Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 395(3): 325-335, 2022 03.
Article in English | MEDLINE | ID: mdl-34985531

ABSTRACT

Recent studies indicate presence of a strong link between adipokines and neuropathic pain. However, the effects of asprosin, a novel adipokine, on neuropathic pain have not been studied in animal models.Mouse models were employed to investigate the antinociceptive effectiveness of asprosin in the treatment of three types of neuropathic pain, with metabolic (streptozocin/STZ), toxic (oxaliplatin/OXA), and traumatic (sciatic nerve ligation/CCI [chronic constriction nerve injury]) etiologies, respectively. Changes in nociceptive behaviors were assessed relative to controls using thermal (the hot plate and cold plate tests, at 50 °C and 4 °C respectively) and mechanical pain (von Frey test) tests after intraperitoneal (i.p.) administration of asprosin (10 µg/kg) and gabapentin (50 mg/kg) in several times intervals. Besides, possible effect of asprosin on the motor coordination of mice was assessed with a rotarod test. Serum level of asprosin was quantified by ELISA.In neuropathic pain models (STZ, OXA, and CCI), asprosin administration significantly reduced both mechanical and thermal hypersensitivity, indicating that it exhibits a clear-cut antihypersensitivity effect in the analyzed neuropathic pain models. The most effective time of asprosin on pain threshold was observed 60 min after its injection. Also, asprosin displayed no notable effect on the motor activity. Asprosin levels were significantly lower in neuropathic pain compared to healthy group (p < 0.05).The results yielded by the present study suggest that asprosin exhibits an analgesic effect in the neuropathic pain models and may have clinical utility in alleviating chronic pain associated with disease and injury originating from peripheral structures.


Subject(s)
Analgesics/pharmacology , Fibrillin-1/pharmacology , Hyperalgesia/drug therapy , Neuralgia/drug therapy , Peptide Fragments/pharmacology , Peptide Hormones/pharmacology , Analgesics/administration & dosage , Animals , Disease Models, Animal , Fibrillin-1/administration & dosage , Gabapentin/pharmacology , Hyperalgesia/physiopathology , Male , Mice , Mice, Inbred BALB C , Neuralgia/physiopathology , Pain Threshold , Peptide Fragments/administration & dosage , Peptide Hormones/administration & dosage , Rotarod Performance Test
2.
Mol Cell Endocrinol ; 538: 111451, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34500042

ABSTRACT

Asprosin, a protein-based secretary product of white adipose tissue, stimulates appetite hepatic glucose production. It crosses blood-brain barrier and stimulates appetite center and causes sperm chemotaxis but exact role of this endogenous agent is not completely known. This study was conducted to investigate possible effects of central asprosin infusion on the hormones involved in the hypothalamic-pituitary-testicular (HPT) axis and sperm cells. Spraque Dawley male rats were divided into four groups; control, sham, low asprosin (34) and high asprosin (68 nM) groups, (n = 10 for each group). Control group remain intact while a brain infusion kit was placed in the lateral ventricles of the rats in the sham group (artificial cerebrospinal fluid) and asprosin (34 and 68 nM) was infused for 14 days. At the end of the experiment, the hypothalamus, blood, and epididymis tissues of the rats were collected. Gonadotropin-releasing hormone (GnRH) mRNA and tissue protein levels were determined in the hypothalamus tissue by RT-PCR and Western Blot methods. Serum luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone levels were examined using the ELISA method from blood samples and sperm cells were examined in the epididymis tissue. GnRH mRNA and protein expressions of asprosin administered groups were higher than control and sham groups (p < 0.05). Asprosin infusion was also found to increase serum FSH, LH, and testosterone levels (p < 0.05). In addition, sperm density, motility, and progressive movement were observed to increase in asprosin administered groups (p < 0.05). This study suggests that central asprosin stimulate the HPT axis and also epididymis tissue. Our results implicates potential role for asprosin in male infertility.


Subject(s)
Fibrillin-1/administration & dosage , Gonadotropin-Releasing Hormone/blood , Gonadotropin-Releasing Hormone/genetics , Testosterone/blood , Animals , Blood-Brain Barrier/metabolism , Cell Count , Fibrillin-1/metabolism , Fibrillin-1/pharmacology , Gene Expression Regulation/drug effects , Hypothalamus/metabolism , Infusions, Intraventricular , Male , Pituitary Gland/metabolism , Rats , Rats, Sprague-Dawley , Sperm Motility/drug effects , Testis/metabolism
3.
Arch Oral Biol ; 90: 53-60, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29547877

ABSTRACT

OBJECTIVE: Marfan syndrome (MFS) is a systemic connective tissue disorder caused by insufficient fibrillin-1 (FBN-1), a major component of microfibrils that controls the elasticity and integrity of connective tissues. FBN-1 insufficiency in MFS leads to structural weakness, which causes various tissue disorders, including cardiovascular and periodontal disease. However, the role of FBN-1 insufficiency in the destruction and regeneration of connective tissue has not yet been clarified. To investigate the role of FBN-1 insufficiency in tissue destruction and regeneration. DESIGN: We used a ligature-induced (LI) periodontal disease model in fbn-1-deficient mice (fbn-1c1039G/+ mice) with MFS and investigated the regeneration level of periodontal tissue and as an inflamatic marker, the expression of the matrix metalloproteinase (mmp)-9 and tumor necrosis factor (tnf)-α. RESULTS: Interestingly, fbn-1c1039G/+ mice exhibited slowed wound healing compared with wild type mice, but periodontal tissue destruction did not differ between these mice. Moreover, fbn-1c1039G/+ mice exhibited delayed bone healing in association with continuous mmp-9 and tnf-α expression. Furthermore, inflammatory cells were obvious even after the removal of ligatures. CONCLUSION: These data suggest that fibrillin-1 insufficiency in fbn-1c1039G/+ mice interfered with wound healing in connective tissue damaged by inflammatory diseases such as periodontal disease.


Subject(s)
Fibrillin-1/metabolism , Fibrillin-1/pharmacology , Ligation/adverse effects , Marfan Syndrome/complications , Periodontal Diseases/metabolism , Wound Healing/drug effects , Wound Healing/physiology , Alveolar Bone Loss/pathology , Animals , Cell Line , Connective Tissue/pathology , Disease Models, Animal , Gene Expression , Mandible , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Molar , Periodontal Diseases/pathology , Periodontitis , Periodontium/drug effects , Periodontium/injuries , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...