Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.765
Filter
1.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38830769

ABSTRACT

The human umbilical cord (hUC) is the lifeline that connects the fetus to the mother. Hypercoiling of the hUC is associated with pre- and perinatal morbidity and mortality. We investigated the origin of hUC hypercoiling using state-of-the-art imaging and omics approaches. Macroscopic inspection of the hUC revealed the helices to originate from the arteries rather than other components of the hUC. Digital reconstruction of the hUC arteries showed the dynamic alignment of two layers of muscle fibers in the tunica media aligning in opposing directions. We observed that genetically identical twins can be discordant for hUC coiling, excluding genetic, many environmental, and parental origins of hUC coiling. Comparing the transcriptomic and DNA methylation profile of the hUC arteries of four twin pairs with discordant cord coiling, we detected 28 differentially expressed genes, but no differentially methylated CpGs. These genes play a role in vascular development, cell-cell interaction, and axis formation and may account for the increased number of hUC helices. When combined, our results provide a novel framework to understand the origin of hUC helices in fetal development.


Subject(s)
DNA Methylation , Twins, Monozygotic , Umbilical Cord , Humans , Twins, Monozygotic/genetics , DNA Methylation/genetics , Female , Pregnancy , Transcriptome/genetics , Fetal Development/genetics , Fetal Development/physiology , Male
2.
Nat Commun ; 15(1): 4711, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830841

ABSTRACT

The fetal development of organs and functions is vulnerable to perturbation by maternal inflammation which may increase susceptibility to disorders after birth. Because it is not well understood how the placenta and fetus respond to acute lung- inflammation, we characterize the response to maternal pulmonary lipopolysaccharide exposure across 24 h in maternal and fetal organs using multi-omics, imaging and integrative analyses. Unlike maternal organs, which mount strong inflammatory immune responses, the placenta upregulates immuno-modulatory genes, in particular the IL-6 signaling suppressor Socs3. Similarly, we observe no immune response in the fetal liver, which instead displays metabolic changes, including increases in lipids containing docosahexaenoic acid, crucial for fetal brain development. The maternal liver and plasma display similar metabolic alterations, potentially increasing bioavailability of docosahexaenoic acid for the mother and fetus. Thus, our integrated temporal analysis shows that systemic inflammation in the mother leads to a metabolic perturbation in the fetus.


Subject(s)
Fetus , Lipopolysaccharides , Liver , Lung , Placenta , Female , Pregnancy , Placenta/metabolism , Placenta/immunology , Animals , Fetus/immunology , Fetus/metabolism , Lung/immunology , Lung/metabolism , Liver/metabolism , Liver/immunology , Docosahexaenoic Acids/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Mice , Inflammation/immunology , Inflammation/metabolism , Mice, Inbred C57BL , Adaptation, Physiological/immunology , Fetal Development/immunology , Maternal-Fetal Exchange/immunology , Interleukin-6/metabolism , Interleukin-6/immunology
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731818

ABSTRACT

Early life exposure lays the groundwork for the risk of developing cardiovascular-kidney-metabolic (CKM) syndrome in adulthood. Various environmental chemicals to which pregnant mothers are commonly exposed can disrupt fetal programming, leading to a wide range of CKM phenotypes. The aryl hydrocarbon receptor (AHR) has a key role as a ligand-activated transcription factor in sensing these environmental chemicals. Activating AHR through exposure to environmental chemicals has been documented for its adverse impacts on cardiovascular diseases, hypertension, diabetes, obesity, kidney disease, and non-alcoholic fatty liver disease, as evidenced by both epidemiological and animal studies. In this review, we compile current human evidence and findings from animal models that support the connection between antenatal chemical exposures and CKM programming, focusing particularly on AHR signaling. Additionally, we explore potential AHR modulators aimed at preventing CKM syndrome. As the pioneering review to present evidence advocating for the avoidance of toxic chemical exposure during pregnancy and deepening our understanding of AHR signaling, this has the potential to mitigate the global burden of CKM syndrome in the future.


