Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
1.
J Neuroinflammation ; 21(1): 116, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702778

ABSTRACT

BACKGROUND: Subarachnoid hemorrhage (SAH), a severe subtype of stroke, is characterized by notably high mortality and morbidity, largely due to the lack of effective therapeutic options. Although the neuroprotective potential of PPARg and Nrf2 has been recognized, investigative efforts into oroxin A (OA), remain limited in preclinical studies. METHODS: SAH was modeled in vivo through filament perforation in male C57BL/6 mice and in vitro by exposing HT22 cells to hemin to induce neuronal damage. Following the administration of OA, a series of methods were employed to assess neurological behaviors, brain water content, neuronal damage, cell ferroptosis, and the extent of neuroinflammation. RESULTS: The findings indicated that OA treatment markedly improved survival rates, enhanced neurological functions, mitigated neuronal death and brain edema, and attenuated the inflammatory response. These effects of OA were linked to the suppression of microglial activation. Moreover, OA administration was found to diminish ferroptosis in neuronal cells, a critical factor in early brain injury (EBI) following SAH. Further mechanistic investigations uncovered that OA facilitated the translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2) from the cytoplasm to the nucleus, thereby activating the Nrf2/GPX4 pathway. Importantly, OA also upregulated the expression of FSP1, suggesting a significant and parallel protective effect against ferroptosis in EBI following SAH in synergy with GPX4. CONCLUSION: In summary, this research indicated that the PPARg activator OA augmented the neurological results in rodent models and diminished neuronal death. This neuroprotection was achieved primarily by suppressing neuronal ferroptosis. The underlying mechanism was associated with the alleviation of cellular death through the Nrf2/GPX4 and FSP1/CoQ10 pathways.


Subject(s)
Ferroptosis , Mice, Inbred C57BL , Neuroinflammatory Diseases , Subarachnoid Hemorrhage , Animals , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/pathology , Subarachnoid Hemorrhage/complications , Ferroptosis/drug effects , Ferroptosis/physiology , Mice , Male , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/etiology , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Injuries/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurons/metabolism , Neurons/drug effects , Neurons/pathology
2.
Clinics (Sao Paulo) ; 79: 100372, 2024.
Article in English | MEDLINE | ID: mdl-38733688

ABSTRACT

OBJECTIVE: This study aims to analyze the relationship between the Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor-erythroid 2-related factor 2 (Nrf2) and Epilepsy (EP), as well as its mechanism of action. METHODS: Thirty Wistar rats were divided into a control group (without treatment), a model group (EP modeling), and an inhibition group (EP modeling + intervention by Keap1/Nrf2 signaling pathway inhibitor ATRA) and subject to Morris water maze experiment. Then, the expression of Oxidative Stress (OS) markers, ferroptosis-associated proteins and Keap1/Nrf2 pathway in rat hippocampus was measured. In addition, rat hippocampal neuronal cell HT22 was purchased and treated accordingly based on the results of grouping, and cell proliferation and apoptosis in the three groups were determined. RESULTS: Compared with rats in the model group, those in the inhibition group showed shorter escape latency and an increased number of platform crossings (p < 0.05). Significant OS and neuron ferroptosis, increased apoptosis rate, elevated Keap1 expression, and decreased Nrf2 expression were observed in the model group compared to the control group (p < 0.05). The inhibition group exhibited notably improved OS and ferroptosis, as well as enhanced neuronal viability (p < 0.05). CONCLUSION: Inhibition of the Keap1/Nrf2 pathway can reverse the OS and neuron viability in EP rats.


Subject(s)
Epilepsy , Ferroptosis , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Neurons , Oxidative Stress , Rats, Wistar , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/physiology , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress/physiology , Signal Transduction/physiology , Ferroptosis/physiology , Ferroptosis/drug effects , Neurons/metabolism , Epilepsy/metabolism , Epilepsy/physiopathology , Male , Hippocampus/metabolism , Apoptosis/physiology , Rats , Disease Progression , Disease Models, Animal
3.
Neurotox Res ; 42(3): 27, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819761

ABSTRACT

Early and prolonged exposure to anesthetic agents could cause neurodevelopmental disorders in children. Astrocytes, heavily outnumber neurons in the brain, are crucial regulators of synaptic formation and function during development. However, how general anesthetics act on astrocytes and the impact on cognition are still unclear. In this study, we investigated the role of ferroptosis and GPX4, a major hydroperoxide scavenger playing a pivotal role in suppressing the process of ferroptosis, and their underlying mechanism in isoflurane-induced cytotoxicity in astrocytes and cognitive impairment. Our results showed that early 6 h isoflurane anesthesia induced cognitive impairment in mice. Ferroptosis-relative genes and metabolic changes were involved in the pathological process of isoflurane-induced cytotoxicity in astrocytes. The level of GPX4 was decreased while the expression of 4-HNE and generation of ROS were elevated after isoflurane exposure. Selectively blocking ferroptosis with Fer-1 attenuated the abovementioned cytotoxicity in astrocytes, paralleling with the reverse of the changes in GPX4, ROS and 4-HNE secondary to isoflurane anesthesia. Fer-1 attenuated the cognitive impairment induced by prolonged isoflurane exposure. Thus, ferroptosis conduced towards isoflurane-induced cytotoxicity in astrocytes via suppressing GPX4 and promoting lipid peroxidation. Fer-1 was expected to be an underlying intervention for the neurotoxicity induced by isoflurane in the developing brain, and to alleviate cognitive impairment in neonates.


