Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.065
Filter
1.
BMC Anesthesiol ; 24(1): 197, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834948

ABSTRACT

BACKGROUND: Ciprofol is a promising sedative. This study aims to explore the median effective dose (ED50) of ciprofol in inhibiting responses to fiberoptic bronchoscopy in patients with pulmonary tuberculosis (PTB) of different genders and ages when combined with 0.15 µg/kg sufentanil, and to evaluate its efficacy and safety, providing a reference for the rational use of ciprofol in clinical practice. METHODS: PTB patients who underwent bronchoscopy examination and treatment at The Third People's Hospital of Changzhou between May 2023 and June 2023 were selected and divided into four groups using a stratified random method. All patients received intravenous injection of 0.15 µg/kg sufentanil followed by injection of the test dose of ciprofol according to Dixon's up-and-down method. The initial dose of ciprofol in all four groups was 0.4 mg/kg, with an adjacent ratio of 1:1.1. The next patient received a 10% increase in the dose of ciprofol if the previous patient in the same group experienced positive reactions such as choking cough, frowning, and body movements during the endoscopy. Otherwise, it was judged as a negative reaction, and the next patient received a 10% decrease in the dose of ciprofol. The transition from a positive reaction to a negative reaction was defined as a turning point, and the study of the group was terminated when seven turning points occurred. Hemodynamic parameters, oxygen saturation and adverse reactions were recorded at different time points in all groups. The Probit regression analysis method was used to calculate the ED50 of ciprofol in the four groups and compare between the groups. RESULTS: The ED50 of ciprofol combined with 0.15 µg/kg sufentanil for bronchoscopy in the four groups were 0.465 mg/kg, 0.433 mg/kg, 0.420 mg/kg and 0.396 mg/kg, respectively. CONCLUSION: The ED50 of ciprofol used for fiberoptic bronchoscopy varied among PTB patients of different genders and ages. TRIAL REGISTRATION: The Chinese Clinical Trial Registry, ChiCTR2300071508, Registered on 17 May 2023.


Subject(s)
Bronchoscopy , Fiber Optic Technology , Sufentanil , Tuberculosis, Pulmonary , Humans , Male , Bronchoscopy/methods , Female , Middle Aged , Sufentanil/administration & dosage , Adult , Tuberculosis, Pulmonary/drug therapy , Dose-Response Relationship, Drug , Aged , Hypnotics and Sedatives/administration & dosage , Young Adult , Drug Therapy, Combination
2.
Ann Card Anaesth ; 27(1): 65-67, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38722125

ABSTRACT

ABSTRACT: One-lung ventilation is indicated during thoracic surgery for visualization and exposure of surgical site. It is achieved with bronchial blockers, double-lumen endobronchial tube, single-lumen endotracheal tubes and Univent tube for infants and children. Fibreoptic bronchoscope is required for placing and confirming the correct position of these tubes. We report a perioperative management of safe conduct of one lung ventilation for a 6-year child undergoing left lower lobe lobectomy through C-MAC video laryngoscope guided two single lumen tubes in limited resource settings where paediatric-sized fibreoptic bronchoscope is unavailable.


Subject(s)
Intubation, Intratracheal , One-Lung Ventilation , Humans , One-Lung Ventilation/methods , One-Lung Ventilation/instrumentation , Intubation, Intratracheal/methods , Intubation, Intratracheal/instrumentation , Child , Male , Bronchoscopy/methods , Fiber Optic Technology , Female , Laryngoscopy/methods
3.
AANA J ; 92(3): 197-205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38758714

ABSTRACT

Supraglottic airway (SGA) is an alternative to endotracheal intubation, however endotracheal intubation is often essential. One method to convert from an SGA to an endotracheal tube (ETT) is utilizing the SGA as a conduit for fiberoptic-guided advancement of an Aintree catheter (airway exchange catheter), and exchange of the SGA for an ETT. In this prospective randomized study, we compared two SGA devices in facilitating this exchange. Subjects were randomized to receive either the i-gel® or LMA® Supreme™ SGA. The SGA was placed and an Aintree intubation catheter was inserted through the SGA over a fiberoptic bronchoscope. Next, the SGA was removed, leaving the Aintree within the trachea, and an ETT was placed over the Aintree catheter and advanced into the trachea. The i-gel group exhibited shorter time to successful intubation (median, 191 vs. 434 seconds; P = .002). The i-gel group also had fewer study subjects requiring more than one attempt for successful Aintree placement (33% vs. 75%, P = .02). The i-gel group showed superior laryngeal view score (LVS) (6 vs. 4; P = .003). The i-gel SGA achieved a faster time to successful intubation, higher rate of first attempt Aintree placement, and superior LVS.


