Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732094

ABSTRACT

This article reviews the role of fibroblast growth factor 23 (FGF23) protein in phosphate metabolism, highlighting its regulation of vitamin D, parathyroid hormone, and bone metabolism. Although it was traditionally thought that phosphate-calcium homeostasis was controlled exclusively by parathyroid hormone (PTH) and calcitriol, pathophysiological studies revealed the influence of FGF23. This protein, expressed mainly in bone, inhibits the renal reabsorption of phosphate and calcitriol formation, mediated by the α-klotho co-receptor. In addition to its role in phosphate metabolism, FGF23 exhibits pleiotropic effects in non-renal systems such as the cardiovascular, immune, and metabolic systems, including the regulation of gene expression and cardiac fibrosis. Although it has been proposed as a biomarker and therapeutic target, the inhibition of FGF23 poses challenges due to its potential side effects. However, the approval of drugs such as burosumab represents a milestone in the treatment of FGF23-related diseases.


Subject(s)
Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Phosphates , Humans , Fibroblast Growth Factor-23/metabolism , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Animals , Phosphates/metabolism , Parathyroid Hormone/metabolism , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Vitamin D/metabolism , Bone and Bones/metabolism , Klotho Proteins
2.
J Am Heart Assoc ; 13(10): e028006, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38726894

ABSTRACT

BACKGROUND: S100a8/9 (S100 calcium binding protein a8/9) belongs to the S100 family and has gained a lot of interest as a critical regulator of inflammatory response. Our previous study found that S100a8/9 homolog promoted aortic valve sclerosis in mice with chronic kidney disease. However, the role of S100a8/9 in pressure overload-induced cardiac hypertrophy remains unclear. The present study was to explore the role of S100a8/9 in cardiac hypertrophy. METHODS AND RESULTS: Cardiomyocyte-specific S100a9 loss or gain of function was achieved using an adeno-associated virus system, and the model of cardiac hypertrophy was established by aortic banding-induced pressure overload. The results indicate that S100a8/9 expression was increased in response to pressure overload. S100a9 deficiency alleviated pressure overload-induced hypertrophic response, whereas S100a9 overexpression accelerated cardiac hypertrophy. S100a9-overexpressed mice showed increased FGF23 (fibroblast growth factor 23) expression in the hearts after exposure to pressure overload, which activated calcineurin/NFAT (nuclear factor of activated T cells) signaling in cardiac myocytes and thus promoted hypertrophic response. A specific antibody that blocks FGFR4 (FGF receptor 4) largely abolished the prohypertrophic response of S100a9 in mice. CONCLUSIONS: In conclusion, S100a8/9 promoted the development of cardiac hypertrophy in mice. Targeting S100a8/9 may be a promising therapeutic approach to treat cardiac hypertrophy.


Subject(s)
Calgranulin A , Calgranulin B , Disease Models, Animal , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Myocytes, Cardiac , NFATC Transcription Factors , Up-Regulation , Animals , Calgranulin A/metabolism , Calgranulin A/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Calgranulin B/metabolism , Calgranulin B/genetics , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Fibroblast Growth Factor-23/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Signal Transduction , Cardiomegaly/metabolism , Cardiomegaly/pathology , Mice, Inbred C57BL , Male , Mice, Knockout , Calcineurin/metabolism , Mice , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Ventricular Remodeling
3.
Curr Opin Nephrol Hypertens ; 33(4): 368-374, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38661434

ABSTRACT

PURPOSE OF REVIEW: Iron deficiency regulates the production of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23) but also its cleavage, to generate both intact (iFGF23) and C-terminal (Cter)-FGF23 peptides. Novel studies demonstrate that independently of the phosphaturic effects of iFGF23, Cter-FGF23 peptides play an important role in the regulation of systemic iron homeostasis. This review describes the complex interplay between iron metabolism and FGF23 biology. RECENT FINDINGS: C-terminal (Cter) FGF23 peptides antagonize inflammation-induced hypoferremia to maintain a pool of bioavailable iron in the circulation. A key mechanism proposed is the down-regulation of the iron-regulating hormone hepcidin by Cter-FGF23. SUMMARY: In this manuscript, we discuss how FGF23 is produced and cleaved in response to iron deficiency, and the principal functions of cleaved C-terminal FGF23 peptides. We also review possible implications anemia of chronic kidney disease (CKD).