Subject(s)
Animals, Newborn , Astrocytes , Cognitive Dysfunction , Ferroptosis , Isoflurane , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Isoflurane/toxicity , Ferroptosis/drug effects , Ferroptosis/physiology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/metabolism , Mice , Anesthetics, Inhalation/toxicity , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Reactive Oxygen Species/metabolism
4.
Exp Gerontol ; 192: 112443, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697556

ABSTRACT

OBJECTIVE: Ferroptosis has been recognized as being closely associated with cognitive impairment. Research has established that Alzheimer's disease (AD)-associated proteins, such as amyloid precursor protein (APP) and phosphorylated tau, are involved in brain iron metabolism. These proteins are found in high concentrations within senile plaques and neurofibrillary tangles. Repetitive transcranial magnetic stimulation (rTMS) offers a non-pharmacological approach to AD treatment. This study aims to explore the potential therapeutic effects of rTMS on cognitive impairment through the modulation of the ferroptosis pathway, thereby laying both a theoretical and experimental groundwork for the application of rTMS in treating Alzheimer's disease. METHODS: The study utilized senescence-accelerated mouse prone 8 (SAMP8) mice to model brain aging-related cognitive impairment, with senescence-accelerated-mouse resistant 1 (SAMR1) mice acting as controls. The SAMP8 mice were subjected to high-frequency rTMS at 25 Hz for durations of 14 and 28 days. Cognitive function was evaluated using behavioral tests. Resting-state functional magnetic resonance imaging (rs-fMRI) assessed alterations in cerebral activity by measuring the fractional amplitude of low-frequency fluctuations (fALFF) of the blood oxygen level-dependent signal. Neuronal recovery post-rTMS in the SAMP8 model was examined via HE and Nissl staining. Immunohistochemistry was employed to detect the expression of APP and Phospho-Tau (Thr231). Oxidative stress markers were quantified using biochemical assay kits. ELISA methods were utilized to measure hippocampal levels of Fe2+ and Aß1-42. Finally, the expression of proteins related to the ferroptosis pathway was determined through western blot analysis. RESULTS: The findings indicate that 25 Hz rTMS enhances cognitive function and augments cerebral activity in SAMP8 model mice. Treatment with rTMS in these mice resulted in diminished oxidative stress and safeguarded neurons against damage. Additionally, iron accumulation was mitigated, and the expression of ferroptosis pathway proteins Gpx4, system Xc-, and Nrf2 was elevated. CONCLUSIONS: The Tau/APP-Fe-GPX4/system Xc-/Nrf2 pathway is implicated in the remedial effects of rTMS on cognitive dysfunction, offering a theoretical and experimental basis for employing rTMS in AD treatment.


Subject(s)
Aging , Cognitive Dysfunction , Disease Models, Animal , Ferroptosis , Transcranial Magnetic Stimulation , Animals , Transcranial Magnetic Stimulation/methods , Ferroptosis/physiology , Cognitive Dysfunction/therapy , Mice , Aging/physiology , Male , Magnetic Resonance Imaging , tau Proteins/metabolism , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism
5.
J Cancer Res Clin Oncol ; 150(5): 228, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700533

ABSTRACT

BACKGROUND: Lung cancer is a serious threat to human health and is the first leading cause of cancer death. Ferroptosis, a newly discovered form of programmed cell death associated with redox homeostasis, is of particular interest in the lung cancer, given the high oxygen environment of lung cancer. NADPH has reducing properties and therefore holds the potential to resist ferroptosis. Resistance to ferroptosis exists in lung cancer, but the role of NADK in regulating ferroptosis in lung cancer has not been reported yet. METHODS: Immunohistochemistry (IHC) was used to analyse the expression of NADK in 86 cases of lung adenocarcinoma(LUAD) and adjacent tissues, and a IHC score was assigned to each sample. Chi-square and kaplan-meier curve was performed to analyse the differences in metastasis and five-year survival between the two groups with NADK high or low scores. Proliferation of NADK-knockdown LUAD cell lines was detected in vivo and vitro. Furthermore, leves of ROS, MDA and Fe2+ were measured to validate the effect and mechanism of NADK on ferroptosis in LUAD. RESULTS: The expression of NADK was significantly evaluated in LUAD tissues as compared to adjacent non-cancerous tissues. The proliferation of NADK-knockdown cells was inhibited both in vivo and vitro, and increasing levels of intracellular ROS, Fe2+ and lipid peroxide products (MDA) were observed. Furthermore, NADK-knockdown promoted the ferroptosis of LUAD cells induced by Erastin/RSL3 by regulating the level of NADPH and the expression of FSP1. Knockdown of NADK enhanced the sensitivities of LUAD cells to Erastin/RSL3-induced ferroptosis by regulating NADPH level and FSP1 expression. CONCLUSIONS: NADK is over-expressed in LUAD patients. Knockdown of NADK inhibited the proliferation of LUAD cells both in vitro and in vivo and promotes the Erastin/RSL3-induced ferroptosis of LUAD cells by down-regulating the NADPH/FSP1 axis.