Subject(s)
Fiber Optic Technology , Intubation, Intratracheal , Laryngeal Masks , Humans , Intubation, Intratracheal/instrumentation , Intubation, Intratracheal/methods , Male , Prospective Studies , Female , Middle Aged , Adult , Nurse Anesthetists , Aged
4.
Sci Rep ; 14(1): 11671, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778051

ABSTRACT

This study delves into the effectiveness of combining remimazolam with low-dose propofol in pediatric fiberoptic bronchoscopy. Ninety children scheduled for fiberoptic bronchoscopy in our hospital were enrolled as research participants. Based on the intraoperative anesthetic drug regimen, the children were divided into three groups: group R (remimazolam 0.2-0.4 mg/kg), group P (propofol 1-3 mg/kg), and group RP (remimazolam0.2 mg/kg, propofol 0.5 mg/kg). Immediately post-anesthesia, group P exhibited lower blood pressure and heart rate (HR) compared to both group R and group RP (P < 0.05). As bronchoscope approached the glottis and epiglottis, group P continued to display lower blood pressure and HR compared to group R and group RP (P < 0.05). During lavage, group P maintained lower blood pressure and HR compared to both the R and RP groups (P < 0.05). Immediately post-anesthesia, group P demonstrated lower SpO2 compared to the R and RP groups (P < 0.05).During lavage, group P maintained lower SpO2 than group R and group RP (P < 0.05). In comparison with group R and group PR, group P showed shortened induction and recovery times (P < 0.05). The one-time entry success rate into the microscope was higher in group R than in group P, with the RP group showing an intermediate decreased (P < 0.05). Moreover, the cough score in R group was higher than in the P and RP groups (P < 0.05). Furthermore, the satisfaction rates of the RP group exceeded those of the R and P groups (P < 0.05). Remimazolam combined with low-dose propofol effectively balances the strengths and weaknesses of remimazolam and propofol, ensuring more stable hemodynamics, a lower incidence of adverse reactions, and optimal surgical conditions in pediatric fiberoptic bronchoscopy.


Subject(s)
Bronchoscopy , Propofol , Humans , Bronchoscopy/methods , Propofol/administration & dosage , Female , Male , Child, Preschool , Child , Blood Pressure/drug effects , Heart Rate/drug effects , Fiber Optic Technology/methods , Infant , Hypnotics and Sedatives/administration & dosage , Benzodiazepines
5.
Biosensors (Basel) ; 14(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38785705

ABSTRACT

The development of rapid detection tools for viruses is vital for the prevention of pandemics and biothreats. Aptamers that target inactivated viruses are attractive for sensors due to their improved biosafety. Here, we evaluated a DNA aptamer (named as 6.9) that specifically binds to the inactivated SARS-CoV-2 virus with a low dissociation constant (KD = 9.6 nM) for the first time. Based on aptamer 6.9, we developed a fiber-optic evanescent wave (FOEW) biosensor. Inactivated SARS-CoV-2 and the Cy5.5-tagged short complementary strand competitively bound with the aptamer immobilized on the surface of the sensor. The detection of the inactivated SARS-CoV-2 virus was realized within six minutes with a limit of detection (LOD, S/N = 3) of 740 fg/mL. We also developed an electrochemical impedance aptasensor which exhibited an LOD of 5.1 fg/mL and high specificity. We further demonstrated that the LODs of the FOEW and electrochemical impedance aptasensors were, respectively, more than 1000 and 100,000 times lower than those of commercial colloidal gold test strips. We foresee that the facile aptamer isolation process and sensor design can be easily extended for the detection of other inactivated viruses.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Dielectric Spectroscopy , Limit of Detection , SARS-CoV-2 , SARS-CoV-2/isolation & purification , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19/virology , Humans , Fiber Optic Technology
6.
J Biomed Opt ; 29(5): 050501, 2024 May.
Article in English | MEDLINE | ID: mdl-38774711

