2017. Statistical analyses were applied to define their relatedness, revealing that a group of closely related neuraminidases predominated from 2009 to 2015, before they were being taken over by a second group. A third group, which was identified in viruses isolated in 2013, was remarkably close to the neuraminidase of strains that circulated in the late 1990s. The fourth and final group of neuraminidases was derived from influenza viruses that normally circulate in pigs but can also occasionally infect humans. Next, Catani et al. examined the immune response that these 43 neuraminidases could elicit in mice, as well as in ferrets ­ the animal most traditionally used in influenza research. This allowed them to pinpoint which changes in the neuraminidase sequences were important to escape recognition by the host. Data obtained from the two model species were comparable, suggesting that these experiments could be conducted on mice going forward, which are easier to work with than ferrets. Finally, Catani et al. used machine learning to build a computational model that could predict how strongly the immune system would respond to a specific neuraminidase variant. These findings could help guide the development of new vaccines that include neuraminidases tailored to best prime and train the immune system against a larger variety of strains. This may aid the development of 'supra-seasonal' vaccines that protect against a broad range of influenza viruses, reducing the need for yearly updates.


Subject(s)
Antigens, Viral , Ferrets , Influenza A Virus, H3N2 Subtype , Influenza, Human , Neuraminidase , Neuraminidase/immunology , Neuraminidase/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/enzymology , Humans , Animals , Antigens, Viral/immunology , Antigens, Viral/genetics , Mice , Influenza, Human/prevention & control , Influenza, Human/immunology , Influenza, Human/virology , Antibodies, Viral/immunology , Influenza Vaccines/immunology , Antigenic Variation , Viral Proteins/immunology , Viral Proteins/genetics , Viral Proteins/chemistry , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology
2.
Nat Commun ; 15(1): 4145, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773083

ABSTRACT

During development, cortical activity is organized into distributed modular patterns that are a precursor of the mature columnar functional architecture. Theoretically, such structured neural activity can emerge dynamically from local synaptic interactions through a recurrent network with effective local excitation with lateral inhibition (LE/LI) connectivity. Utilizing simultaneous widefield calcium imaging and optogenetics in juvenile ferret cortex prior to eye opening, we directly test several critical predictions of an LE/LI mechanism. We show that cortical networks transform uniform stimulations into diverse modular patterns exhibiting a characteristic spatial wavelength. Moreover, patterned optogenetic stimulation matching this wavelength selectively biases evoked activity patterns, while stimulation with varying wavelengths transforms activity towards this characteristic wavelength, revealing a dynamic compromise between input drive and the network's intrinsic tendency to organize activity. Furthermore, the structure of early spontaneous cortical activity - which is reflected in the developing representations of visual orientation - strongly overlaps that of uniform opto-evoked activity, suggesting a common underlying mechanism as a basis for the formation of orderly columnar maps underlying sensory representations in the brain.


Subject(s)
Ferrets , Nerve Net , Optogenetics , Animals , Nerve Net/physiology , Photic Stimulation , Visual Cortex/physiology , Visual Cortex/growth & development , Neurons/physiology , Calcium/metabolism , Cerebral Cortex/physiology , Male
3.
Hear Res ; 447: 109025, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733712

ABSTRACT

Cortical acetylcholine (ACh) release has been linked to various cognitive functions, including perceptual learning. We have previously shown that cortical cholinergic innervation is necessary for accurate sound localization in ferrets, as well as for their ability to adapt with training to altered spatial cues. To explore whether these behavioral deficits are associated with changes in the response properties of cortical neurons, we recorded neural activity in the primary auditory cortex (A1) of anesthetized ferrets in which cholinergic inputs had been reduced by making bilateral injections of the immunotoxin ME20.4-SAP in the nucleus basalis (NB) prior to training the animals. The pattern of spontaneous activity of A1 units recorded in the ferrets with cholinergic lesions (NB ACh-) was similar to that in controls, although the proportion of burst-type units was significantly lower. Depletion of ACh also resulted in more synchronous activity in A1. No changes in thresholds, frequency tuning or in the distribution of characteristic frequencies were found in these animals. When tested with normal acoustic inputs, the spatial sensitivity of A1 neurons in the NB ACh- ferrets and the distribution of their preferred interaural level differences also closely resembled those found in control animals, indicating that these properties had not been altered by sound localization training with one ear occluded. Simulating the animals' previous experience with a virtual earplug in one ear reduced the contralateral preference of A1 units in both groups, but caused azimuth sensitivity to change in slightly different ways, which may reflect the modest adaptation observed in the NB ACh- group. These results show that while ACh is required for behavioral adaptation to altered spatial cues, it is not required for maintenance of the spectral and spatial response properties of A1 neurons.