Subject(s)
Adenocarcinoma of Lung , Ferroptosis , Lung Neoplasms , NADP , Animals , Female , Humans , Male , Mice , Middle Aged , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Cell Line, Tumor , Cell Proliferation , Ferroptosis/genetics , Ferroptosis/physiology , Gene Knockdown Techniques , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice, Nude , NADP/metabolism
6.
Neurochem Int ; 177: 105759, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735393

ABSTRACT

BACKGROUND: Exosomes generated from adipose-derived mesenchymal stem cells (Exos), and in particular hypoxia-pretreated ADSCs (HExos), possess therapeutic properties that promote spinal cord repair following spinal cord injury (SCI). Nevertheless, the regulatory mechanisms through which HExos exert their effects remain unclear. METHODS: Here, next-generation sequencing (NGS) was utilized to examine abnormal circRNA expression comparing HExos to Exos. Bioinformatics analysis and RNA pulldown assays together with luciferase reporter assays were applied to determine interactions among miRNAs, mRNAs and circRNAs. ELISA and immunofluorescence staining were used to examine inflammatory cytokine levels, apoptosis and ROS deposition in LPS-treated HT-22 cells, respectively. The therapeutic effects of Exos and HExos on a mouse model of SCI were analyzed by immunohistochemistry and immunofluorescence staining. RESULTS: Our findings confirmed that HExos have more significant therapeutic influences on decreasing ROS and inflammatory cytokine levels post-SCI than Exos. NGS revealed that circ-Wdfy3 expression levels were significantly higher in HExos than Exos. Downregulation of circ-Wdfy3 led to a decrease in HExo-induced therapeutic effects on spinal cord repair post-SCI, indicating that circ-Wdfy3 has a critical role in the regulation of HExo-mediated protection against SCI. Our bioinformatics, RNA pulldown and luciferase reporter data demonstrated that GPX4 and miR-423-3p were downstream targets of circ-Wdfy3. GPX4 downregulation or miR-423-3p overexpression reversed the protective effects of circ-Wdfy3 on LPS-treated HT-22 cells. Furthermore, overexpression of circ-Wdfy3 led to an in increase in the Exo-induced therapeutic effects on spinal cord repair post-SCI through the inhibition of ferroptosis. CONCLUSIONS: circ-WDfy3-overexpressing Exos promote spinal cord repair post-SCI through mediation of ferroptosis via the miR-138-5p/GPX4 pathway.


Subject(s)
Exosomes , Ferroptosis , RNA, Circular , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy , Exosomes/metabolism , Animals , Ferroptosis/physiology , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Circular/biosynthesis , Mice , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Male , MicroRNAs/genetics , MicroRNAs/metabolism
7.
Biomed Pharmacother ; 175: 116722, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729051

ABSTRACT

Ulcerative colitis (UC) is a complex immune-mediated chronic inflammatory bowel disease. It is mainly characterized by diffuse inflammation of the colonic and rectal mucosa with barrier function impairment. Identifying new biomarkers for the development of more effective UC therapies remains a pressing task for current research. Ferroptosis is a newly identified form of regulated cell death characterized by iron-dependent lipid peroxidation. As research deepens, ferroptosis has been demonstrated to be involved in the pathological processes of numerous diseases. A growing body of evidence suggests that the pathogenesis of UC is associated with ferroptosis, and the regulation of ferroptosis provides new opportunities for UC treatment. However, the specific mechanisms by which ferroptosis participates in the development of UC remain to be more fully and thoroughly investigated. Therefore, in this review, we focus on the research advances in the mechanism of ferroptosis in recent years and describe the potential role of ferroptosis in the pathogenesis of UC. In addition, we explore the underlying role of the crosslinked pathway between ferroptosis and other mechanisms such as macrophages, neutrophils, autophagy, endoplasmic reticulum stress, and gut microbiota in UC. Finally, we also summarize the potential compounds that may act as ferroptosis inhibitors in UC in the future.