ABSTRACT

Significance: Fiber-optic microendoscopy is a promising approach to noninvasively visualize epithelial nuclear morphometry for early cancer and precancer detection. However, the broader clinical application of this approach is limited by a lack of topical contrast agents available for in vivo use. Aim: The aim of this study was to evaluate the ability to image nuclear morphometry in vivo with a novel fiber-optic microendoscope used together with topical application of methylene blue (MB), a dye with FDA approval for use in chromoendoscopy in the gastrointestinal tract. Approach: The low-cost, high-resolution microendoscope implements scanning darkfield imaging without complex optomechanical components by leveraging programmable illumination and the rolling shutter of the image sensor. We validate the integration of our system and MB staining for visualizing epithelial cell nuclei by performing ex vivo imaging on fresh animal specimens and in vivo imaging on healthy volunteers. Results: The results indicate that scanning darkfield imaging significantly reduces specular reflection and resolves epithelial nuclei with enhanced image contrast and spatial resolution compared to non-scanning widefield imaging. The image quality of darkfield images with MB staining is comparable to that of fluorescence images with proflavine staining. Conclusions: Our approach enables real-time microscopic evaluation of nuclear patterns and has the potential to be a powerful noninvasive tool for early cancer detection.


Subject(s)
Methylene Blue , Methylene Blue/chemistry , Animals , Humans , Cell Nucleus , Fiber Optic Technology/instrumentation , Equipment Design , Endoscopy/methods , Endoscopy/instrumentation , Administration, Topical
7.
Anal Chim Acta ; 1309: 342665, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772653

ABSTRACT

BACKGROUND: The concentration of cytochrome C is demonstrated to be an effective indicator of the microbial corrosion strength of metals. Traditional cytochrome C sensor can detect cytochrome C with a low detection limit, but their use is limited by their high cost, cumbersome operation, and susceptibility to malignant environments. In addition, studies on the monitoring of cytochrome C in the field of microbial corrosion has still not been carried out. Therefore, there is a need for a highly sensitive, selective, low-cost, anti-interference, and stable cytochrome C sensor with online monitoring and remote sensing capabilities for in-situ measurement of microbial corrosion strength. RESULTS: This paper proposed a highly sensitive label-free fiber-optic sensor based on Mach-Zehnder interferometer (MZI) for in-situ measurement of the microbial corrosion marker cytochrome C. Two-dimensional Ti2C-MXene material is uniformly immobilized onto the surface of the sensing area to improve the sensitivity, hydrophilicity, and specific surface area of the sensing area, as well as to facilitate the immobilization of specific sensitive materials. The cytochrome C antibody is modified on the surface of Ti2C-MXene to specifically recognize cytochrome C, whose concentration variation can be measured by monitoring the spectral shift of MZI sensor. Results demonstrate a measurement sensitivity of 1.428 nm/µM for cytochrome C concentrations ranging from 0 to 7.04 µM. The detection limit of the sensor is calculated to be 0.392 µM with remarkable performance, including selectivity, stability, and reliability. Besides, the measurement result of the proposed sensor in real microbial corrosive environment is consistent with that of the ideal environment. SIGNIFICANCE AND NOVELTY: This is the first instance of achieving in-situ and label-free measurement of cytochrome C by using a fiber-optic MZI sensor, which undoubtedly provides a feasible solution for the effective monitoring of microbial metal corrosion in the environment.