Subject(s)
Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Hepcidins , Iron , Fibroblast Growth Factor-23/metabolism , Humans , Fibroblast Growth Factors/metabolism , Iron/metabolism , Animals , Hepcidins/metabolism , Renal Insufficiency, Chronic/metabolism , Anemia, Iron-Deficiency/metabolism , Homeostasis
4.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673780

ABSTRACT

Cognitive impairment (CI) is a complication of chronic kidney disease (CKD) that is frequently observed among patients. The aim of this study was to evaluate the potential crosstalk between changes in cognitive function and the levels of Klotho in the brain cortex in an experimental model of CKD. To induce renal damage, Wistar rats received a diet containing 0.25% adenine for six weeks, while the control group was fed a standard diet. The animals underwent different tests for the assessment of cognitive function. At sacrifice, changes in the parameters of mineral metabolism and the expression of Klotho in the kidney and frontal cortex were evaluated. The animals with CKD exhibited impaired behavior in the cognitive tests in comparison with the rats with normal renal function. At sacrifice, CKD-associated mineral disorder was confirmed by the presence of the expected disturbances in the plasma phosphorus, PTH, and both intact and c-terminal FGF23, along with a reduced abundance of renal Klotho. Interestingly, a marked and significant decrease in Klotho was observed in the cerebral cortex of the animals with renal dysfunction. In sum, the loss in cerebral Klotho observed in experimental CKD may contribute to the cognitive dysfunction frequently observed among patients. Although further studies are required, Klotho might have a relevant role in the development of CKD-associated CI and represent a potential target in the management of this complication.


Subject(s)
Cerebral Cortex , Cognitive Dysfunction , Glucuronidase , Klotho Proteins , Renal Insufficiency, Chronic , Animals , Male , Rats , Cerebral Cortex/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Disease Models, Animal , Fibroblast Growth Factor-23/metabolism , Fibroblast Growth Factors/metabolism , Glucuronidase/metabolism , Kidney/metabolism , Klotho Proteins/metabolism , Rats, Wistar , Renal Insufficiency, Chronic/metabolism
5.
Genes (Basel) ; 15(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38397231

ABSTRACT

Background: Undifferentiated pleomorphic sarcoma of bone (UPSb) is a rare primary bone sarcoma that lacks a specific line of differentiation. Distinguishing between UPSb and other malignant bone sarcomas, including dedifferentiated chondrosarcoma and osteosarcoma, is challenging due to their overlapping features. We have previously identified that UPSb tumours have elevated mRNA levels of Fibroblast Growth Factor 23 (FGF23) transcripts compared to other sarcomas including osteosarcoma. In the present study, we evaluated the specificity and practicality of FGF23 immunoreactivity as a specific diagnostic tool to differentiate UPSb tumours from osteosarcomas and dedifferentiated chondrosarcomas. Methods: A total of 10 UPSb, 10 osteosarcoma, and 10 dedifferentiated chondrosarcoma cases (all high-grade), were retrieved and immunohistochemistry for FGF23 was performed. Results: FGF23 protein was expressed at high levels in 80-90% of undifferentiated pleomorphic sarcoma of the bone cases, whereas it was expressed at significantly lower levels in dedifferentiated chondrosarcoma and osteosarcoma cases. A semiquantitative analysis, considering the intensity of immunoreactivity, confirmed significantly elevated FGF23 expression levels in UPSb tissues compared to those observed in osteosarcoma and dedifferentiated chondrosarcoma tissues. Conclusions: The results we present here suggest that FGF23 immunohistochemistry may be a useful tool to aid in differentiating UPSb from morphologically similar malignant bone sarcomas, especially in situations where sampling is restricted and there is limited clinical information available.


Subject(s)
Bone Neoplasms , Chondrosarcoma , Fibroblast Growth Factor-23 , Osteosarcoma , Sarcoma , Humans , Bone Neoplasms/diagnosis , Bone Neoplasms/genetics , Chondrosarcoma/diagnosis , Chondrosarcoma/genetics , Chondrosarcoma/metabolism , Osteosarcoma/diagnosis , Osteosarcoma/genetics , Sarcoma/diagnosis , Sarcoma/genetics , Sarcoma/pathology , Fibroblast Growth Factor-23/metabolism
6.
Am J Physiol Renal Physiol ; 326(5): F751-F767, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38385175

ABSTRACT

Conduit arterial disease in chronic kidney disease (CKD) is an important cause of cardiac complications. Cardiac function in CKD has not been studied in the absence of arterial disease. In an Alport syndrome model bred not to have conduit arterial disease, mice at 225 days of life (dol) had CKD equivalent to humans with CKD stage 4-5. Parathyroid hormone (PTH) and FGF23 levels were one log order elevated, circulating sclerostin was elevated, and renal activin A was strongly induced. Aortic Ca levels were not increased, and vascular smooth muscle cell (VSMC) transdifferentiation was absent. The CKD mice were not hypertensive, and cardiac hypertrophy was absent. Freshly excised cardiac tissue respirometry (Oroboros) showed that ADP-stimulated O2 flux was diminished from 52 to 22 pmol/mg (P = 0.022). RNA-Seq of cardiac tissue from CKD mice revealed significantly decreased levels of cardiac mitochondrial oxidative phosphorylation genes. To examine the effect of activin A signaling, some Alport mice were treated with a monoclonal Ab to activin A or an isotype-matched IgG beginning at 75 days of life until euthanasia. Treatment with the activin A antibody (Ab) did not affect cardiac oxidative phosphorylation. However, the activin A antibody was active in the skeleton, disrupting the effect of CKD to stimulate osteoclast number, eroded surfaces, and the stimulation of osteoclast-driven remodeling. The data reported here show that cardiac mitochondrial respiration is impaired in CKD in the absence of conduit arterial disease. This is the first report of the direct effect of CKD on cardiac respiration.NEW & NOTEWORTHY Heart disease is an important morbidity of chronic kidney disease (CKD). Hypertension, vascular stiffness, and vascular calcification all contribute to cardiac pathophysiology. However, cardiac function in CKD devoid of vascular disease has not been studied. Here, in an animal model of human CKD without conduit arterial disease, we analyze cardiac respiration and discover that CKD directly impairs cardiac mitochondrial function by decreasing oxidative phosphorylation. Protection of cardiac oxidative phosphorylation may be a therapeutic target in CKD.