Subject(s)
Colitis, Ulcerative , Ferroptosis , Ferroptosis/drug effects , Ferroptosis/physiology , Humans , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Animals , Gastrointestinal Microbiome , Endoplasmic Reticulum Stress/drug effects , Signal Transduction , Lipid Peroxidation/drug effects , Molecular Targeted Therapy
8.
Biomed Pharmacother ; 175: 116753, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761423

ABSTRACT

Ferroptosis is a form of cell death mediated by iron and lipid peroxidation (LPO). Recent studies have provided compelling evidence to support the involvement of ferroptosis in the pathogenesis of various neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD). Therefore, understanding the mechanisms that regulate ferroptosis in NDDs may improve disease management. Ferroptosis is regulated by multiple mechanisms, and different degradation pathways, including autophagy and the ubiquitinproteasome system (UPS), orchestrate the complex ferroptosis response by directly or indirectly regulating iron accumulation or lipid peroxidation. Ubiquitination plays a crucial role as a protein posttranslational modification in driving ferroptosis. Notably, E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) are key enzymes in the ubiquitin system, and their dysregulation is closely linked to the progression of NDDs. A growing body of evidence highlights the role of ubiquitin system enzymes in regulating ferroptosis sensitivity. However, reports on the interaction between ferroptosis and ubiquitin signaling in NDDs are scarce. In this review, we first provide a brief overview of the biological processes and roles of the UPS, summarize the core molecular mechanisms and potential biological functions of ferroptosis, and explore the pathophysiological relevance and therapeutic implications of ferroptosis in NDDs. In addition, reviewing the roles of E3s and DUBs in regulating ferroptosis in NDDs aims to provide new insights and strategies for the treatment of NDDs. These include E3- and DUB-targeted drugs and ferroptosis inhibitors, which can be used to prevent and ameliorate the progression of NDDs.


Subject(s)
Ferroptosis , Neurodegenerative Diseases , Ubiquitin-Protein Ligases , Ferroptosis/drug effects , Ferroptosis/physiology , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/enzymology , Animals , Ubiquitin-Protein Ligases/metabolism , Deubiquitinating Enzymes/metabolism , Ubiquitination , Signal Transduction/drug effects , Molecular Targeted Therapy
9.
Neurochem Res ; 49(7): 1643-1654, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782838

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Ferroptosis, an iron-dependent form of regulated cell death, may contribute to the progression of PD owing to an unbalanced brain redox status. Physical exercise is a complementary therapy that can modulate ferroptosis in PD by regulating the redox system through the activation of nuclear factor (erythroid-derived 2)-like 2 (NRF2) and brain-derived neurotrophic factor (BDNF) signaling. However, the precise effects of physical exercise on ferroptosis in PD remain unclear. In this review, we explored how physical exercise influences NRF2 and BDNF signaling and affects ferroptosis in PD. We further investigated relevant publications over the past two decades by searching the PubMed, Web of Science, and Google Scholar databases using keywords related to physical exercise, PD, ferroptosis, and neurotrophic factor antioxidant signaling. This review provides insights into current research gaps and demonstrates the necessity for future research to elucidate the specific mechanisms by which exercise regulates ferroptosis in PD, including the assessment of different exercise protocols and their long-term effects. Ultimately, exploring these aspects may lead to the development of improved exercise interventions for the better management of patients with PD.


Subject(s)
Brain-Derived Neurotrophic Factor , Exercise , Ferroptosis , NF-E2-Related Factor 2 , Parkinson Disease , NF-E2-Related Factor 2/metabolism , Humans , Brain-Derived Neurotrophic Factor/metabolism , Ferroptosis/physiology , Parkinson Disease/metabolism , Parkinson Disease/therapy , Animals , Exercise/physiology , Signal Transduction/physiology
10.
Exp Neurol ; 377: 114804, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704083

ABSTRACT

BACKGROUND: Sevoflurane (SEV) has been found to induce neurotoxicity and cognitive impairment, leading to the development of degenerative diseases. Protein kinase C delta (PRKCD) is upregulated in the hippocampus of SEV-treated mice and may be related to SEV-related neurotoxicity. However, the underlying molecular mechanisms by which SEV mediates neurotoxicity via PRKCD remain unclear. METHODS: Normal mice and PRKCD knockout (KO) mice were exposed to SEV. Hippocampal neurons were isolated from mice hippocampal tissues. H&E staining was used for pathological morphology of hippocampal tissues, and NISSL staining was used to analyze the number of hippocampal neurons. The mRNA and protein levels were determined using quantitative real-time PCR, western blot, immunofluorescence staining and immunohistochemical staining. The mitochondrial microstructure was observed by transmission electron microscopy. Cell viability was detected by cell counting kit 8 assay, and ferroptosis was assessed by detecting related marker levels. The cognitive ability of mice was assessed by morris water maze test. And the protein levels of PRKCD, ferroptosis-related markers and Hippo pathway-related markers were examined by western bolt. RESULTS: SEV increased PRKCD expression and ferroptosis in hippocampal tissues of mice. Also, SEV promoted mouse hippocampal neuron injury by inducing ferroptosis via upregulating PRKCD expression. Knockout of PRKCD alleviated SEV-induced neurotoxicity and cognitive impairment in mice, and relieved SEV-induced ferroptosis in hippocampal neurons. PRKCD could inhibit the activity of Hippo pathway, and its knockdown also overturned SEV-mediated ferroptosis by activating Hippo pathway. CONCLUSION: SEV could induce neurotoxicity and cognitive impairment by promoting ferroptosis via inactivating Hippo pathway through increasing PRKCD expression.