Subject(s)
Cytochromes c , Fiber Optic Technology , Interferometry , Titanium , Cytochromes c/analysis , Cytochromes c/metabolism , Titanium/chemistry , Biosensing Techniques/methods , Limit of Detection , Optical Fibers , Corrosion
8.
ACS Sens ; 9(4): 2110-2121, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38622791

ABSTRACT

In this study, we explore the full-spectrum capabilities of fiber-optic surface plasmon resonance (FO-SPR) for analyzing heterogeneous samples with increased comprehensiveness. Our approach involves refining a literature-derived FO-SPR model to more precisely reflect experimental data obtained using a back-reflecting sensor configuration. Key enhancements in our model include adjustments to the thickness and permittivity of the gold SPR-active layer on the FO-SPR sensor as well as improvements to the angular distribution of light within the system. We apply this optimized model to the investigation of the deposition process of a metal-organic framework (MOF), specifically ZIF-8, using FO-SPR. By closely examining the temporal variations in the FO-SPR signal during MOF layer formation, we simultaneously determine the evolving thickness and refractive index (RI) of the MOF layer, offering a dual-parameter analysis. Our results demonstrate that a full-spectrum analysis of the FO-SPR signal can extract critical information from samples exhibiting radial heterogeneity. This advancement significantly enhances the quantitative assessment of various phenomena that alter the refractive index in the sensor's domain, such as adsorption and binding processes. This work thus represents a significant step forward in the field of FO-SPR sensor technology, promising broad applications in areas requiring the precise detection and analysis of complex samples.


Subject(s)
Metal-Organic Frameworks , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Metal-Organic Frameworks/chemistry , Gold/chemistry , Fiber Optic Technology/methods , Fiber Optic Technology/instrumentation
9.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38626737

ABSTRACT

A novel fiber optic biosensor was purposed for a new approach to monitor amyloid beta protein fragment 1-42 (Aß42) for Alzheimer's Disease (AD) early detection. The sensor was fabricated by etching a part of fiber from single mode fiber loop in pure hydrofluoric acid solution and utilized as a Local Optical Refractometer (LOR) to monitor the change Aß42 concentration in Artificial Cerebrospinal Fluid (ACSF). The Fiber Loop Ringdown Spectroscopy (FLRDS) technique is an ultra-sensitive measurement technique with low-cost, high sensitivity, real-time measurement, continuous measurement and portability features that was utilized with a fiber optic sensor for the first time for the detection of a biological signature in an ACSF environment. Here, the measurement is based on the total optical loss detection when specially fabricated sensor heads were immersed into ACSF solutions with and without different concentrations of Aß42 biomarkers since the bulk refractive index change was performed. Baseline stability and the reference ring down times of the sensor head were measured in the air as 0.87% and 441.6µs ± 3.9µs, respectively. Afterward, the total optical loss of the system was measured when the sensor head was immersed in deionized water, ACSF solution, and ACSF solutions with Aß42 in different concentrations. The lowest Aß42 concentration of 2 ppm was detected by LOR. Results showed that LOR fabricated by single-mode fibers for FLRDS system design are promising candidates to be utilized as fiber optic biosensors after sensor head modification and have a high potential for early detection applications of not only AD but possibly also several fatal diseases such as diabetes and cancer.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biosensing Techniques , Early Diagnosis , Fiber Optic Technology , Peptide Fragments , Spectrum Analysis , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/analysis , Humans , Fiber Optic Technology/methods , Peptide Fragments/analysis , Biosensing Techniques/methods , Spectrum Analysis/methods , Optical Fibers , Biomarkers/analysis , Refractometry , Equipment Design
10.
Opt Express ; 32(6): 10033-10045, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571224

ABSTRACT

Fiber optic interferometry combined with recognizing elements has attracted intensive attention for the development of different biosensors due to its superior characteristic features. However, the immobilization of sensing elements alone is not capable of low-concentration detection due to weak interaction with the evanescent field of the sensing transducer. The utilization of different 2D materials with high absorption potential and specific surface area can enhance the intensity of the evanescent field and hence the sensitivity of the sensor. Here, a biosensor has been fabricated using an inline hetero fiber structure of photonic crystal fiber (PCF) and single-mode fiber (SMF) functionalized with a nanocomposite of molybodenum di-sulfide (MoS2) and molecular imprinting polymer (MIP) to detect trace levels of bovine serum albumin (BSA). The sensor showed a wide dynamic detection range with a high sensitivity of 2.34 × 107 pm/µg L-1. It shows working potential over a wide pH range with a subfemtomolar detection limit. The compact size, easy fabrication, stable structure, long detection range, and high sensitivity of this sensor would open a new path for the development of different biosensors for online and remote sensing applications.