Subject(s)
Acoustic Stimulation , Auditory Cortex , Basal Forebrain , Ferrets , Animals , Auditory Cortex/metabolism , Auditory Cortex/physiopathology , Basal Forebrain/metabolism , Sound Localization , Acetylcholine/metabolism , Male , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Auditory Pathways/physiopathology , Auditory Pathways/metabolism , Female , Immunotoxins/toxicity , Basal Nucleus of Meynert/metabolism , Basal Nucleus of Meynert/physiopathology , Basal Nucleus of Meynert/pathology , Neurons/metabolism , Auditory Threshold , Adaptation, Physiological , Behavior, Animal
4.
Sci Transl Med ; 16(745): eadj4685, 2024 May.
Article in English | MEDLINE | ID: mdl-38691617

ABSTRACT

Current seasonal influenza virus vaccines induce responses primarily against immunodominant but highly plastic epitopes in the globular head of the hemagglutinin (HA) glycoprotein. Because of viral antigenic drift at these sites, vaccines need to be updated and readministered annually. To increase the breadth of influenza vaccine-mediated protection, we developed an antigenically complex mixture of recombinant HAs designed to redirect immune responses to more conserved domains of the protein. Vaccine-induced antibodies were disproportionally redistributed to the more conserved stalk of the HA without hindering, and in some cases improving, antibody responses against the head domain. These improved responses led to increased protection against homologous and heterologous viral challenges in both mice and ferrets compared with conventional vaccine approaches. Thus, antigenically complex protein mixtures can at least partially overcome HA head domain antigenic immunodominance and may represent a step toward a more universal influenza vaccine.


Subject(s)
Ferrets , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Vaccination , Animals , Influenza Vaccines/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Mice , Antibodies, Viral/immunology , Humans , Influenza, Human/prevention & control , Influenza, Human/immunology , Antigens, Viral/immunology , Female , Mice, Inbred BALB C
5.
Nat Commun ; 15(1): 4112, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750016

ABSTRACT

Outbreaks of highly pathogenic H5N1 clade 2.3.4.4b viruses in farmed mink and seals combined with isolated human infections suggest these viruses pose a pandemic threat. To assess this threat, using the ferret model, we show an H5N1 isolate derived from mink transmits by direct contact to 75% of exposed ferrets and, in airborne transmission studies, the virus transmits to 37.5% of contacts. Sequence analyses show no mutations were associated with transmission. The H5N1 virus also has a low infectious dose and remains virulent at low doses. This isolate carries the adaptive mutation, PB2 T271A, and reversing this mutation reduces mortality and airborne transmission. This is the first report of a H5N1 clade 2.3.4.4b virus exhibiting direct contact and airborne transmissibility in ferrets. These data indicate heightened pandemic potential of the panzootic H5N1 viruses and emphasize the need for continued efforts to control outbreaks and monitor viral evolution.


Subject(s)
Ferrets , Influenza A Virus, H5N1 Subtype , Mink , Orthomyxoviridae Infections , Animals , Mink/virology , Ferrets/virology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/veterinary , Risk Assessment , Humans , Mutation , Viral Proteins/genetics , Viral Proteins/metabolism , Female , Disease Outbreaks/veterinary , Male , Influenza, Human/virology , Influenza, Human/transmission
6.
Sci Adv ; 10(19): eadk9137, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728395

ABSTRACT

Obesity, and the associated metabolic syndrome, is a risk factor for increased disease severity with a variety of infectious agents, including influenza virus. Yet, the mechanisms are only partially understood. As the number of people, particularly children, living with obesity continues to rise, it is critical to understand the role of host status on disease pathogenesis. In these studies, we use a diet-induced obese ferret model and tools to demonstrate that, like humans, obesity resulted in notable changes to the lung microenvironment, leading to increased clinical disease and viral spread to the lower respiratory tract. The decreased antiviral responses also resulted in obese animals shedding higher infectious virus for a longer period, making them more likely to transmit to contacts. These data suggest that the obese ferret model may be crucial to understanding obesity's impact on influenza disease severity and community transmission and a key tool for therapeutic and intervention development for this high-risk population.