Subject(s)
Cognitive Dysfunction , Ferroptosis , Hippo Signaling Pathway , Hippocampus , Mice, Knockout , Protein Kinase C-delta , Protein Serine-Threonine Kinases , Sevoflurane , Signal Transduction , Up-Regulation , Animals , Sevoflurane/toxicity , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Cognitive Dysfunction/genetics , Mice , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Up-Regulation/drug effects , Protein Kinase C-delta/metabolism , Protein Kinase C-delta/genetics , Ferroptosis/drug effects , Ferroptosis/physiology , Mice, Inbred C57BL , Male , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Anesthetics, Inhalation/toxicity , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/metabolism
11.
J Cardiothorac Surg ; 19(1): 265, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664788

ABSTRACT

BACKGROUND: Hypoxia/reoxygenation (H/R) induces cardiomyocyte ferroptosis, a core remodeling event in myocardial ischemia/reperfusion injury. Methyltransferase-like 14 (METTL14) emerges as a writer of N6-methyladenosine (m6A) modification. This study was conducted to decipher the role of METTL14 in H/R-induced cardiomyocyte ferroptosis. METHODS: Mouse cardiomyocytes HL-1 were cultured and underwent H/R treatment. The degree of ferroptosis after H/R treatment was appraised by the cell counting kit-8 assay, assay kits (ROS/GSH/Fe2+), and Western blotting (GPX4/ACSL4). The intracellular expressions of METTL14, pri-miR-146a-5p, miR-146a-5p, or adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) were examined by real-time quantitative polymerase chain reaction or Western blotting, with m6A quantification analysis and RNA immunoprecipitation to determine the total m6A level and the expression of pri-miR-146a-5p bound to DiGeorge critical region 8 (DGCR8) and m6A-modified pri-miR-146a-5p. The binding of miR-146a-5p to APPL1 was testified by the dual-luciferase assay. RESULTS: H/R treatment induced cardiomyocyte ferroptosis (increased ROS, Fe2+, and ACSL4 and decreased GSH and GPX4) and upregulated METTL14 expression. METTL14 knockdown attenuated H/R-induced cardiomyocyte ferroptosis. METTL14 induced the recognition of pri-miR-146a-5p by DGCR8 by increasing m6A modification on pri-miR-146a-5p, which promoted the conversion of pri-miR-146a-5p into miR-146a-5p and further repressed APPL1 transcription. miR-146a-5p upregulation or APPL1 downregulation limited the inhibitory effect of METTL14 downregulation on H/R-induced cardiomyocyte ferroptosis. CONCLUSION: METTL14 promoted miR-146a-5p expression through the recognition and processing of pri-miR-146a-5p by DGCR8, which repressed APPL1 transcription and triggered H/R-induced cardiomyocyte ferroptosis.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , Ferroptosis , Methyltransferases , Myocardial Reperfusion Injury , Myocytes, Cardiac , Ferroptosis/physiology , Ferroptosis/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Animals , Adenosine/metabolism , Mice , Methyltransferases/metabolism , Methyltransferases/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
12.
Sci Total Environ ; 927: 172069, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38582117

ABSTRACT

Ferroptosis is a newly recognized type of programmed cell death that is implicated in the pathophysiological process of neurological disorders. Our previous studies have revealed that exposure to high concentrations of fluoride for long periods of time induces hippocampal neural injury and cognitive deficits. However, whether ferroptosis is involved in fluoride-induced neuronal death and the underlying mechanism remain unknown. In this study, the results indicated that exposure to high fluoride triggered ferroptosis in SH-SY5Y cells and in the hippocampus of mice. Fluoride exposure accelerated the lysosomal degradation of GPX4 and led to neuronal ferroptosis, while GPX4 overexpression protected SH-SY5Y cells against fluoride-induced neurotoxicity. Intriguingly, the enhanced chaperone-mediated autophagy (CMA) induced by fluoride stimulation was responsible for GPX4 degradation because the inhibition of CMA activity by LAMP2A knockdown effectively prevented fluoride-induced GPX4 loss. Furthermore, mitochondrial ROS (mtROS) accumulation caused by fluoride contributed to CMA activation-mediated GPX4 degradation and subsequent neuronal ferroptosis. Notably, the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) or the ROS scavenger N-acetyl-L-cysteine (NAC) alleviated fluoride-evoked hippocampal neuronal death and synaptic injury as well as cognitive deficits in mice. The present studies indicates that ferroptosis is a novel mechanism of fluoride-induced neurotoxicity and that chronic fluoride exposure facilitates GPX4 degradation via mtROS chaperone-mediated autophagy, leading to neuronal ferroptosis and cognitive impairment.