Subject(s)
Cardiovascular Diseases , Prenatal Exposure Delayed Effects , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Humans , Pregnancy , Animals , Female , Prenatal Exposure Delayed Effects/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/chemically induced , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/etiology , Maternal Exposure/adverse effects , Signal Transduction/drug effects , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Fetal Development/drug effects , Environmental Pollutants/toxicity , Environmental Pollutants/adverse effects , Metabolic Reprogramming
4.
Anim Reprod Sci ; 265: 107494, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723401

ABSTRACT

The aim of this study was to evaluate the effects of pregnant ewe nutrition on the performance of offspring in terms of meat, wool production, and reproduction. Foetal programming in sheep has focused on several aspects related to foetal growth, postnatal production, behaviour, and immunological performance. Currently, significant efforts are being made to understand the endocrine, metabolic, and epigenetic mechanisms involved in offspring development. Current studies have not only evaluated the foetal period, despite the pre-conception parental nutrition has demonstrated an effect on the foetal, embryonic, and pre-implantation periods and can generate permanent effects in the foetal and postnatal phases. The performance of offspring is the result of interactions between the genome, epigenome, and environmental interventions during conception. Several factors influence the expression of phenotypic characteristics in progenies; however, this study focused on presenting data on the effect of pregnant ewe nutrition alone on foetal growth and the productive aspects of their offspring.


Subject(s)
Fetal Development , Animals , Female , Sheep/embryology , Sheep/physiology , Pregnancy , Fetal Development/physiology , Reproduction/physiology , Animal Nutritional Physiological Phenomena , Maternal Nutritional Physiological Phenomena
5.
Anim Reprod Sci ; 265: 107469, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705081

ABSTRACT

The first parity, or first pregnancy, of ruminant females has negative effects on offspring during fetal, perinatal, and pre-weaning periods which ultimately lead to diminished pre-weaning productivity. Offspring born to primiparous ruminant females can have decreased fetal and pre-weaning growth, resulting in lower body weights at birth and weaning in cattle, sheep, and goats. Moreover, mortality is greater during both neonatal and pre-weaning periods. Insults during these critical developmental windows likely also have long-term consequences on first-parity offspring through developmental programming, but less research has been done to investigate effects in the post-weaning period. Many potential physiological, metabolic, and behavioral mechanisms exist for the outcomes of dam primiparity. Although competition for nutrient partitioning between maternal and fetal growth or lactation is often cited as a major contributor, we hypothesize that the most important mechanism causing most first-parity outcomes is the relative physiological inexperience of reproductive tissues such as the uterus and mammary gland during the first pregnancy and lactation, or a "first use theory" of tissues. More research is necessary to explore these areas, as well as if primiparous dams respond differently to stressors than multiparous dams, and if stress during the first parity affects subsequent parities.


Subject(s)
Parity , Ruminants , Animals , Female , Pregnancy , Ruminants/physiology , Fetal Development/physiology
6.
Pediatr Allergy Immunol ; 35(5): e14141, 2024 May.
Article in English | MEDLINE | ID: mdl-38773752

ABSTRACT

Fetal programming may arise from prenatal exposure and increase the risk of diseases later in life, potentially mediated by the placenta. The objective of this systematic review was to summarize and critically evaluate publications describing associations between human placental changes and risk of atopic disorders during childhood. The review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines. The inclusion criteria were original research articles or case reports written in English describing a human placental change in relation to disease occurring in offspring during childhood. The MEDLINE and EMBASE databases were searched for eligible studies. Risk of bias (RoB) was assessed using the ROBINS-I tool. The results were pooled both in a narrative way and by a meta-analysis. Nineteen studies were included (n = 12,997 participants). All studies had an overall serious RoB, and publication bias could not be completely ruled out. However, five studies showed that histological chorioamnionitis in preterm-born children was associated with asthma-related problems (pooled odds ratio = 3.25 (95% confidence interval = 2.22-4.75)). In term-born children, a large placenta (≥750 g) increased the risk of being prescribed anti-asthma medications during the first year of life. Placental histone acetylation, DNA methylation, and gene expression differences were found to be associated with different atopic disorders in term-born children. There is some evidence supporting the idea that the placenta can mediate an increased risk of atopic disorders in children. However, further studies are needed to validate the findings, properly control for confounders, and examine potential mechanisms.