Subject(s)
Cardiomegaly , Fibroblast Growth Factor-23 , Myocardium , Renal Insufficiency, Chronic , Animals , Fibroblast Growth Factor-23/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Cardiomegaly/metabolism , Cardiomegaly/pathology , Myocardium/metabolism , Myocardium/pathology , Disease Models, Animal , Activins/metabolism , Activins/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mice , Male , Oxidative Phosphorylation , Nephritis, Hereditary/metabolism , Nephritis, Hereditary/pathology , Nephritis, Hereditary/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Parathyroid Hormone/metabolism
7.
J Biol Chem ; 300(1): 105480, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992803

ABSTRACT

The bone-derived hormone fibroblast growth factor-23 (FGF23) has recently received much attention due to its association with chronic kidney disease and cardiovascular disease progression. Extracellular sodium concentration ([Na+]) plays a significant role in bone metabolism. Hyponatremia (lower serum [Na+]) has recently been shown to be independently associated with FGF23 levels in patients with chronic systolic heart failure. However, nothing is known about the direct impact of [Na+] on FGF23 production. Here, we show that an elevated [Na+] (+20 mM) suppressed FGF23 formation, whereas low [Na+] (-20 mM) increased FGF23 synthesis in the osteoblast-like cell lines UMR-106 and MC3T3-E1. Similar bidirectional changes in FGF23 abundance were observed when osmolality was altered by mannitol but not by urea, suggesting a role of tonicity in FGF23 formation. Moreover, these changes in FGF23 were inversely proportional to the expression of NFAT5 (nuclear factor of activated T cells-5), a transcription factor responsible for tonicity-mediated cellular adaptations. Furthermore, arginine vasopressin, which is often responsible for hyponatremia, did not affect FGF23 production. Next, we performed a comprehensive and unbiased RNA-seq analysis of UMR-106 cells exposed to low versus high [Na+], which revealed several novel genes involved in cellular adaptation to altered tonicity. Additional analysis of cells with Crisp-Cas9-mediated NFAT5 deletion indicated that NFAT5 controls numerous genes associated with FGF23 synthesis, thereby confirming its role in [Na+]-mediated FGF23 regulation. In line with these in vitro observations, we found that hyponatremia patients have higher FGF23 levels. Our results suggest that [Na+] is a critical regulator of FGF23 synthesis.


Subject(s)
Fibroblast Growth Factor-23 , Sodium , Humans , Fibroblast Growth Factor-23/genetics , Fibroblast Growth Factor-23/metabolism , Hyponatremia/physiopathology , Renal Insufficiency, Chronic/physiopathology , Sodium/metabolism , Sodium/pharmacology , Cell Line, Tumor , Cell Line , Animals , Mice , Mice, Inbred C57BL , Arginine Vasopressin/metabolism , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Rats
8.
Nature ; 618(7966): 862-870, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37286607

ABSTRACT

α/ßKlotho coreceptors simultaneously engage fibroblast growth factor (FGF) hormones (FGF19, FGF21 and FGF23)1,2 and their cognate cell-surface FGF receptors (FGFR1-4) thereby stabilizing the endocrine FGF-FGFR complex3-6. However, these hormones still require heparan sulfate (HS) proteoglycan as an additional coreceptor to induce FGFR dimerization/activation and hence elicit their essential metabolic activities6. To reveal the molecular mechanism underpinning the coreceptor role of HS, we solved cryo-electron microscopy structures of three distinct 1:2:1:1 FGF23-FGFR-αKlotho-HS quaternary complexes featuring the 'c' splice isoforms of FGFR1 (FGFR1c), FGFR3 (FGFR3c) or FGFR4 as the receptor component. These structures, supported by cell-based receptor complementation and heterodimerization experiments, reveal that a single HS chain enables FGF23 and its primary FGFR within a 1:1:1 FGF23-FGFR-αKlotho ternary complex to jointly recruit a lone secondary FGFR molecule leading to asymmetric receptor dimerization and activation. However, αKlotho does not directly participate in recruiting the secondary receptor/dimerization. We also show that the asymmetric mode of receptor dimerization is applicable to paracrine FGFs that signal solely in an HS-dependent fashion. Our structural and biochemical data overturn the current symmetric FGFR dimerization paradigm and provide blueprints for rational discovery of modulators of FGF signalling2 as therapeutics for human metabolic diseases and cancer.