Subject(s)
Chaperone-Mediated Autophagy , Cognitive Dysfunction , Ferroptosis , Fluorides , Neurons , Phospholipid Hydroperoxide Glutathione Peroxidase , Reactive Oxygen Species , Animals , Humans , Mice , Autophagy/drug effects , Chaperone-Mediated Autophagy/physiology , Chaperone-Mediated Autophagy/drug effects , Cognitive Dysfunction/chemically induced , Ferroptosis/drug effects , Ferroptosis/physiology , Fluorides/toxicity , Hippocampus/drug effects , Hippocampus/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Reactive Oxygen Species/metabolism
13.
Int Immunopharmacol ; 133: 112155, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38688134

ABSTRACT

BACKGROUND: Ferroptosis is an iron-dependent and cystathione-non-dependent non-apoptotic cell death characterized by elevated intracellular free iron levels and reduced antioxidant capacity, leading to the accumulation of lipid peroxides. Nuclear receptor coactivator 4 (NCOA4) mediates ferritinophagy, increasing labile iron levels, which can result in oxidative damage. However, the specific mechanism of NCOA4-mediated ferritinophagy in intestinal ischemia-reperfusion and the underlying mechanisms have not been reported in detail. OBJECT: 1. To investigate the role of NCOA4 in ferroptosis of intestinal epithelial cells induced by II/R injury in mouse. 2. To investigate the mechanism of action of NCOA4-induced ferroptosis. METHODS: 1. Construct a mouse II/R injury model and detect ferroptosis related markers such as HE staining, immunohistochemistry, ELISA, and WB methods. 2. Detect expression of NCOA4 in the intestine of mouse with II/R injury model and analyze its correlation with intestinal ferroptosis in mouse with II/R injury model. 3. Construct an ischemia-reperfusion model at the cellular level through hypoxia and reoxygenation, and overexpress/knockdown NCOA4 to detect markers related to ferroptosis. Based on animal experimental results, analyze the correlation and mechanism of action between NCOA4 and intestinal epithelial ferroptosis induced by II/R injury in mouse. RESULTS: 1. Ferroptosis occurred in the intestinal epithelial cells of II/R-injured mouse, and the expression of critical factors of ferroptosis, ACSL4, MDA and 15-LOX, was significantly increased, while the levels of GPX4 and GSH were significantly decreased. 2. The expression of NCOA4 in the intestinal epithelium of mouse with II/R injure was significantly increased, the expression of ferritin was significantly decreased, and the level of free ferrous ions was significantly increased; the expression of autophagy-related proteins LC3 and Beclin-1 protein was increased, and the expression of P62 was decreased, and these changes were reversed by autophagy inhibitors. 3. Knockdown of NCOA4 at the cellular level resulted in increased ferritin expression and decreased ferroptosis, and CO-IP experiments suggested that NCOA4 can bind to ferritin, which suggests that NCOA4 most likely mediates ferritinophagy to induce ferroptosis. CONCLUSION: This thesis explored the role of NCOA4 in II/R injury in mice and the mechanism of action. The research results suggest that NCOA4 can mediate ferritinophagy to induce ferroptosis during II/R injury. This experiment reveals the pathological mechanism of II/R injury and provides some scientific basis for the development of drugs for the treatment of II/R injury based on the purpose of alleviating ferroptosis.


Subject(s)
Ferroptosis , Nuclear Receptor Coactivators , Reperfusion Injury , Animals , Ferroptosis/physiology , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Mice , Male , Mice, Inbred C57BL , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestines/pathology , Disease Models, Animal , Iron/metabolism , Ferritins/metabolism
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124246, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38593540

ABSTRACT

We created four fluorescent sensors in our work to determine the viscosity of mitochondria. Following screening, the probe Mito-3 was chosen because in contrast to the other three probes, it had a greater fluorescence enhancement, large Stokes shift (113 nm) and had a particular response to viscosity that was unaffected by polarity or biological species. As the viscosity increased from PBS to 90 % glycerol, the fluorescence intensity of probe at 586 nm increased 17-fold. Mito-3 has strong biocompatibility and is able to track changes in cell viscosity in response to nystatin and monensin stimulation. Furthermore, the probe has been successfully applied to detect changes in viscosity caused by nystatin and monensin in zebrafish. Above all, the probe can be applied to the increase in mitochondrial viscosity that accompanies the ferroptosis process. Mito-3 has the potential to help further study the relationship between viscosity and ferroptosis.