Subject(s)
Placenta , Child , Female , Humans , Infant, Newborn , Pregnancy , Asthma/epidemiology , Chorioamnionitis/epidemiology , Fetal Development , Hypersensitivity, Immediate/epidemiology , Placenta/pathology , Prenatal Exposure Delayed Effects
7.
Elife ; 132024 May 30.
Article in English | MEDLINE | ID: mdl-38813868

ABSTRACT

Germline epigenetic programming, including genomic imprinting, substantially influences offspring development. Polycomb Repressive Complex 2 (PRC2) plays an important role in Histone 3 Lysine 27 trimethylation (H3K27me3)-dependent imprinting, loss of which leads to growth and developmental changes in mouse offspring. In this study, we show that offspring from mouse oocytes lacking the PRC2 protein Embryonic Ectoderm Development (EED) were initially developmentally delayed, characterised by low blastocyst cell counts and substantial growth delay in mid-gestation embryos. This initial developmental delay was resolved as offspring underwent accelerated fetal development and growth in late gestation resulting in offspring that were similar stage and weight to controls at birth. The accelerated development and growth in offspring from Eed-null oocytes was associated with remodelling of the placenta, which involved an increase in fetal and maternal tissue size, conspicuous expansion of the glycogen-enriched cell population, and delayed parturition. Despite placental remodelling and accelerated offspring fetal growth and development, placental efficiency, and fetal blood glucose levels were low, and the fetal blood metabolome was unchanged. Moreover, while expression of the H3K27me3-imprinted gene and amino acid transporter Slc38a4 was increased, fetal blood levels of individual amino acids were similar to controls, indicating that placental amino acid transport was not enhanced. Genome-wide analyses identified extensive transcriptional dysregulation and DNA methylation changes in affected placentas, including a range of imprinted and non-imprinted genes. Together, while deletion of Eed in growing oocytes resulted in fetal growth and developmental delay and placental hyperplasia, our data indicate a remarkable capacity for offspring fetal growth to be normalised despite inefficient placental function and the loss of H3K27me3-dependent genomic imprinting.


Subject(s)
Genomic Imprinting , Animals , Female , Pregnancy , Mice , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Fetal Development/genetics , Placenta/metabolism , Oocytes/metabolism , Oocytes/growth & development , Amino Acid Transport System A
8.
Nutrients ; 16(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732510

ABSTRACT

Amino acids are essential for normal pregnancy and fetal development. Disruptions in maternal amino acid metabolism have been associated with various adult diseases later in life, a phenomenon referred to as the developmental origins of health and disease (DOHaD). In this review, we examine the recent evidence highlighting the significant impact of amino acids on fetal programming, their influence on the modulation of gut microbiota, and their repercussions on offspring outcomes, particularly in the context of cardiovascular-kidney-metabolic (CKM) syndrome. Furthermore, we delve into experimental studies that have unveiled the protective effects of therapies targeting amino acids. These interventions have demonstrated the potential to reprogram traits associated with CKM in offspring. The discussion encompasses the challenges of translating the findings from animal studies to clinical applications, emphasizing the complexity of this process. Additionally, we propose potential solutions to overcome these challenges. Ultimately, as we move forward, future research endeavors should aim to pinpoint the most effective amino-acid-targeted therapies, determining the optimal dosage and mode of administration. This exploration is essential for maximizing the reprogramming effects, ultimately contributing to the enhancement of cardiovascular-kidney-metabolic health in offspring.


Subject(s)
Amino Acids , Cardiovascular Diseases , Fetal Development , Gastrointestinal Microbiome , Kidney , Humans , Pregnancy , Female , Amino Acids/metabolism , Kidney/metabolism , Animals , Gastrointestinal Microbiome/physiology , Prenatal Exposure Delayed Effects , Kidney Diseases , Maternal Nutritional Physiological Phenomena
9.
Environ Int ; 187: 108727, 2024 May.
Article in English | MEDLINE | ID: mdl-38735074