Subject(s)
Molecular Imprinting , Nanocomposites , Polymers/chemistry , Molybdenum , Fiber Optic Technology
11.
J Clin Anesth ; 95: 111461, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38604048

ABSTRACT

BACKGROUND: There is a search for an ideal agent to facilitate awake fiberoptic intubation (AFOI). Dexmedetomidine is a selective α2 agonist which can be administered through intravenous, intramuscular, buccal, intranasal & inhalational routes. It provides good intubation conditions without oxygen desaturation but may cause hypotension and bradycardia when administered intravenously. Hence, alternative routes of administering dexmedetomidine which may improve its safety profile are worth exploring. METHODS: In this randomised, controlled, double-blind trial, 46 ASA I/II adult participants scheduled for elective ENT surgery were randomly allocated to Group ND (Nebulised Dexmedetomidine) (n = 23) to receive nebulisation with dexmedetomidine 1µg.kg-1 and Group ID (Intravenous Dexmedetomidine) (n = 23) to receive intravenous dexmedetomidine 1µg.kg-1 before AFOI. All the patients received injection midazolam 1 mg i.v. as premedication before anaesthesia was initiated. The primary outcome was the cough score. The secondary outcomes were the RSS, SAYGO boluses, post-intubation score, hemodynamic parameters, recall of the procedure, patient satisfaction score and any side effects. RESULTS: The cough score was significantly lower in nebulized group (2.43 ± 0.992 vs 3.52 ± 1.082) with p = 0.001. RSS(3.30 ± 0.926 vs 4.22 ± 1.126; p = 0.004), number of SAYGO boluses required (2.74 ± 0.864 vs 3.57 ± 1.161; p = 0.009) & the post intubation score (1.48 ± 0.593 vs 2.17 ± 0.778; p = 0.001) were also significantly lower in nebulized group. CONCLUSIONS: Nebulisation with dexmedetomidine results in desirable degree of sedation and better tolerance of the procedure with adequate attenuation of the haemodynamic responses to intubation.


Subject(s)
Dexmedetomidine , Fiber Optic Technology , Hypnotics and Sedatives , Intubation, Intratracheal , Nebulizers and Vaporizers , Humans , Dexmedetomidine/administration & dosage , Dexmedetomidine/adverse effects , Intubation, Intratracheal/adverse effects , Intubation, Intratracheal/methods , Double-Blind Method , Male , Female , Adult , Middle Aged , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/adverse effects , Patient Satisfaction , Administration, Inhalation , Wakefulness/drug effects , Young Adult , Administration, Intravenous
12.
Paediatr Anaesth ; 34(7): 671-677, 2024 07.
Article in English | MEDLINE | ID: mdl-38646953

ABSTRACT

BACKGROUND: The pediatric sizes of BlockBuster supraglottic airway (SGA) have been introduced recently. Its efficacy as a conduit for endotracheal intubation in children has not been assessed. Newer devices are often compared with Air-Q SGA to assess their intubating capability. AIMS: The primary objective was to compare the time taken for fiber-optic-guided intubation through the BlockBuster and the Air-Q SGAs. METHODS: Sixty children aged 6 months to 12 years with normal airways were randomized into two groups: Air-Q SGA (Group A) and Blockbuster SGA (Group B). After administration of general anesthesia, an appropriately sized SGA was inserted. The time taken for fiber-optic-guided intubation through the SGA, success, ease, and time for SGA insertion and removal were noted. The glottic view was graded by fiber-optic bronchoscopy. RESULTS: Demographic parameters were comparable. The time to intubate with the BlockBuster 62.40 ± 17.2 s was comparable to the Air-Q 60.8 ± 18.5 s (mean difference 1.6 s, 95% CI -7.65 to10.85; p = .73). The average time for SGA insertion in BlockBuster and Air-Q was 14.57 ± 3.2 s and 16.67 ± 5.39 s, respectively (mean difference -2.1, 95% CI -4.39 to 0.19 s; p = .07). The first-attempt intubation success and overall intubation success rates were comparable in both groups, 96.7% and 100%, respectively. In Group B, 25/3/1/1/0 cases had a glottic view grade of 1/2/3/4/5, respectively. In Group A, 23/3/2/2/0 cases had grade of 1/2/3/4/5 glottic views respectively. The average time to SGA removal was comparable between the BlockBuster (20.17 ± 5.8 s) and the Air-Q (22.5 ± 12.8 s) groups (mean difference -2.3 s, 95% CI -7.5 to 2.82 s; p = .37). None of the children had any perioperative complications. CONCLUSION: BlockBuster SGA may be a useful alternative to Air-Q for SGA-assisted, fiber-optic-guided tracheal intubation in children.