Subject(s)
Fibroblast Growth Factor-23 , Heparan Sulfate Proteoglycans , Hormones , Receptors, Fibroblast Growth Factor , Signal Transduction , Humans , Cryoelectron Microscopy , Fibroblast Growth Factor-23/chemistry , Fibroblast Growth Factor-23/metabolism , Fibroblast Growth Factor-23/ultrastructure , Heparan Sulfate Proteoglycans/chemistry , Heparan Sulfate Proteoglycans/metabolism , Hormones/chemistry , Hormones/metabolism , Klotho Proteins/chemistry , Klotho Proteins/metabolism , Klotho Proteins/ultrastructure , Protein Multimerization , Receptors, Fibroblast Growth Factor/chemistry , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Fibroblast Growth Factor/ultrastructure , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure
9.
Cells ; 12(4)2023 02 13.
Article in English | MEDLINE | ID: mdl-36831276

ABSTRACT

Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced mainly in osteocytes. In chronic kidney disease (CKD) FGF23 levels increase due to higher production, but also as the result of impaired cleavage and reduced excretion from the body. FGF23 has a significant role in disturbed bone and mineral metabolism in CKD, which leads to a higher cardiovascular risk and mortality in these patients. Current research has emphasized the expression of FGF23 in cardiac myocytes, fibroblasts, and endothelial cells, and in addition to the effects on the kidney, its primary role is in cardiac remodeling in CKD patients. Recent discoveries found a significant link between increased FGF23 levels and anemia development in CKD. This review describes the FGF23 role in cardiac hypertrophy and anemia in the setting of CKD and discusses the best therapeutical approach for lowering FGF23 levels.


Subject(s)
Anemia , Fibroblast Growth Factor-23 , Renal Insufficiency, Chronic , Humans , Endothelial Cells/metabolism , Myocytes, Cardiac/metabolism , Renal Insufficiency, Chronic/metabolism , Fibroblast Growth Factor-23/metabolism
10.
Nat Rev Nephrol ; 19(3): 185-193, 2023 03.
Article in English | MEDLINE | ID: mdl-36624273

ABSTRACT

The bone-derived hormone fibroblast growth factor 23 (FGF23) functions in concert with parathyroid hormone (PTH) and the active vitamin D metabolite, 1,25(OH)2 vitamin D (1,25D), to control phosphate and calcium homeostasis. A rise in circulating levels of phosphate and 1,25D leads to FGF23 production in bone. Circulating FGF23 acts on the kidney by binding to FGF receptors and the co-receptor α-Klotho to promote phosphaturia and reduce circulating 1,25D levels. Various other biomolecules that are produced by the kidney, including lipocalin-2, glycerol 3-phosphate, 1-acyl lysophosphatidic acid and erythropoietin, are involved in the regulation of mineral metabolism via effects on FGF23 synthesis in bone. Understanding of the molecular mechanisms that control FGF23 synthesis in the bone and its bioactivity in the kidney has led to the identification of potential targets for novel interventions. Emerging approaches to target aberrant phosphate metabolism include small molecule inhibitors that directly bind FGF23 and prevent its interactions with FGF receptors and α-Klotho, FGF23 peptide fragments that act as competitive inhibitors of intact FGF23 and small molecule inhibitors of kidney sodium-phosphate cotransporters.


Subject(s)
Bone and Bones , Fibroblast Growth Factor-23 , Kidney , Humans , Bone and Bones/metabolism , Fibroblast Growth Factor-23/metabolism , Fibroblast Growth Factors/metabolism , Kidney/metabolism , Klotho Proteins , Phosphates/metabolism , Vitamin D
11.
J Orthop Surg Res ; 18(1): 12, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36604721

ABSTRACT

BACKGROUND: Increasing evidences have been indicated that FGF23 is associated with the biological behavior of malignant tumors, but its role in osteosarcoma and the specific mechanism need to be elucidated. The purpose of this study is to investigate the effects of FGF23 on the proliferation, migration and invasion of osteosarcoma cells, and the possible molecular mechanisms. METHODS: Western blot was used to detect differences in FGF23 expression in osteosarcoma cells MG-63 and U2-OS and osteoblasts hFOB1.19. FGF23-overexpressing adenoviruses and FGF-silencing plasmids were transfected into osteosarcoma cells, and transfection efficiency was verified using Western blot. MTT and colony formation assays were performed to detect osteosarcoma cell proliferation. Cell cycle was measured by flow cytometry. Scratch assay, holographic imaging cell analyzer Holomonitor ® M4 and transwell were applied to detect cell migration and invasion. Dual-luciferase reporter assay was performed to validate the interaction between FGF23 and miR-340-5p. Changes in miR-340-5p mRNA levels were measured by QRT-PCR. RESULTS: FGF23 is highly expressed in osteosarcoma cells compared to hFOB1.19. Overexpression of FGF23 significantly promoted the proliferation, migration and invasion of MG-63 and U2-OS cells. MiR-340-5p is a target of FGF23. Transfection of miR-340-5p mimics reversed the promoting effects of FGF23 on proliferation, migration and invasion of MG-63 and U2-OS cells. CONCLUSION: FGF23 promotes osteosarcoma cell proliferation, migration and invasion by targeting miR-340-5p gene expression.