ABSTRACT

BACKGROUND: There is inconclusive evidence for an association between per- and polyfluoroalkyl substances (PFAS) and fetal growth. OBJECTIVES: We conducted a nation-wide register-based cohort study to assess the associations of the estimated maternal exposure to the sum (PFAS4) of perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorohexane sulfonic acid (PFHxS) with birthweight as well as risk of small- (SGA) and large-for-gestational-age (LGA). MATERIALS AND METHODS: We included all births in Sweden during 2012-2018 of mothers residing ≥ four years prior to partus in localities served by municipal drinking water where PFAS were measured in raw and drinking water. Using a one-compartment toxicokinetic model we estimated cumulative maternal blood levels of PFAS4 during pregnancy by linking residential history, municipal PFAS water concentration and year-specific background serum PFAS concentrations in Sweden. Individual birth outcomes and covariates were obtained via register linkage. Mean values and 95 % confidence intervals (CI) of ß coefficients and odds ratios (OR) were estimated by linear and logistic regressions, respectively. Quantile g-computation regression was conducted to assess the impact of PFAS4 mixture. RESULTS: Among the 248,804 singleton newborns included, no overall association was observed for PFAS4 and birthweight or SGA. However, an association was seen for LGA, multivariable-adjusted OR 1.08 (95% CI: 1.01-1.16) when comparing the highest PFAS4 quartile to the lowest. These associations remained for mixture effect approach where all PFAS, except for PFOA, contributed with a positive weight. DISCUSSIONS: We observed an association of the sum of PFAS4 - especially PFOS - with increased risk of LGA, but not with SGA or birthweight. The limitations linked to the exposure assessment still require caution in the interpretation.


Subject(s)
Alkanesulfonic Acids , Birth Weight , Caprylates , Drinking Water , Fetal Development , Fluorocarbons , Maternal Exposure , Water Pollutants, Chemical , Fluorocarbons/blood , Fluorocarbons/analysis , Humans , Drinking Water/chemistry , Female , Sweden , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/blood , Pregnancy , Adult , Alkanesulfonic Acids/blood , Maternal Exposure/statistics & numerical data , Fetal Development/drug effects , Birth Weight/drug effects , Caprylates/blood , Infant, Newborn , Cohort Studies , Sulfonic Acids/blood , Registries , Male , Infant, Small for Gestational Age , Young Adult
10.
Genes (Basel) ; 15(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38790233

ABSTRACT

The objective of this study was to investigate gene regulation of the developing fetal brain from congenic or inbred mice strains that differed in longevity. Gene expression and alternative splice variants were analyzed in a genome-wide manner in the fetal brain of C57BL/6J mice (long-lived) in comparison to B6.Cg-Cav1tm1Mls/J (congenic, short-lived) and AKR/J (inbred, short-lived) mice on day(d) 12, 15, and 17 of gestation. The analysis showed a contrasting gene expression pattern during fetal brain development in these mice. Genes related to brain development, aging, and the regulation of alternative splicing were significantly differentially regulated in the fetal brain of the short-lived compared to long-lived mice during development from d15 and d17. A significantly reduced number of splice variants was observed on d15 compared to d12 or d17 in a strain-dependent manner. An epigenetic clock analysis of d15 fetal brain identified DNA methylations that were significantly associated with single-nucleotide polymorphic sites between AKR/J and C57BL/6J strains. These methylations were associated with genes that show epigenetic changes in an age-correlated manner in mice. Together, the finding of this study suggest that fetal brain development and longevity are epigenetically linked, supporting the emerging concept of the early-life origin of longevity.


Subject(s)
Brain , DNA Methylation , Gene Expression Regulation, Developmental , Longevity , Mice, Inbred C57BL , Animals , Brain/metabolism , Brain/embryology , Mice , Longevity/genetics , Alternative Splicing , Female , Epigenesis, Genetic , Mice, Congenic/genetics , Mice, Inbred AKR , Male , Fetal Development/genetics
11.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791576

