Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Histochem Cell Biol ; 150(3): 271-280, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29926163

ABSTRACT

Fibrillins are major constituents of microfibrils, which are essential components of the extracellular matrix of connective tissues where they contribute to the tissue homeostasis. Although it is known that microfibrils are abundantly expressed in the left ventricle of the heart, limited data are available about the presence of microfibrils in the other parts of the myocardial tissue and whether there are age or sex-related differences in the spatial arrangement of the microfibrils. This basic knowledge is essential to better understand the impact of fibrillin-1 pathogenic variants on the myocardial tissue as seen in Marfan related cardiomyopathy. We performed histological analyses on wild-type male and female murine myocardial tissue collected at different time-points (1, 3 and 6 months). Fibrillin-1 and -2 immunofluorescence stainings were performed on cross-sections at the level of the apex, the mid-ventricles and the atria. In addition, other myocardial matrix components such as collagen and elastin were also investigated. Fibrillin-1 presented as long fibres in the apex, mid-ventricles and atria. The spatial arrangement differed between the investigated regions, but not between age groups or sexes. Collagen had a similar broad spatial arrangement to that of fibrillin-1, whereas elastic fibres were primarily present in the atria and the vessels. In contrast to fibrillin-1, limited amounts of fibrillin-2 were observed. Fibrillin-rich fibres contribute to the architecture of the myocardial tissue in a region-dependent manner in wild-type murine hearts. This knowledge is helpful for future experimental set-ups of studies evaluating the impact of fibrillin-1 pathogenic variants on the myocardial tissue.


Subject(s)
Fibrillin-1/analysis , Fibrillin-2/analysis , Myocardium/chemistry , Animals , Female , Fibrillin-1/genetics , Fibrillin-2/genetics , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL
3.
J Periodontal Res ; 50(6): 714-20, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25524144

ABSTRACT

BACKGROUND AND OBJECTIVE: Oxytalan fibers are categorized as a microfibril assembly without elastin deposition, and are unique components in the periodontal ligament (PDL). However, little is known about their formation during PDL development. To clarify the mechanisms of oxytalan fiber formation in developing PDL, we performed immunohistochemical analysis to detect the direct expression of fibrillin-1 and fibrillin-2, which are major components of microfibrils. MATERIAL AND METHODS: Frozen sections of lower molars from mice at several stages of growth were prepared without chemical fixation and decalcification using the film transfer method. Immunostaining was performed with anti-fibrillin-1 and -2, and anticytokeratin antibodies. RESULTS: Fibrillin-1 was not expressed in the dental follicle during the crown forming stage. At postneonatal day 9, fibrillin-1 expression started with meshwork appearance between the epithelial cells from Hertwig's epithelial root sheath at the root dentin surface. Fibirillin-2 was detected much earlier than fibrillin-1 expression. Fibrillin-2 was expressed with a liner appearance, running parallel to the root axis in PDL, and was partially co-expressed with cytokeratin 14 expression in Hertwig's epithelial root sheath. Furthermore, we detected both fibrillin-1 and fibrillin-2 expression in human PDL. Fibrillin-1 was detected in fibers with a vertically oriented root axis in PDL. Fibrillin-2 was widely expressed in PDL, including around the epithelial cell rests of Malassez. Fibrillin-1 and fibrillin-2 were clearly co-expressed in thick fiber structures in human PDL. CONCLUSION: Our results suggest that both fibrillin-1 and fibrillin-2 expression is required to form thick oxytalan fibers in PDL. Based on the expression patterns for fibrillin-1 and fibrillin-2, they have different functions during tooth root and PDL development. Early expression of fibrillin-2 may regulate dental epithelial cell behavior during root and PDL development.


Subject(s)
Fibrillin-1/analysis , Fibrillin-2/analysis , Tooth/growth & development , Animals , Immunohistochemistry , Mice , Periodontal Ligament/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...