Subject(s)
Bone Neoplasms , Fibroblast Growth Factor-23 , MicroRNAs , Osteosarcoma , Humans , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Osteosarcoma/pathology , Fibroblast Growth Factor-23/genetics , Fibroblast Growth Factor-23/metabolism
12.
Curr Med Chem ; 30(7): 841-856, 2023.
Article in English | MEDLINE | ID: mdl-35761503

ABSTRACT

Fibroblast growth factor 23 (FGF23) is a new endocrine product discovered in the past decade. In addition to being related to bone diseases, it has also been found to be related to kidney metabolism and parathyroid metabolism, especially as a biomarker and a key factor to be used in kidney diseases. FGF23 is upregulated as early as the second and third stages of chronic kidney disease (CKD) in response to relative phosphorus overload. The early rise of FGF23 has a protective effect on the body and is essential for maintaining phosphate balance. However, with the decline in renal function, eGFR (estimated glomerular filtration rate) declines, and the phosphorus excretion effect caused by FGF23 is weakened. It eventually leads to a variety of complications, such as bone disease (Chronic Kidney Disease-Mineral and Bone Metabolism Disorder), vascular calcification (VC), and more. Monoclonal antibodies against FGF23 are currently used to treat genetic diseases with increased FGF23. CKD is also a state of increased FGF23. This article reviews the current role of FGF23 in CKD and discusses the crosstalk between various organs under CKD conditions and FGF23. Studying the effect of hyperphosphatemia on different organs of CKD is important. The prospect of FGF23 for therapy is also discussed.


Subject(s)
Bone Diseases, Metabolic , Chronic Kidney Disease-Mineral and Bone Disorder , Fibroblast Growth Factor-23 , Renal Insufficiency, Chronic , Humans , Bone Diseases, Metabolic/complications , Bone Diseases, Metabolic/metabolism , Chronic Kidney Disease-Mineral and Bone Disorder/complications , Phosphates , Phosphorus , Renal Insufficiency, Chronic/metabolism , Fibroblast Growth Factor-23/metabolism
13.
Front Endocrinol (Lausanne) ; 13: 1000261, 2022.
Article in English | MEDLINE | ID: mdl-36246904

ABSTRACT

Polycystic ovary syndrome is an endocrinopathy that mainly affects adolescent girls and young women of childbearing age. In girls, the presence of clinical and biochemical symptoms of hyperandrogenism should be particularly considered. The role of vitamin D deficiency in insulin resistance, inflammation, dyslipidemia, and obesity, i.e. in diseases associated with PCOS, has been investigated, which may suggest its involvement in the pathophysiology of the syndrome. Leptin has been shown to stimulate the formation of FGF23 in bones. There is a relationship between the incidence of dyslipidemia, adipose tissue mass and the concentration of fibroblast growth factor 23. The main aim of the presented research project is to assess the concentration of vitamin D, calcium, and selected hormones as well as the concentration of adipokines (leptin) in girls diagnosed with polycystic ovary syndrome. Materials and methods: The study included a population of 85 girls and young women aged 14 to 22 years. The study group included 37 girls who were diagnosed with polycystic ovary syndrome according to the modified Rotterdam's criteria. The control group consisted of 48 completely healthy girls. In the first stage of the study participants were required to answer background questions. Next, anthropometric measurements were performed. The laboratory tests assessed: leptin, FGF23, FSH, SHGB, total testosterone, DHEA-S, 25-OH-D3, PTH, calcium, androstadiene, AMH, glucose, insulin. Results: The vitamin D level in the group with polycystic ovary syndrome was lower than in the control group, but there was no statistically significant difference. The level of anti-Müllerian hormone was significantly higher in the group of girls diagnosed with PCOS compared to the control group. Statistically significant differences between both groups were also noted in the HOMA-IR value. The concentration of calcium, parathyroid hormone, FGF23 and leptin in the study and control groups showed no statistically significant difference. Conclusions: In the studied group of girls with PCOS, no correlation between the level of vitamin D and selected parameters such as: AMH leptin, HOMA-IR and FGF23 was confirmed. On this basis, it can be assumed that additional vitamin D supplementation would not reduce the symptoms of polycystic ovary syndrome.