Subject(s)
Disease Models, Animal , Ferrets , Obesity , Orthomyxoviridae Infections , Animals , Obesity/virology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Lung/virology , Lung/pathology , Severity of Illness Index , Diet , Humans , Virus Shedding , Influenza, Human/transmission , Influenza, Human/virology
7.
Sci Data ; 11(1): 510, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760422

ABSTRACT

Data from influenza A virus (IAV) infected ferrets provides invaluable information towards the study of novel and emerging viruses that pose a threat to human health. This gold standard model can recapitulate many clinical signs of infection present in IAV-infected humans, support virus replication of human, avian, swine, and other zoonotic strains without prior adaptation, and permit evaluation of virus transmissibility by multiple modes. While ferrets have been employed in risk assessment settings for >20 years, results from this work are typically reported in discrete stand-alone publications, making aggregation of raw data from this work over time nearly impossible. Here, we describe a dataset of 728 ferrets inoculated with 126 unique IAV, conducted by a single research group under a uniform experimental protocol. This collection of morbidity, mortality, and viral titer data represents the largest publicly available dataset to date of in vivo-generated IAV infection outcomes on a per-ferret level.


Subject(s)
Ferrets , Influenza A virus , Orthomyxoviridae Infections , Animals , Disease Models, Animal , Ferrets/virology , Orthomyxoviridae Infections/virology , Viral Load
8.
Nat Commun ; 15(1): 4350, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782954

ABSTRACT

mRNA lipid nanoparticle (LNP) vaccines would be useful during an influenza virus pandemic since they can be produced rapidly and do not require the generation of egg-adapted vaccine seed stocks. Highly pathogenic avian influenza viruses from H5 clade 2.3.4.4b are circulating at unprecedently high levels in wild and domestic birds and have the potential to adapt to humans. Here, we generate an mRNA lipid nanoparticle (LNP) vaccine encoding the hemagglutinin (HA) glycoprotein from a clade 2.3.4.4b H5 isolate. The H5 mRNA-LNP vaccine elicits strong T cell and antibody responses in female mice, including neutralizing antibodies and broadly-reactive anti-HA stalk antibodies. The H5 mRNA-LNP vaccine elicits antibodies at similar levels compared to whole inactivated vaccines in female mice with and without prior H1N1 exposures. Finally, we find that the H5 mRNA-LNP vaccine is immunogenic in male ferrets and prevents morbidity and mortality of animals following 2.3.4.4b H5N1 challenge. Together, our data demonstrate that a monovalent mRNA-LNP vaccine expressing 2.3.4.4b H5 is immunogenic and protective in pre-clinical animal models.


Subject(s)
Antibodies, Viral , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Nanoparticles , Orthomyxoviridae Infections , mRNA Vaccines , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Female , Mice , Nanoparticles/chemistry , Male , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , mRNA Vaccines/immunology , Antibodies, Neutralizing/immunology , Mice, Inbred BALB C , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Influenza in Birds/virology , Humans , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Birds/virology , Lipids/chemistry , Liposomes
9.
Nat Commun ; 15(1): 4228, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762498

ABSTRACT

Cross-modal analysis of the same whole brain is an ideal strategy to uncover brain function and dysfunction. However, it remains challenging due to the slow speed and destructiveness of traditional whole-brain optical imaging techniques. Here we develop a new platform, termed Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN), for non-destructive, high-speed, 3D imaging of ex vivo rodent, ferret, and non-human primate brains. Using an optimally designed image acquisition scheme and an accompanying machine-learning algorithm, PATTERN extracts signals of genetically-encoded probes from photobleaching-based temporal modulation and enables reliable visualization of neural projection in the whole central nervous system with 3D isotropic resolution. Without structural and biological perturbation to the sample, PATTERN can be combined with other whole-brain imaging modalities to acquire the whole-brain image with both high resolution and morphological fidelity. Furthermore, cross-modal transcriptome analysis of an individual brain is achieved by PATTERN imaging. Together, PATTERN provides a compatible and versatile strategy for brain-wide cross-modal analysis at the individual level.