ABSTRACT

Obstructive sleep apnea (OSA) is quite prevalent during pregnancy and is associated with adverse perinatal outcomes, but its potential influence on fetal development remains unclear. This study investigated maternal OSA impact on the fetus by analyzing gene expression profiles in whole cord blood (WCB). Ten women in the third trimester of pregnancy were included, five OSA and five non-OSA cases. WCB RNA expression was analyzed by microarray technology to identify differentially expressed genes (DEGs) under OSA conditions. After data normalization, 3238 genes showed significant differential expression under OSA conditions, with 2690 upregulated genes and 548 downregulated genes. Functional enrichment was conducted using gene set enrichment analysis (GSEA) applied to Gene Ontology annotations. Key biological processes involved in OSA were identified, including response to oxidative stress and hypoxia, apoptosis, insulin response and secretion, and placental development. Moreover, DEGs were confirmed through qPCR analyses in additional WCB samples (7 with OSA and 13 without OSA). This highlighted differential expression of several genes in OSA (EGR1, PFN1 and PRKAR1A), with distinct gene expression profiles observed during rapid eye movement (REM)-OSA in pregnancy (PFN1, UBA52, EGR1, STX4, MYC, JUNB, and MAPKAP). These findings suggest that OSA, particularly during REM sleep, may negatively impact various biological processes during fetal development.


Subject(s)
Fetal Blood , Fetal Development , Sleep Apnea, Obstructive , Humans , Female , Pregnancy , Fetal Blood/metabolism , Adult , Sleep Apnea, Obstructive/genetics , Fetal Development/genetics , Transcriptome , Gene Expression Profiling , Pregnancy Complications/genetics
12.
Commun Biol ; 7(1): 538, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714799

ABSTRACT

Human adolescent and adult skeletons exhibit sexual dimorphism in the pelvis. However, the degree of sexual dimorphism of the human pelvis during prenatal development remains unclear. Here, we performed high-resolution magnetic resonance imaging-assisted pelvimetry on 72 human fetuses (males [M]: females [F], 34:38; 21 sites) with crown-rump lengths (CRL) of 50-225 mm (the onset of primary ossification). We used multiple regression analysis to examine sexual dimorphism with CRL as a covariate. Females exhibit significantly smaller pelvic inlet anteroposterior diameters (least squares mean, [F] 8.4 mm vs. [M] 8.8 mm, P = 0.036), larger subpubic angle ([F] 68.1° vs. [M] 64.0°, P = 0.034), and larger distance between the ischial spines relative to the transverse diameters of the greater pelvis than males. Furthermore, the sacral measurements indicate significant sex-CRL interactions. Our study suggests that sexual dimorphism of the human fetal pelvis is already apparent at the onset of primary ossification.


Subject(s)
Fetus , Osteogenesis , Pelvis , Sex Characteristics , Humans , Female , Male , Pelvis/embryology , Pelvis/anatomy & histology , Pelvis/diagnostic imaging , Fetus/anatomy & histology , Fetus/diagnostic imaging , Magnetic Resonance Imaging , Pelvic Bones/anatomy & histology , Pelvic Bones/diagnostic imaging , Pelvic Bones/embryology , Crown-Rump Length , Fetal Development , Pelvimetry/methods
13.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731997

ABSTRACT

Glucose, the primary energy substrate for fetal oxidative processes and growth, is transferred from maternal to fetal circulation down a concentration gradient by placental facilitative glucose transporters. In sheep, SLC2A1 and SLC2A3 are the primary transporters available in the placental epithelium, with SLC2A3 located on the maternal-facing apical trophoblast membrane and SLC2A1 located on the fetal-facing basolateral trophoblast membrane. We have previously reported that impaired placental SLC2A3 glucose transport resulted in smaller, hypoglycemic fetuses with reduced umbilical artery insulin and glucagon concentrations, in addition to diminished pancreas weights. These findings led us to subject RNA derived from SLC2A3-RNAi (RNA interference) and NTS-RNAi (non-targeting sequence) fetal pancreases to qPCR followed by transcriptomic analysis. We identified a total of 771 differentially expressed genes (DEGs). Upregulated pathways were associated with fat digestion and absorption, particularly fatty acid transport, lipid metabolism, and cholesterol biosynthesis, suggesting a potential switch in energetic substrates due to hypoglycemia. Pathways related to molecular transport and cell signaling in addition to pathways influencing growth and metabolism of the developing pancreas were also impacted. A few genes directly related to gluconeogenesis were also differentially expressed. Our results suggest that fetal hypoglycemia during the first half of gestation impacts fetal pancreas development and function that is not limited to ß cell activity.