Subject(s)
Fibroblast Growth Factor-23 , Leptin , Polycystic Ovary Syndrome , Vitamin D , Adipokines , Adolescent , Androstadienes , Anti-Mullerian Hormone , Calcium , Dehydroepiandrosterone , Female , Fibroblast Growth Factor-23/metabolism , Follicle Stimulating Hormone , Glucose , Humans , Insulin , Leptin/metabolism , Parathyroid Hormone , Polycystic Ovary Syndrome/complications , Testosterone , Vitamin D/metabolism , Vitamins , Young Adult
14.
J Am Heart Assoc ; 11(18): e026365, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36102251

ABSTRACT

Background Clinically, myocardial fibrosis is one of the most common complications caused by chronic kidney disease (CKD). However, the potential mechanisms of CKD-induced myocardial fibrosis have not been clarified. Methods and Results In our in vivo study, a rat model of CKD with 5/6 nephrectomy was established. The CKD model was treated with the glioma 1 (Gli-1) inhibitor GANT-61, and myocardial fibrosis and serum intact fibroblast growth factor 23 levels were assessed 16 weeks after nephrectomy. Finally, we found that Gli-1 and Smoothened in the Sonic Hedgehog (Shh) signaling pathway were activated and that collagen-1 and collagen-3, which constitute the fibrotic index, were expressed in CKD myocardial tissue. After administering the Gli-1 inhibitor GANT-61, the degree of myocardial fibrosis was reduced, and Gli-1 expression was also inhibited. We also measured blood pressure, cardiac biomarkers, and other indicators in rats and performed hematoxylin-eosin staining of myocardial tissue. Furthermore, in vitro studies showed that intact fibroblast growth factor 23 promoted cardiac fibroblast proliferation and transdifferentiation into myofibroblasts by activating the Shh signaling pathway, thereby promoting cardiac fibrosis, as manifested by increased expression of the Shh, Patch 1, and Gli-1 mRNAs and Shh, Smoothened, and Gli-1 proteins in the Shh signaling pathway. The protein and mRNA levels of other fibrosis indicators, such as α-smooth muscle actin, which are also markers of transdifferentiation, collagen-1, and collagen-3, were increased. Conclusions On the basis of these results, intact fibroblast growth factor 23 promotes CKD-induced myocardial fibrosis by activating the Shh signaling pathway.


Subject(s)
Fibroblast Growth Factor-23 , Hedgehog Proteins , Renal Insufficiency, Chronic , Actins/metabolism , Animals , Collagen Type I , Eosine Yellowish-(YS) , Fibroblast Growth Factor-23/metabolism , Fibrosis , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Hematoxylin , RNA, Messenger , Rats , Signal Transduction/physiology
15.
Nutrients ; 14(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35807756

ABSTRACT

BACKGROUND: Increased FGF23 levels are an early pathological feature in chronic kidney disease (CKD), causing increased cardiovascular risk. The regulation of FGF23 expression is complex and not completely understood. Thus, Ca2+ has been shown to induce an increase in FGF23 expression, but whether that increase is mediated by simultaneous changes in parathyroid hormone (PTH) and/or vitamin D is not fully known. METHODS: Osteoblast-like cells (OLCs) from vitamin D receptor (VDR)+/+ and VDR-/- mice were incubated with Ca2+ for 18 h. Experimental hypercalcemia was induced by calcium gluconate injection in thyro-parathyroidectomized (T-PTX) VDR +/+ and VDR-/- mice with constant PTH infusion. RESULTS: Inorganic Ca2+ induced an increase in FGF23 gene and protein expression in osteoblast-like cells (OLCs), but the increase was blunted in cells lacking VDR. In T-PTX VDR +/+ and VDR-/- mice with constant PTH levels, hypercalcemia induced an increase in FGF23 levels, but to a lower extent in animals lacking VDR. Similar results were observed in FGF23 expression in bone. Renal and bone 1α-hydroxylase expression was also modulated. CONCLUSIONS: Our study demonstrates that Ca2+ can increase FGF23 levels independently of vitamin D and PTH, but part of the physiological increase in FGF23 induced by Ca2+ is mediated by vitamin D signaling.