Subject(s)
Brain , Ferrets , Imaging, Three-Dimensional , Photoacoustic Techniques , Animals , Brain/diagnostic imaging , Photoacoustic Techniques/methods , Imaging, Three-Dimensional/methods , Mice , Algorithms , Machine Learning , Tomography/methods , Image Processing, Computer-Assisted/methods , Rats , Male
10.
Methods Mol Biol ; 2808: 197-208, 2024.
Article in English | MEDLINE | ID: mdl-38743372

ABSTRACT

Canine distemper virus (CDV) is a highly contagious pathogen within the morbillivirus genus infecting a wide range of different carnivore species. The virus shares most biological features with other closely related morbilliviruses, including clinical signs, tissue tropism, and replication cycle in the respective host organisms.In the laboratory environment, experimental infections of ferrets with CDV were established as a potent surrogate model for the analysis of several aspects of the biology of the human morbillivirus, measles virus (MeV). The animals are naturally susceptible to CDV and display severe clinical signs resembling the disease seen in patients infected with MeV. As seen with MeV, CDV infects immune cells and is thus associated with a strong transient immunosuppression. Here we describe several methods to evaluate viral load and parameters of immunosuppression in blood-circulating immune cells isolated from CDV-infected animals.


Subject(s)
Disease Models, Animal , Distemper Virus, Canine , Distemper , Ferrets , Viral Load , Animals , Ferrets/virology , Distemper Virus, Canine/pathogenicity , Distemper/virology , Distemper/pathology
11.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38679479

ABSTRACT

Normative ferret brain development was characterized using magnetic resonance imaging. Brain growth was longitudinally monitored in 10 ferrets (equal numbers of males and females) from postnatal day 8 (P8) through P38 in 6-d increments. Template T2-weighted images were constructed at each age, and these were manually segmented into 12 to 14 brain regions. A logistic growth model was used to fit data from whole brain volumes and 8 of the individual regions in both males and females. More protracted growth was found in males, which results in larger brains; however, sex differences were not apparent when results were corrected for body weight. Additionally, surface models of the developing cortical plate were registered to one another using the anatomically-constrained Multimodal Surface Matching algorithm. This, in turn, enabled local logistic growth parameters to be mapped across the cortical surface. A close similarity was observed between surface area expansion timing and previous reports of the transverse neurogenic gradient in ferrets. Regional variation in the extent of surface area expansion and the maximum expansion rate was also revealed. This characterization of normative brain growth over the period of cerebral cortex folding may serve as a reference for ferret studies of brain development.


Subject(s)
Brain , Ferrets , Magnetic Resonance Imaging , Animals , Ferrets/growth & development , Magnetic Resonance Imaging/methods , Male , Female , Brain/growth & development , Brain/diagnostic imaging , Brain/anatomy & histology , Longitudinal Studies , Sex Characteristics
12.
PLoS Comput Biol ; 20(4): e1011985, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626220

ABSTRACT

Animal psychophysics can generate rich behavioral datasets, often comprised of many 1000s of trials for an individual subject. Gradient-boosted models are a promising machine learning approach for analyzing such data, partly due to the tools that allow users to gain insight into how the model makes predictions. We trained ferrets to report a target word's presence, timing, and lateralization within a stream of consecutively presented non-target words. To assess the animals' ability to generalize across pitch, we manipulated the fundamental frequency (F0) of the speech stimuli across trials, and to assess the contribution of pitch to streaming, we roved the F0 from word token to token. We then implemented gradient-boosted regression and decision trees on the trial outcome and reaction time data to understand the behavioral factors behind the ferrets' decision-making. We visualized model contributions by implementing SHAPs feature importance and partial dependency plots. While ferrets could accurately perform the task across all pitch-shifted conditions, our models reveal subtle effects of shifting F0 on performance, with within-trial pitch shifting elevating false alarms and extending reaction times. Our models identified a subset of non-target words that animals commonly false alarmed to. Follow-up analysis demonstrated that the spectrotemporal similarity of target and non-target words rather than similarity in duration or amplitude waveform was the strongest predictor of the likelihood of false alarming. Finally, we compared the results with those obtained with traditional mixed effects models, revealing equivalent or better performance for the gradient-boosted models over these approaches.