Subject(s)
Ferroptosis , Fluorescent Dyes , Mitochondria , Zebrafish , Ferroptosis/drug effects , Ferroptosis/physiology , Viscosity , Fluorescent Dyes/chemistry , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Humans , Spectrometry, Fluorescence
15.
Cell Cycle ; 23(5): 495-518, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38678316

ABSTRACT

A complex and evolutionary process that involves the buildup of lipids in the arterial wall and the invasion of inflammatory cells results in atherosclerosis. Cell death is a fundamental biological process that is essential to the growth and dynamic equilibrium of all living things. Serious cell damage can cause a number of metabolic processes to stop, cell structure to be destroyed, or other irreversible changes that result in cell death. It is important to note that studies have shown that the two types of programmed cell death, apoptosis and autophagy, influence the onset and progression of atherosclerosis by controlling these cells. This could serve as a foundation for the creation of fresh atherosclerosis prevention and treatment strategies. Therefore, in this review, we summarized the molecular mechanisms of cell death, including apoptosis, pyroptosis, autophagy, necroptosis, ferroptosis and necrosis, and discussed their effects on endothelial cells, vascular smooth muscle cells and macrophages in the process of atherosclerosis, so as to provide reference for the next step to reveal the mechanism of atherosclerosis.


Subject(s)
Atherosclerosis , Autophagy , Atherosclerosis/pathology , Atherosclerosis/metabolism , Humans , Animals , Autophagy/physiology , Apoptosis , Macrophages/metabolism , Macrophages/pathology , Cell Death/physiology , Pyroptosis/physiology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Ferroptosis/physiology , Necroptosis , Necrosis
16.
Pathol Res Pract ; 257: 155312, 2024 May.
Article in English | MEDLINE | ID: mdl-38663177

ABSTRACT

Current treatments for orthopaedic illnesses frequently result in poor prognosis, treatment failure, numerous relapses, and other unpleasant outcomes that have a significant impact on patients' quality of life. Cell-free therapy has emerged as one of the most promising options in recent decades for improving the status quo. As a result, using exosomes produced from various cells to modulate ferroptosis has been proposed as a therapeutic method for the condition. Exosomes are extracellular vesicles that secrete various bioactive chemicals that influence disease treatment and play a role in the genesis and progression of orthopaedic illnesses. Ferroptosis is a recently defined kind of controlled cell death typified by large iron ion buildup and lipid peroxidation. An increasing number of studies indicate that ferroptosis plays a significant role in orthopaedic illnesses. Exosomes, as intercellular information transfer channels, have been found to play a significant role in the regulation of ferroptosis processes. Furthermore, accumulating research suggests that exosomes can influence the course of many diseases by regulating ferroptosis in injured cells. In order to better understand the processes by which exosomes govern ferroptosis in the therapy of orthopaedic illnesses. This review discusses the biogenesis, secretion, and uptake of exosomes, as well as the mechanisms of ferroptosis and exosomes in the therapy of orthopaedic illnesses. It focuses on recent research advances and exosome mechanisms in regulating iron death for the therapy of orthopaedic illnesses. The present state of review conducted both domestically and internationally is elucidated and anticipated as a viable avenue for future therapy in the field of orthopaedics.


Subject(s)
Exosomes , Ferroptosis , Ferroptosis/physiology , Humans , Exosomes/metabolism , Animals , Iron/metabolism
17.
Life Sci ; 347: 122650, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38631669

ABSTRACT

AIMS: As a unique iron-dependent non-apoptotic cell death, Ferroptosis is involved in the pathogenesis and development of many human diseases and has become a research hotspot in recent years. However, the regulatory role of ferroptosis in the gut-liver-brain axis has not been elucidated. This paper summarizes the regulatory role of ferroptosis and provides theoretical basis for related research. MATERIALS AND METHODS: We searched PubMed, CNKI and Wed of Science databases on ferroptosis mediated gut-liver-brain axis diseases, summarized the regulatory role of ferroptosis on organ axis, and explained the adverse effects of related regulatory effects on various diseases. KEY FINDINGS: According to our summary, the main way in which ferroptosis mediates the gut-liver-brain axis is oxidative stress, and the key cross-talk of ferroptosis affecting signaling pathway network is Nrf2/HO-1. However, there were no specific marker between different organ axes mediate by ferroptosis. SIGNIFICANCE: Our study illustrates the main ways and key cross-talk of ferroptosis mediating the gut-liver-brain axis, providing a basis for future research.