Subject(s)
Calcium , Fibroblast Growth Factor-23 , Hypercalcemia , Vitamin D , Animals , Calcium/metabolism , Calcium/pharmacology , Calcium, Dietary/administration & dosage , Fibroblast Growth Factor-23/metabolism , Hypercalcemia/metabolism , Mice , Parathyroid Hormone/metabolism , Receptors, Calcitriol/metabolism , Vitamin D/metabolism
16.
J Transl Med ; 20(1): 305, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794561

ABSTRACT

BACKGROUND: Increasing evidence indicates that myocardial oxidative injury plays a crucial role in the pathophysiology of cardiac hypertrophy (CH) and heart failure (HF). The active component of rhubarb, rhein exerts significant actions on oxidative stress and inflammation. Nonetheless, its role in cardiac remodeling remains unclear. METHODS: CH was induced by angiotensin II (Ang II, 1.4 mg/kg/d for 4 weeks) in male C57BL/6 J mice. Then, rhein (50 and 100 mg/kg) was injected intraperitoneally for 28 days. CH, fibrosis, oxidative stress, and cardiac function in the mice were examined. In vitro, neonatal rat cardiomyocytes (CMs) and cardiac fibroblasts (CFs) pre-treated with rhein (5 and 25 µM) were challenged with Ang II. We performed RNA sequencing to determine the mechanistic role of rhein in the heart. RESULTS: Rhein significantly suppressed Ang II-induced CH, fibrosis, and reactive oxygen species production and improved cardiac systolic dysfunction in vivo. In vitro, rhein significantly attenuated Ang II-induced CM hypertrophy and CF collagen expression. In addition, rhein obviously alleviated the increased production of superoxide induced by Ang II. Mechanistically, rhein inhibited FGF23 expression significantly. Furthermore, FGF23 overexpression abolished the protective effects of rhein on CMs, CFs, and cardiac remodeling. Rhein reduced FGF23 expression, mostly through the activation of AMPK (AMP-activated protein kinase). AMPK activity inhibition suppressed Ang II-induced CM hypertrophy and CF phenotypic transformation. CONCLUSION: Rhein inhibited Ang II-induced CH, fibrosis, and oxidative stress during cardiac remodeling through the AMPK-FGF23 axis. These findings suggested that rhein could serve as a potential therapy in cardiac remodeling and HF.


Subject(s)
AMP-Activated Protein Kinases , Angiotensin II , Anthraquinones , Fibroblast Growth Factor-23 , Heart Failure , Ventricular Remodeling , AMP-Activated Protein Kinases/metabolism , Angiotensin II/metabolism , Animals , Anthraquinones/pharmacology , Fibroblast Growth Factor-23/metabolism , Fibrosis , Heart Failure/drug therapy , Heart Failure/metabolism , Hypertrophy , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Rats , Ventricular Remodeling/drug effects
17.
Nat Rev Endocrinol ; 18(6): 366-384, 2022 06.
Article in English | MEDLINE | ID: mdl-35484227

ABSTRACT

X-linked hypophosphataemia (XLH) is the most frequent cause of hypophosphataemia-associated rickets of genetic origin and is associated with high levels of the phosphaturic hormone fibroblast growth factor 23 (FGF23). In addition to rickets and osteomalacia, patients with XLH have a heavy disease burden with enthesopathies, osteoarthritis, pseudofractures and dental complications, all of which contribute to reduced quality of life. This Consensus Statement presents the outcomes of a working group of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases, and provides robust clinical evidence on management in XLH, with an emphasis on patients' experiences and needs. During growth, conventional treatment with phosphate supplements and active vitamin D metabolites (such as calcitriol) improves growth, ameliorates leg deformities and dental manifestations, and reduces pain. The continuation of conventional treatment in symptom-free adults is still debated. A novel therapeutic approach is the monoclonal anti-FGF23 antibody burosumab. Although promising, further studies are required to clarify its long-term efficacy, particularly in adults. Given the diversity of symptoms and complications, an interdisciplinary approach to management is of paramount importance. The focus of treatment should be not only on the physical manifestations and challenges associated with XLH and other FGF23-mediated hypophosphataemia syndromes, but also on the major psychological and social impact of the disease.


Subject(s)
Familial Hypophosphatemic Rickets , Fibroblast Growth Factor-23 , Osteoarthritis , Wasting Syndrome , Adult , Animals , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/drug therapy , Familial Hypophosphatemic Rickets/genetics , Familial Hypophosphatemic Rickets/metabolism , Fibroblast Growth Factor-23/metabolism , Humans , Osteoarthritis/diagnosis , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism , Quality of Life , Wasting Syndrome/diagnosis , Wasting Syndrome/drug therapy , Wasting Syndrome/genetics , Wasting Syndrome/metabolism
18.
J Bone Miner Res ; 37(6): 1170-1178, 2022 06.
Article in English | MEDLINE | ID: mdl-35373859