Subject(s)
Decision Trees , Ferrets , Animals , Computational Biology , Acoustic Stimulation , Auditory Perception/physiology , Behavior, Animal/physiology , Reaction Time/physiology , Male , Machine Learning , Female , Decision Making/physiology , Speech Perception/physiology
13.
Nat Commun ; 15(1): 3449, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664384

ABSTRACT

In 2017, a novel influenza A virus (IAV) was isolated from an Egyptian fruit bat. In contrast to other bat influenza viruses, the virus was related to avian A(H9N2) viruses and was probably the result of a bird-to-bat transmission event. To determine the cross-species spill-over potential, we biologically characterize features of A/bat/Egypt/381OP/2017(H9N2). The virus has a pH inactivation profile and neuraminidase activity similar to those of human-adapted IAVs. Despite the virus having an avian virus-like preference for α2,3 sialic acid receptors, it is unable to replicate in male mallard ducks; however, it readily infects ex-vivo human respiratory cell cultures and replicates in the lungs of female mice. A/bat/Egypt/381OP/2017 replicates in the upper respiratory tract of experimentally-infected male ferrets featuring direct-contact and airborne transmission. These data suggest that the bat A(H9N2) virus has features associated with increased risk to humans without a shift to a preference for α2,6 sialic acid receptors.


Subject(s)
Chiroptera , Ducks , Ferrets , Influenza A Virus, H9N2 Subtype , Orthomyxoviridae Infections , Receptors, Cell Surface , Animals , Chiroptera/virology , Humans , Ferrets/virology , Female , Male , Influenza A Virus, H9N2 Subtype/physiology , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/isolation & purification , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/transmission , Mice , Ducks/virology , Virus Replication , Influenza, Human/virology , Influenza, Human/transmission , Lung/virology , Influenza in Birds/virology , Influenza in Birds/transmission , Neuraminidase/metabolism
14.
Virology ; 595: 110097, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685171

ABSTRACT

Current influenza vaccine is not effective in providing cross-protection against variants. We evaluated the immunogenicity and efficacy of multi-subtype neuraminidase (NA) and M2 ectodomain virus-like particle (m-cNA-M2e VLP) and chimeric M2e-H3 stalk protein vaccines (M2e-H3 stalk) in ferrets. Our results showed that ferrets with recombinant m-cNA-M2e VLP or M2e-H3 stalk vaccination induced multi-vaccine antigen specific IgG antibodies (M2e, H3 stalk, NA), NA inhibition, antibody-secreting cells, and IFN-γ secreting cell responses. Ferrets immunized with either m-cNA-M2e VLP or M2e-H3 stalk vaccine were protected from H1N1 and H3N2 influenza viruses by lowering viral titers in nasal washes, trachea, and lungs after challenge. Vaccinated ferret antisera conferred broad humoral immunity in naïve mice. Our findings provide evidence that immunity to M2e and HA-stalk or M2e plus multi-subtype NA proteins induces cross-protection in ferrets.


Subject(s)
Antibodies, Viral , Cross Protection , Ferrets , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza Vaccines , Neuraminidase , Orthomyxoviridae Infections , Vaccines, Virus-Like Particle , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Cross Protection/immunology , Antibodies, Viral/immunology , Neuraminidase/immunology , Neuraminidase/genetics , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Mice , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Female , Immunoglobulin G/blood , Immunoglobulin G/immunology , Viroporin Proteins , Viral Proteins
15.
JCI Insight ; 9(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646935