Subject(s)
Fiber Optic Technology , Intubation, Intratracheal , Laryngeal Masks , Humans , Intubation, Intratracheal/methods , Intubation, Intratracheal/instrumentation , Male , Female , Prospective Studies , Child, Preschool , Child , Infant , Anesthesia, General/methods , Bronchoscopy/methods
13.
Biosens Bioelectron ; 257: 116312, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38657380

ABSTRACT

Pre-eclampsia (PE) is a life-threatening complication that occurs during pregnancy, affecting a large number of pregnant women and newborns worldwide. Rapid, on-site and affordable screening of PE at an early stage is necessary to ensure timely treatment and minimize both maternal and neonatal morbidity and mortality rates. Placental growth factor (PlGF) is an angiogenic blood biomarker used for PE diagnosis. Herein, we report the plasmonic fiber optic absorbance biosensor (P-FAB) strategy for detecting PlGF at femtomolar concentration using polymethyl methacrylate (PMMA) based U-bent polymeric optical fiber (POF) sensor probes. A novel poly(amidoamine) (PAMAM) dendrimer based PMMA surface modification is established to obtain a greater immobilization of the bioreceptors compared to a linear molecule like hexamethylenediamine (HMDA). Plasmonic sandwich immunoassay was realized by immobilizing the mouse anti-PlGF (3H1) on the U-bent POF sensor probe surface and gold nanoparticles (AuNP) labels conjugated with mouse anti-PlGF (6H9). The POF sensor probes could measure PlGF within 30 min using the P-FAB strategy. The limit-of-detection (LoD) was found to be 0.19 pg/mL and 0.57 pg/mL in phosphate-buffered saline and 10× diluted serum, respectively. The clinical sample testing, with eleven positive and eleven negative preeclamptic pregnancy samples, successfully confirmed the accuracy, reliability, specificity, and sensitivity of the P-FAB based POF sensor platform, thereby paving the way for cost-effective technology for PlGF detection and its potential for pre-eclampsia diagnosis.


Subject(s)
Biosensing Techniques , Dendrimers , Gold , Metal Nanoparticles , Optical Fibers , Pre-Eclampsia , Animals , Female , Humans , Mice , Pregnancy , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Dendrimers/chemistry , Fiber Optic Technology/instrumentation , Gold/chemistry , Immunoassay/methods , Immunoassay/instrumentation , Limit of Detection , Metal Nanoparticles/chemistry , Placenta Growth Factor/blood , Polymethyl Methacrylate/chemistry , Pre-Eclampsia/diagnosis , Pre-Eclampsia/blood
14.
Sensors (Basel) ; 24(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38610339

ABSTRACT

Antibiotic residues have become a worldwide public safety issue. It is vital to detect multiple antibiotics simultaneously using sensors. A new and efficient method is proposed for the combined detection of two antibiotics (enrofloxacin (Enro) and ciprofloxacin (Cip)) in milk using surface plasmon resonance (SPR) sensors. Based on the principle of immunosuppression, two antibiotic antigens (for Enro and Cip) were immobilized on an optical fiber surface with conjugates of bovine serum albumin using dopamine (DA) polymerization. Each single antigen was bound to its corresponding antibody to derive standard curves for Enro and Cip. The fiber-optic sensor's sensitivity was 2900 nm/RIU. Detection limits were calculated to be 1.20 ng/mL for Enro and 0.81 ng/mL for Cip. The actual system's recovery rate was obtained by testing Enro and Cip in milk samples; enrofloxacin's and ciprofloxacin's mean recoveries from the milk samples were 96.46-120.46% and 96.74-126.9%, respectively. In addition, several different regeneration solutions were tested to analyze the two target analytes' regeneration ability; NaOH and Gly-HCl solutions were found to have the best regeneration ability.