Subject(s)
Hypoglycemia , Pancreas , Placenta , RNA Interference , Transcriptome , Pregnancy , Animals , Female , Placenta/metabolism , Sheep , Pancreas/metabolism , Pancreas/embryology , Hypoglycemia/genetics , Hypoglycemia/metabolism , Glucose Transporter Type 3/genetics , Glucose Transporter Type 3/metabolism , Fetus/metabolism , Fetal Development/genetics , Gene Expression Regulation, Developmental , Glucose/metabolism , Gene Expression Profiling
14.
Nutrients ; 16(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732572

ABSTRACT

The effects of gut microbiota on the association between carbohydrate intake during pregnancy and neonatal low birth weight (LBW) were investigated. A prospective cohort study was conducted with 257 singleton-born mother-child pairs in Taiwan, and maternal dietary intake was estimated using a questionnaire, with each macronutrient being classified as low, medium, or high. Maternal fecal samples were collected between 24 and 28 weeks of gestation, and gut microbiota composition and diversity were profiled using 16S rRNA amplicon gene sequencing. Carbohydrates were the major source of total energy (56.61%), followed by fat (27.92%) and protein (15.46%). The rate of infant LBW was 7.8%, which was positively correlated with maternal carbohydrate intake. In the pregnancy gut microbiota, Bacteroides ovatus and Dorea spp. were indirectly and directly negatively associated with fetal growth, respectively; Rosenburia faecis was directly positively associated with neonatal birth weight. Maternal hypertension during pregnancy altered the microbiota features and was associated with poor fetal growth. Microbiota-accessible carbohydrates can modify the composition and function of the pregnancy gut microbiota, thus providing a potential marker to modulate deviations from dietary patterns, particularly in women at risk of hypertension during pregnancy, to prevent neonatal LBW.


Subject(s)
Dietary Carbohydrates , Feces , Gastrointestinal Microbiome , Infant, Low Birth Weight , Humans , Female , Gastrointestinal Microbiome/drug effects , Pregnancy , Infant, Newborn , Adult , Prospective Studies , Feces/microbiology , Maternal Nutritional Physiological Phenomena , Taiwan , RNA, Ribosomal, 16S/genetics , Fetal Development
15.
Cell Mol Life Sci ; 81(1): 210, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717553

ABSTRACT

The cytoophidium is an evolutionarily conserved subcellular structure formed by filamentous polymers of metabolic enzymes. In vertebrates, inosine monophosphate dehydrogenase (IMPDH), which catalyses the rate-limiting step in guanosine triphosphate (GTP) biosynthesis, is one of the best-known cytoophidium-forming enzymes. Formation of the cytoophidium has been proposed to alleviate the inhibition of IMPDH, thereby facilitating GTP production to support the rapid proliferation of certain cell types such as lymphocytes, cancer cells and pluripotent stem cells (PSCs). However, past studies lacked appropriate models to elucidate the significance of IMPDH cytoophidium under normal physiological conditions. In this study, we demonstrate that the presence of IMPDH cytoophidium in mouse PSCs correlates with their metabolic status rather than pluripotency. By introducing IMPDH2 Y12C point mutation through genome editing, we established mouse embryonic stem cell (ESC) lines incapable of forming IMPDH polymers and the cytoophidium. Our data indicate an important role of IMPDH cytoophidium in sustaining a positive feedback loop that couples nucleotide biosynthesis with upstream metabolic pathways. Additionally, we find that IMPDH2 Y12C mutation leads to decreased cell proliferation and increased DNA damage in teratomas, as well as impaired embryo development following blastocoel injection. Further analysis shows that IMPDH cytoophidium assembly in mouse embryonic development begins after implantation and gradually increases throughout fetal development. These findings provide insights into the regulation of IMPDH polymerisation in embryogenesis and its significance in coordinating cell metabolism and development.