Subject(s)
Brain , Ferroptosis , Liver , Oxidative Stress , Ferroptosis/physiology , Humans , Oxidative Stress/physiology , Brain/metabolism , Liver/metabolism , Liver/pathology , Animals , Brain-Gut Axis/physiology , Signal Transduction , NF-E2-Related Factor 2/metabolism
18.
J Cancer Res Clin Oncol ; 150(4): 218, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678126

ABSTRACT

BACKGROUND: Targeting ferroptosis mediated by autophagy presents a novel therapeutic approach to breast cancer, a mortal neoplasm on the global scale. Pyruvate dehydrogenase kinase isozyme 4 (PDK4) has been denoted as a determinant of breast cancer metabolism. The target of this study was to untangle the functional mechanism of PDK4 in ferroptosis dependent on autophagy in breast cancer. METHODS: RT-qPCR and western blotting examined PDK4 mRNA and protein levels in breast cancer cells. Immunofluorescence staining appraised light chain 3 (LC3) expression. Fe (2 +) assay estimated total iron level. Relevant assay kits and C11-BODIPY (591/581) staining evaluated lipid peroxidation level. DCFH-DA staining assayed intracellular reactive oxygen species (ROS) content. Western blotting analyzed the protein levels of autophagy, ferroptosis and apoptosis-signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) pathway-associated proteins. RESULTS: PDK4 was highly expressed in breast cancer cells. Knockdown of PDK4 induced the autophagy of breast cancer cells and 3-methyladenine (3-MA), an autophagy inhibitor, countervailed the promoting role of PDK4 interference in ferroptosis in breast cancer cells. Furthermore, PDK4 knockdown activated ASK1/JNK pathway and ASK1 inhibitor (GS-4997) partially abrogated the impacts of PDK4 absence on the autophagy and ferroptosis in breast cancer cells. CONCLUSION: To sum up, deficiency of PDK4 activated ASK1/JNK pathway to stimulate autophagy-dependent ferroptosis in breast cancer.


Subject(s)
Autophagy , Breast Neoplasms , Ferroptosis , MAP Kinase Kinase Kinase 5 , Humans , Ferroptosis/physiology , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Female , Autophagy/physiology , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Kinase Kinase 5/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , MAP Kinase Signaling System/physiology , Animals , Cell Line, Tumor , Mice , Reactive Oxygen Species/metabolism
20.
Neurochem Int ; 177: 105744, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663454

ABSTRACT

Traumatic brain injury (TBI) often results in persistent neurological dysfunction, which is closely associated with white matter injury. The mechanisms underlying white matter injury after TBI remain unclear. Ferritinophagy is a selective autophagic process that degrades ferritin and releases free iron, which may cause ferroptosis. Although ferroptosis has been demonstrated to be involved in TBI, it is unclear whether ferritinophagy triggers ferroptosis in TBI. Integrated stress response inhibitor (ISRIB) has neuroprotective properties. However, the effect of ISRIB on white matter after TBI remains uncertain. We aimed to investigate whether ferritinophagy was involved in white matter injury following TBI and whether ISRIB can mitigate white matter injury after TBI by inhibiting ferritinophagy. In this study, controlled cortical impact (CCI) was performed on rats to establish the TBI model. Ferritinophagy was measured by assessing the levels of nuclear receptor coactivator 4 (NCOA4), which regulates ferritinophagy, ferritin heavy chain 1(FTH1), LC3, ATG5, and FTH1 colocalization with LC3 in the white matter. Increased NCOA4 and decreased FTH1 were detected in our study. FTH1 colocalization with LC3 enhanced in the white matter after TBI, indicating that ferritinophagy was activated. Immunofluorescence co-localization results also suggested that ferritinophagy occurred in neurons and oligodendrocytes after TBI. Furthermore, ferroptosis was assessed by determining free iron content, MDA content, GSH content, and Perl's staining. The results showed that ferroptosis was suppressed by NCOA4 knockdown via shNCOA4 lentivirus infection, indicating that ferroptosis in TBI is triggered by ferritinophagy. Besides, NCOA4 deletion notably improved white matter injury following TBI, implying that ferritinophagy contributed to white matter injury. ISRIB treatment reduced the occurrence of ferritinophagy in neurons and oligodendrocytes, attenuated ferritinophagy-induced ferroptosis, and alleviated white matter injury. These findings suggest that NCOA4-mediated ferritinophagy is a critical mechanism underlying white matter injury after TBI. ISRIB holds promise as a therapeutic agent for this condition.


Subject(s)
Brain Injuries, Traumatic , Ferritins , Nuclear Receptor Coactivators , Rats, Sprague-Dawley , White Matter , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , White Matter/metabolism , White Matter/pathology , White Matter/drug effects , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Ferritins/metabolism , Male , Rats , Ferroptosis/drug effects , Ferroptosis/physiology , Autophagy/drug effects , Autophagy/physiology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...