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with F508del being the most prevalent mutation. The combination of CFTR modulators (potentiator and correctors) has provided benefit to CF patients carrying the F508del mutation; however, the safety and effectiveness of in utero combination modulator therapy remains unclear. We created a F508del ferret model to test whether ivacaftor/lumacaftor (VX-770/VX-809) therapy can rescue in utero and postnatal pathologies associated with CF. Using primary intestinal organoids and air-liquid interface cultures of airway epithelia, we demonstrate that the F508del mutation in ferret CFTR results in a severe folding and trafficking defect, which can be partially restored by treatment with CFTR modulators. In utero treatment of pregnant jills with ivacaftor/lumacaftor prevented meconium ileus at birth in F508del kits and sustained postnatal treatment of CF offspring improved survival and partially protected from pancreatic insufficiency. Withdrawal of ivacaftor/lumacaftor treatment from juvenile CF ferrets reestablished pancreatic and lung diseases, with altered pulmonary mechanics. These findings suggest that in utero intervention with a combination of CFTR modulators may provide therapeutic benefits to individuals with F508del. This CFTR-F508del ferret model may be useful for testing therapies using clinically translatable endpoints.


Subject(s)
Aminophenols , Aminopyridines , Benzodioxoles , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Ferrets , Quinolones , Animals , Female , Pregnancy , Aminophenols/therapeutic use , Aminophenols/pharmacology , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Benzodioxoles/therapeutic use , Benzodioxoles/pharmacology , Chloride Channel Agonists/therapeutic use , Chloride Channel Agonists/pharmacology , Cystic Fibrosis/genetics , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Disease Models, Animal , Drug Combinations , Mutation , Quinolones/pharmacology , Quinolones/therapeutic use
16.
Nat Commun ; 15(1): 3450, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664395

ABSTRACT

Influenza A viruses (IAVs) of subtype H9N2 have reached an endemic stage in poultry farms in the Middle East and Asia. As a result, human infections with avian H9N2 viruses have been increasingly reported. In 2017, an H9N2 virus was isolated for the first time from Egyptian fruit bats (Rousettus aegyptiacus). Phylogenetic analyses revealed that bat H9N2 is descended from a common ancestor dating back centuries ago. However, the H9 and N2 sequences appear to be genetically similar to current avian IAVs, suggesting recent reassortment events. These observations raise the question of the zoonotic potential of the mammal-adapted bat H9N2. Here, we investigate the infection and transmission potential of bat H9N2 in vitro and in vivo, the ability to overcome the antiviral activity of the human MxA protein, and the presence of N2-specific cross-reactive antibodies in human sera. We show that bat H9N2 has high replication and transmission potential in ferrets, efficiently infects human lung explant cultures, and is able to evade antiviral inhibition by MxA in transgenic B6 mice. Together with its low antigenic similarity to the N2 of seasonal human strains, bat H9N2 fulfils key criteria for pre-pandemic IAVs.


Subject(s)
Chiroptera , Ferrets , Influenza A Virus, H9N2 Subtype , Orthomyxoviridae Infections , Virus Replication , Animals , Ferrets/virology , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/physiology , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/isolation & purification , Chiroptera/virology , Humans , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/immunology , Mice , Phylogeny , Influenza, Human/transmission , Influenza, Human/virology , Lung/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood
17.
Vet Q ; 44(1): 1-8, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38595267

ABSTRACT

Gyrovirus galga1 (GyVg1), a member of the Anelloviridae family and Gyrovirus genus, has been detected in chicken and human tissue samples. In this study, the DNA of GyVg1-related gyroviruses in the sera of six dogs and three cats from Central and Eastern China was identified using PCR. Alignment analysis between the nine obtained and reference GyVg1 strains revealed that the genome identity ranged from 99.20% (DOG03 and DOG04 strains) to 96.17% (DOG01 and DOG06 strains). Six recombination events were predicted in multiple strains, including DOG01, DOG05, DOG06, CAT01, CAT02, and CAT03. The predicted major and minor parents of DOG05 came from Brazil. The DOG06 strain is potentially recombined from strains originating from humans and cats, whereas DOG01 is potentially recombined from G17 (ferret-originated) and Ave3 (chicken-originated), indicating that transmissions across species and regions may occur. Sixteen representative amino acid mutation sites were identified: nine in VP1 (12 R/H, 114S/N, 123I/M, 167 L/P, 231 P/S, 237 P/L, 243 R/W, 335 T/A, and 444S/N), four in VP2 (81 A/P, 103 R/H, 223 R/G, and 228 A/T), and three in VP3 (38 M/I, 61 A/T, and 65 V/A). These mutations were only harbored in strains identified in dogs and cats in this study. Whether this is related to host tropism needs further investigation. In this study, GyVg1 was identified in the sera of dogs and cats, and the molecular characteristics prompted the attention of public health.