Subject(s)
Anti-Bacterial Agents , Surface Plasmon Resonance , Enrofloxacin , Ciprofloxacin , Fiber Optic Technology
15.
Sci Rep ; 14(1): 9446, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658694

ABSTRACT

To validate the feasibility of a fiber-optic pressure sensor-based pressure measurement device for monitoring intrarenal pressure and to analyze the effects of ureteral acess sheath (UAS) type, surgical location, perfusion flow rate, and measurement location on intrarenal pressure (IRP). The measurement deviations and response times to transient pressure changes were compared between a fiber-optic pressure sensing device and a urodynamic device IRP in an in vitro porcine kidney and in a water tank. Finally, pressure measurements were performed in anesthetized female pigs using fiber-optic pressure sensing device with different UAS, different perfusion flow rates, and different surgical positions at different renal calyces and ureteropelvic junctions (UPJ). According to our operation, the result is fiber optic pressure sensing devices are highly accurate and sensitive. Under the same conditions, IRP varied among different renal calyces and UPJ (P < 0.05). IRP was lowest at 50 ml/min and highest at 150 ml/min (P < 0.05). Surgical position had a significant effect on IRP (P < 0.05). 12/14 Fr UAS had a lower IRP than 11/13 Fr UAS. Therefore fiber optic pressure sensing devices are more advantageous for IRP measurements. In ureteroscopy, the type of ureteral sheath, the surgical position, the perfusion flow rate, and the location of the measurement all affect the intrarenal pressure value.


Subject(s)
Fiber Optic Technology , Kidney , Pressure , Ureteroscopy , Animals , Fiber Optic Technology/instrumentation , Swine , Female , Kidney/physiology , Ureteroscopy/instrumentation , Ureteroscopy/methods , Optical Fibers , Urodynamics
16.
Sensors (Basel) ; 24(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38544254

ABSTRACT

The accuracy and efficacy of medical treatment would be greatly improved by the continuous and real-time monitoring of protein biomarkers. Identification of cancer biomarkers in patients with solid malignant tumors is receiving increasing attention. Existing techniques for detecting cancer proteins, such as the enzyme-linked immunosorbent assay, require a lot of work, are not multiplexed, and only allow for single-time point observations. In order to get one step closer to clinical usage, a dynamic platform for biosensing the cancer biomarker CD44 using a single-mode optical fiber-based ball resonator biosensor was designed, constructed and evaluated in this work. The main novelty of the work is an in-depth study of the capability of an in-house fabricated optical fiber biosensor for in situ detection of a cancer biomarker (CD44 protein) by conducting several types of experiments. The main results of the work are as follows: (1) Calibration of the fabricated fiber-optic ball resonator sensors in both static and dynamic conditions showed similar sensitivity to the refractive index change demonstrating its usefulness as a biosensing platform for dynamic measurements; (2) The fabricated sensors were shown to be insensitive to pressure changes further confirming their utility as an in situ sensor; (3) The sensor's packaging and placement were optimized to create a better environment for the fabricated ball resonator's performance in blood-mimicking environment; (4) Incubating increasing protein concentrations with antibody-functionalized sensor resulted in nearly instantaneous signal change indicating a femtomolar detection limit in a dynamic range from 7.1 aM to 16.7 nM; (5) The consistency of the obtained signal change was confirmed by repeatability studies; (6) Specificity experiments conducted under dynamic conditions demonstrated that the biosensors are highly selective to the targeted protein; (7) Surface morphology studies by AFM measurements further confirm the biosensor's exceptional sensitivity by revealing a considerable shift in height but no change in surface roughness after detection. The biosensor's ability to analyze clinically relevant proteins in real time with high sensitivity offers an advancement in the detection and monitoring of malignant tumors, hence improving patient diagnosis and health status surveillance.