Subject(s)
Cell Proliferation , IMP Dehydrogenase , Animals , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/genetics , Mice , Fetal Development/genetics , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Female , Guanosine Triphosphate/metabolism , DNA Damage , Mice, Inbred C57BL
16.
Reprod Toxicol ; 126: 108607, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734317

ABSTRACT

Ethion is a class II moderately toxic organothiophosphate pesticide. The main objective of this study was to evaluate the maternal and foetal toxicity of ethion in rats. Pregnant rats were divided into 5 groups. Group I served as control. Group II, III, IV, and V were orally administered with 0.86, 1.71, 3.43, and 6.9 mg/kg of ethion respectively, from gestational day (GD) 6-19. Dams were sacrificed on GD 20. Maternal toxicity was assessed by body weight gain, foetal resorptions, oxidative stress, liver and kidney function tests, and histopathology. Foetal toxicity was assessed by physical status, gross, teratological and histopathological examination. Ethion caused dose-dependent reduction in maternal body weight gain, increased resorptions, and reduced gravid uterine weights. Elevated MDA levels and altered levels of GSH, SOD and catalase were recorded in pregnant dam serum and tissues. SGOT, SGPT, total bilirubin, urea, uric acid, and creatinine were elevated in ethion groups indicating liver and kidney toxicity. Histology of uterus revealed myometrial degeneration and mucosal gland atrophy in uterus of pregnant dams and degenerative changes in placenta. It showed histological alterations in liver, kidney, and lungs. There was reduction in the foetal body weights and placental weights, and degenerative changes in the foetal liver and kidney. Gross evaluation of foetuses showed subcutaneous hematoma. Skeletal evaluation showed partial ossification of skull bones, costal separation, and agenesis of tail vertebrae, sternebrae, metacarpals and metatarsals. The findings reveal that prenatal exposure to ethion caused maternal and foetal toxicity in rats.


Subject(s)
Kidney , Liver , Animals , Female , Pregnancy , Rats , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Uterus/drug effects , Uterus/pathology , Oxidative Stress/drug effects , Ethylenethiourea/toxicity , Maternal Exposure , Fetus/drug effects , Fetus/pathology , Organ Size/drug effects , Rats, Wistar , Insecticides/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Placenta/drug effects , Placenta/pathology , Fetal Resorption/chemically induced , Maternal-Fetal Exchange , Fetal Development/drug effects
17.
Sci Rep ; 14(1): 11366, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762543

ABSTRACT

Placental leptin may impact foetal development. Maternal overnutrition has been linked to increased plasma leptin levels and adverse effects on offspring, whereas choline, an essential nutrient for foetal development, has shown promise in mitigating some negative impacts of maternal obesity. Here, we investigate whether a maternal obesogenic diet alters foetal growth and leptin levels in the foetal stomach, amniotic fluid (AF), and placenta in late gestation and explore the potential modulating effects of maternal choline supplementation. Female rats were fed a control (CD) or a western diet (WD) four weeks before mating and during gestation, half of them supplemented with choline (pregnancy days 11-17). Leptin levels (in foetal stomach, AF, and placenta) and leptin gene expression (in placenta) were assessed on gestation days 20 and 21. At day 20, maternal WD feeding resulted in greater leptin levels in foetal stomach, placenta, and AF. The increased AF leptin levels were associated with a premature increase in foetal weight in both sexes. Maternal choline supplementation partially prevented these alterations, but effects differed in CD dams, causing increased AF leptin levels and greater weight in male foetuses at day 20. Maternal choline supplementation effectively mitigates premature foetal overgrowth induced by an obesogenic diet, potentially linked to increased AF leptin levels. Further research is needed to explore the sex-specific effects.


Subject(s)
Amniotic Fluid , Choline , Dietary Supplements , Leptin , Animals , Female , Leptin/blood , Leptin/metabolism , Pregnancy , Choline/administration & dosage , Amniotic Fluid/metabolism , Rats , Male , Placenta/metabolism , Placenta/drug effects , Fetal Development/drug effects , Obesity/metabolism , Obesity/etiology , Fetal Weight/drug effects , Rats, Sprague-Dawley , Diet, Western/adverse effects
18.
BMC Biol ; 22(1): 127, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816743