Subject(s)
Cat Diseases , Dog Diseases , Gyrovirus , Animals , Cats , Dogs , Humans , Ferrets , Gyrovirus/genetics , Chickens , Phylogeny
18.
J Comp Neurol ; 532(4): e25615, 2024 04.
Article in English | MEDLINE | ID: mdl-38587214

ABSTRACT

The mammalian cerebrum has changed substantially during evolution, characterized by increases in neurons and glial cells and by the expansion and folding of the cerebrum. While these evolutionary alterations are thought to be crucial for acquiring higher cognitive functions, the molecular mechanisms underlying the development and evolution of the mammalian cerebrum remain only partially understood. This is, in part, because of the difficulty in analyzing these mechanisms using mice only. To overcome this limitation, genetic manipulation techniques for the cerebrum of gyrencephalic carnivore ferrets have been developed. Furthermore, successful gene knockout in the ferret cerebrum has been accomplished through the application of the CRISPR/Cas9 system. This review mainly highlights recent research conducted using gyrencephalic carnivore ferrets to investigate the mechanisms underlying the development and evolution of cortical folds.


Subject(s)
Cerebral Cortex , Ferrets , Animals , Mice , Telencephalon , Neurons , Mammals
19.
Dis Model Mech ; 17(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38440823

ABSTRACT

Viral pathogenesis and therapeutic screening studies that utilize small mammalian models rely on the accurate quantification and interpretation of morbidity measurements, such as weight and body temperature, which can vary depending on the model, agent and/or experimental design used. As a result, morbidity-related data are frequently normalized within and across screening studies to aid with their interpretation. However, such data normalization can be performed in a variety of ways, leading to differences in conclusions drawn and making comparisons between studies challenging. Here, we discuss variability in the normalization, interpretation, and presentation of morbidity measurements for four model species frequently used to study a diverse range of human viral pathogens - mice, hamsters, guinea pigs and ferrets. We also analyze findings aggregated from influenza A virus-infected ferrets to contextualize this discussion. We focus on serially collected weight and temperature data to illustrate how the conclusions drawn from this information can vary depending on how raw data are collected, normalized and measured. Taken together, this work supports continued efforts in understanding how normalization affects the interpretation of morbidity data and highlights best practices to improve the interpretation and utility of these findings for extrapolation to public health contexts.


Subject(s)
Ferrets , Virus Diseases , Cricetinae , Humans , Animals , Guinea Pigs , Mice , Reproducibility of Results , Mammals , Morbidity
20.
Proc Natl Acad Sci U S A ; 121(11): e2313743121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38446851

ABSTRACT

In order to deal with a complex environment, animals form a diverse range of neural representations that vary across cortical areas, ranging from largely unimodal sensory input to higher-order representations of goals, outcomes, and motivation. The developmental origin of this diversity is currently unclear, as representations could arise through processes that are already area-specific from the earliest developmental stages or alternatively, they could emerge from an initially common functional organization shared across areas. Here, we use spontaneous activity recorded with two-photon and widefield calcium imaging to reveal the functional organization across the early developing cortex in ferrets, a species with a well-characterized columnar organization and modular structure of spontaneous activity in the visual cortex. We find that in animals 7 to 14 d prior to eye-opening and ear canal opening, spontaneous activity in both sensory areas (auditory and somatosensory cortex, A1 and S1, respectively), and association areas (posterior parietal and prefrontal cortex, PPC and PFC, respectively) showed an organized and modular structure that is highly similar to the organization in V1. In all cortical areas, this modular activity was distributed across the cortical surface, forming functional networks that exhibit millimeter-scale correlations. Moreover, this modular structure was evident in highly coherent spontaneous activity at the cellular level, with strong correlations among local populations of neurons apparent in all cortical areas examined. Together, our results demonstrate a common distributed and modular organization across the cortex during early development, suggesting that diverse cortical representations develop initially according to similar design principles.


Subject(s)
Calcium, Dietary , Ferrets , Animals , Motivation , Neurons , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...