Subject(s)
Biosensing Techniques , Neoplasms , Humans , Biomarkers, Tumor , Biosensing Techniques/methods , Fiber Optic Technology/methods , Optical Fibers , Proteins , Neoplasms/diagnosis , Hyaluronan Receptors
17.
Phys Med Biol ; 69(8)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38478998

ABSTRACT

Objective. Very high energy electrons (VHEE) in the range of 50-250 MeV are of interest for treating deep-seated tumours with FLASH radiotherapy (RT). This approach offers favourable dose distributions and the ability to deliver ultra-high dose rates (UHDR) efficiently. To make VHEE-based FLASH treatment clinically viable, a novel beam monitoring technology is explored as an alternative to transmission ionisation monitor chambers, which have non-linear responses at UHDR. This study introduces the fibre optic flash monitor (FOFM), which consists of an array of silica optical fibre-based Cherenkov sensors with a photodetector for signal readout.Approach. Experiments were conducted at the CLEAR facility at CERN using 200 MeV and 160 MeV electrons to assess the FOFM's response linearity to UHDR (characterised with radiochromic films) required for FLASH radiotherapy. Beam profile measurements made on the FOFM were compared to those using radiochromic film and scintillating yttrium aluminium garnet (YAG) screens.Main results. A range of photodetectors were evaluated, with a complementary-metal-oxide-semiconductor (CMOS) camera being the most suitable choice for this monitor. The FOFM demonstrated excellent response linearity from 0.9 Gy/pulse to 57.4 Gy/pulse (R2= 0.999). Furthermore, it did not exhibit any significant dependence on the energy between 160 MeV and 200 MeV nor the instantaneous dose rate. Gaussian fits applied to vertical beam profile measurements indicated that the FOFM could accurately provide pulse-by-pulse beam size measurements, agreeing within the error range of radiochromic film and YAG screen measurements, respectively.Significance. The FOFM proves to be a promising solution for real-time beam profile and dose monitoring for UHDR VHEE beams, with a linear response in the UHDR regime. Additionally it can perform pulse-by-pulse beam size measurements, a feature currently lacking in transmission ionisation monitor chambers, which may become crucial for implementing FLASH radiotherapy and its associated quality assurance requirements.


Subject(s)
Electrons , Radiotherapy, High-Energy , Radiotherapy Dosage , Fiber Optic Technology , Radiometry/methods
20.
Adv Mater ; 36(21): e2312985, 2024 May.
Article in English | MEDLINE | ID: mdl-38373270

ABSTRACT

Invasive fungal infections pose a significant public health threat. The lack of precise and timely diagnosis is a primary factor contributing to the significant increase in patient mortality rates. Here, an interface-modulated biosensor utilizing an optical fiber for quantitative analysis of fungal biomarkers at the early stage of point-of-care testing (POCT), is reported. By integrating surface refractive index (RI) modulation and plasmon enhancement, the sensor to achieve high sensitivity in a directional response to the target analytes, is successfully optimized. As a result, a compact fiber-optic sensor with rapid response time, cost-effectiveness, exceptional sensitivity, stability, and specificity, is developed. This sensor can successfully identify the biomarkers of specific pathogens from blood or other tissue specimens in animal models. It quantifies clinical blood samples with precision and effectively discriminates between negative and positive cases, thereby providing timely alerts to potential patients. It significantly reduces the detection time of fungal infection to only 30 min. Additionally, this approach exhibits remarkable stability and achieves a limit of detection (LOD) three orders of magnitude lower than existing methods. It overcomes the limitations of existing detection methods, including a high rate of misdiagnosis, prolonged detection time, elevated costs, and the requirement for stringent laboratory conditions.


Subject(s)
Biomarkers , Biosensing Techniques , Optical Fibers , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Biomarkers/analysis , Biomarkers/blood , Humans , Animals , Fungi , Limit of Detection , Fiber Optic Technology , Mycoses/diagnosis , Point-of-Care Testing , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...