ABSTRACT

Relative abundance of fibroblast growth factor-23 (FGF23) measured by the C-terminal (cFGF23, which measures both intact FGF23 and C-terminal fragments) versus intact (iFGF23, measures only intact hormone) assays varies by kidney function in humans. Differential kidney clearance may explain this finding. We measured cFGF23 and iFGF23 in the aorta and bilateral renal veins of 162 patients with essential hypertension undergoing renal angiography. Using multivariable linear regression, we examined factors associated with aorta to renal vein reduction of FGF23 using both assays. Similar parameters and with addition of urine concentrations of cFGF23 and iFGF23 were measured in six Wistar rats. Mean ± standard deviation (SD) age was 54 ± 12 years, 54% were women, and mean creatinine clearance was 72 ± 48 mL/min/100 g. The human kidney reduced the concentrations of both cFGF23 (16% ± 12%) and iFGF23 (21% ± 16%), but reduction was higher for iFGF23. Greater kidney creatinine and PTH reductions were each independently associated with greater reductions of both cFGF23 and iFGF23. The greater kidney reduction of iFGF23 compared to cFGF23 appeared stable and consistent across the range of creatinine clearance evaluated. Kidney clearance was similar, and urine concentrations of both assays were low in the rat models, suggesting kidney metabolism of both cFGF23 and iFGF23. Renal reduction of iFGF23 is higher than that of creatinine and cFGF23. Our data suggest that FGF23 is metabolized by the kidney. However, the major cell types involved in metabolization of FGF23 requires future study. Kidney clearance of FGF23 does not explain differences in C-terminal and intact moieties across the range of kidney function. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Fibroblast Growth Factor-23 , Kidney/metabolism , Animals , Creatinine , Female , Fibroblast Growth Factor-23/chemistry , Fibroblast Growth Factor-23/metabolism , Humans , Male , Rats , Rats, Wistar , United States
19.
Nutrients ; 14(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35268016

ABSTRACT

Increased dietary acid load has a negative impact on health, particularly when renal function is compromised. Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that is elevated during renal failure. The relationship between metabolic acidosis and FGF23 remains unclear. To investigate the effect of dietary acid load on circulating levels of FGF23, rats with normal renal function and with a graded reduction in renal mass (1/2 Nx and 5/6 Nx) received oral NH4Cl for 1 month. Acid intake resulted in a consistent decrease of plasma FGF23 concentrations in all study groups when compared with their non-acidotic control: 239.3 ± 13.5 vs. 295.0 ± 15.8 pg/mL (intact), 346.4 ± 19.7 vs. 522.6 ± 29.3 pg/mL (1/2 Nx) and 988.0 ± 125.5 vs. 2549.4 ± 469.7 pg/mL (5/6 Nx). Acidosis also decreased plasma PTH in all groups, 96.5 ± 22.3 vs. 107.3 ± 19.1 pg/mL, 113.1 ± 17.3 vs. 185.8 ± 22.2 pg/mL and 504.9 ± 75.7 vs. 1255.4 ± 181.1 pg/mL. FGF23 showed a strong positive correlation with PTH (r = 0.877, p < 0.0001) and further studies demonstrated that acidosis did not influence plasma FGF23 concentrations in parathyroidectomized rats, 190.0 ± 31.6 vs. 215 ± 25.6 pg/mL. In conclusion, plasma concentrations of FGF23 are consistently decreased in rats with metabolic acidosis secondary to increased acid intake, both in animals with intact renal function and with decreased renal function. The in vivo effect of metabolic acidosis on FGF23 appears to be related to the simultaneous decrease in PTH.


Subject(s)
Acidosis , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Acidosis/metabolism , Animals , Bone and Bones/metabolism , Calcium , Fibroblast Growth Factor-23/metabolism , Fibroblast Growth Factors/metabolism , Rats
20.
Elife ; 112022 03 18.
Article in English | MEDLINE | ID: mdl-35302487

ABSTRACT

Elevations in plasma phosphate concentrations (hyperphosphatemia) occur in chronic kidney disease (CKD), in certain genetic disorders, and following the intake of a phosphate-rich diet. Whether hyperphosphatemia and/or associated changes in metabolic regulators, including elevations of fibroblast growth factor 23 (FGF23) directly contribute to specific complications of CKD is uncertain. Here, we report that similar to patients with CKD, mice with adenine-induced CKD develop inflammation, anemia, and skeletal muscle wasting. These complications are also observed in mice fed high phosphate diet even without CKD. Ablation of pathologic FGF23-FGFR4 signaling did not protect mice on an increased phosphate diet or mice with adenine-induced CKD from these sequelae. However, low phosphate diet ameliorated anemia and skeletal muscle wasting in a genetic mouse model of CKD. Our mechanistic in vitro studies indicate that phosphate elevations induce inflammatory signaling and increase hepcidin expression in hepatocytes, a potential causative link between hyperphosphatemia, anemia, and skeletal muscle dysfunction. Our study suggests that high phosphate intake, as caused by the consumption of processed food, may have harmful effects irrespective of pre-existing kidney injury, supporting not only the clinical utility of treating hyperphosphatemia in CKD patients but also arguing for limiting phosphate intake in healthy individuals.


Subject(s)
Anemia , Hyperphosphatemia , Anemia/complications , Animals , Fibroblast Growth Factor-23/metabolism , Fibroblast Growth Factors/metabolism , Humans , Hyperphosphatemia/complications , Inflammation , Mice , Muscle, Skeletal/metabolism , Receptor, Fibroblast Growth Factor, Type 4
SELECTION OF CITATIONS
SEARCH DETAIL
...