ABSTRACT

BACKGROUND: Optimal size at birth dictates perinatal survival and long-term risk of developing common disorders such as obesity, type 2 diabetes and cardiovascular disease. The imprinted Grb10 gene encodes a signalling adaptor protein capable of inhibiting receptor tyrosine kinases, including the insulin receptor (Insr) and insulin-like growth factor type 1 receptor (Igf1r). Grb10 restricts fetal growth such that Grb10 knockout (KO) mice are at birth some 25-35% larger than wild type. Using a mouse genetic approach, we test the widely held assumption that Grb10 influences growth through interaction with Igf1r, which has a highly conserved growth promoting role. RESULTS: Should Grb10 interact with Igf1r to regulate growth Grb10:Igf1r double mutant mice should be indistinguishable from Igf1r KO single mutants, which are around half normal size at birth. Instead, Grb10:Igf1r double mutants were intermediate in size between Grb10 KO and Igf1r KO single mutants, indicating additive effects of the two signalling proteins having opposite actions in separate pathways. Some organs examined followed a similar pattern, though Grb10 KO neonates exhibited sparing of the brain and kidneys, whereas the influence of Igf1r extended to all organs. An interaction between Grb10 and Insr was similarly investigated. While there was no general evidence for a major interaction for fetal growth regulation, the liver was an exception. The liver in Grb10 KO mutants was disproportionately overgrown with evidence of excess lipid storage in hepatocytes, whereas Grb10:Insr double mutants were indistinguishable from Insr single mutants or wild types. CONCLUSIONS: Grb10 acts largely independently of Igf1r or Insr to control fetal growth and has a more variable influence on individual organs. Only the disproportionate overgrowth and excess lipid storage seen in the Grb10 KO neonatal liver can be explained through an interaction between Grb10 and the Insr. Our findings are important for understanding how positive and negative influences on fetal growth dictate size and tissue proportions at birth.


Subject(s)
Fetal Development , GRB10 Adaptor Protein , Mice, Knockout , Receptor, IGF Type 1 , Receptor, Insulin , Animals , GRB10 Adaptor Protein/genetics , GRB10 Adaptor Protein/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Mice , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Fetal Development/genetics , Genomic Imprinting , Female , Male , Insulin-Like Peptides
19.
Radiat Prot Dosimetry ; 200(8): 791-801, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38777801

ABSTRACT

Fetal development is essential to the human lifespan. As more and more multifetal gestations have been reported recently, clinical diagnosis using magnetic resonance imaging (MRI), which introduced radiofrequency (RF) exposure, raised public concerns. The present study developed two whole-body pregnant models of 31 and 32 gestational weeks (GWs) with twin fetuses and explored RF exposure by 1.5 and 3.0 T MRI. Differences in the relative position of the fetus and changes in fetal weight can cause differences in fetal peak local specific absorption rate averaged over 10 g tissue (pSAR10g). Variation of pSAR10g due to different fetal positions can be ~35%. Numerically, twin and singleton fetal pSAR10g results were not significantly different, however twin results exceeded the limit in some cases (e.g. fetuses of 31 GW at 1.5 T), which indicated the necessity for further research employing anatomically correct twin-fetal models coming from various GWs and particular sequence to be applied.


Subject(s)
Fetus , Magnetic Resonance Imaging , Radio Waves , Humans , Pregnancy , Female , Magnetic Resonance Imaging/methods , Fetus/radiation effects , Fetus/diagnostic imaging , Twins , Gestational Age , Fetal Development/radiation effects
20.
Neuroimage ; 292: 120603, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38588833

ABSTRACT

Fetal brain development is a complex process involving different stages of growth and organization which are crucial for the development of brain circuits and neural connections. Fetal atlases and labeled datasets are promising tools to investigate prenatal brain development. They support the identification of atypical brain patterns, providing insights into potential early signs of clinical conditions. In a nutshell, prenatal brain imaging and post-processing via modern tools are a cutting-edge field that will significantly contribute to the advancement of our understanding of fetal development. In this work, we first provide terminological clarification for specific terms (i.e., "brain template" and "brain atlas"), highlighting potentially misleading interpretations related to inconsistent use of terms in the literature. We discuss the major structures and neurodevelopmental milestones characterizing fetal brain ontogenesis. Our main contribution is the systematic review of 18 prenatal brain atlases and 3 datasets. We also tangentially focus on clinical, research, and ethical implications of prenatal neuroimaging.


Subject(s)
Atlases as Topic , Brain , Magnetic Resonance Imaging , Neuroimaging , Female , Humans , Pregnancy , Brain/diagnostic imaging , Brain/embryology , Datasets as Topic , Fetal Development/physiology , Fetus/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...