Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.516
Filter
1.
Front Immunol ; 15: 1337384, 2024.
Article in English | MEDLINE | ID: mdl-38827745

ABSTRACT

Fibroblastic reticular cells (FRCs) are a subpopulation of stromal cells modulating the immune environments in health and disease. We have previously shown that activation of TLR9 signaling in FRC in fat-associated lymphoid clusters (FALC) regulate peritoneal immunity via suppressing immune cell recruitment and peritoneal resident macrophage (PRM) retention. However, FRCs are heterogeneous across tissues and organs. The functions of each FRC subset and the regulation of TLR9 in distinct FRC subsets are unknown. Here, we confirmed that specific deletion of TLR9 in FRC improved bacterial clearance and survival during peritoneal infection. Furthermore, using single-cell RNA sequencing, we found two subsets of FRCs (CD55hi and CD55lo) in the mesenteric FALC. The CD55hi FRCs were enriched in gene expression related to extracellular matrix formation. The CD55lo FRCs were enriched in gene expression related to immune response. Interestingly, we found that TLR9 is dominantly expressed in the CD55lo subset. Activation of TLR9 signaling suppressed proliferation, cytokine production, and retinoid metabolism in the CD55lo FRC, but not CD55hi FRC. Notably, we found that adoptive transfer of Tlr9 -/-CD55lo FRC from mesenteric FALC more effectively improved the survival during peritonitis compared with WT-FRC or Tlr9 -/-CD55hi FRC. Furthermore, we identified CD55hi and CD55lo subsets in human adipose tissue-derived FRC and confirmed the suppressive effect of TLR9 on the proliferation and cytokine production in the CD55lo subset. Therefore, inhibition of TLR9 in the CD55lo FRCs from adipose tissue could be a useful strategy to improve the therapeutic efficacy of FRC-based therapy for peritonitis.


Subject(s)
Fibroblasts , Mice, Knockout , Peritonitis , Signal Transduction , Toll-Like Receptor 9 , Animals , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/genetics , Mice , Peritonitis/immunology , Peritonitis/metabolism , Fibroblasts/metabolism , Fibroblasts/immunology , Mice, Inbred C57BL , Immunomodulation , Male , Humans , Disease Models, Animal
2.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 199-205, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836658

ABSTRACT

The present research aimed to conduct a comprehensive critical analysis of existing literature, focusing on the differentiation of myeloid cells from hematopoietic stem cells within the context of immunological tolerance during pregnancy. A comprehensive systematic review was conducted by searching databases including PubMed, Scopus Biomedicine, EBSCOhost, ScienceDirect, Embase, Cochrane Library, and Web of Science. The focus was on the role of myeloid differentiation from hematopoietic stem cells in modulating immune tolerance, particularly during pregnancy and in certain disease states where they act to suppress the immune response. The quality of the evidence gathered was assessed using the GRADE rating system. Our analysis maintains objectivity and independence from the outcomes presented. The current systematic review offers a synthesis of existing research on the transformation of hematopoietic stem cells into fibroblasts across different tissue types. A thorough search of databases such as PubMed, EBSCOhost, Embase, ScienceDirect, Cochrane Library, and Web of Science was performed in conjunction with a specialist in medical information to identify original research on the derivation of fibroblasts following hematopoietic stem cell transplantation. This search yielded a total of 159 studies, of which 10 met the criteria for inclusion in this review. Reflecting on the constraints of this preliminary review, further in-depth and scientific investigations are warranted to comprehensively assess the impact of varied treatments, with a recommendation for clinicians to proceed with increased circumspection. The myeloid differentiation pathway of hematopoietic stem cells is pivotal in modulating the immune environment during pregnancy, supporting the sustenance of a healthy gestational period. Future research in this domain is expected to advance our understanding of the immunological processes occurring at the maternal-fetal boundary.


Subject(s)
Cell Differentiation , Hematopoietic Stem Cells , Immune Tolerance , Female , Humans , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/cytology , Pregnancy , Cell Differentiation/immunology , Myeloid Cells/immunology , Myeloid Cells/cytology , Hematopoietic Stem Cell Transplantation , Fibroblasts/immunology , Fibroblasts/cytology
3.
J Immunol ; 212(12): 1958-1970, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38700420

ABSTRACT

Fibroblasts acquire a proinflammatory phenotype in inflammatory bowel disease, but the factors driving this process and how fibroblasts contribute to mucosal immune responses are incompletely understood. TNF superfamily member 12 (TNFSF12, or TNF-like weak inducer of apoptosis [TWEAK]) has gained interest as a mediator of chronic inflammation. In this study, we explore its role as a driver of inflammatory responses in fibroblasts and its contribution to fibroblast-monocyte interaction using human primary colonic fibroblasts, THP-1 and primary monocytes. Recombinant human TWEAK induced the expression of cytokines, chemokines, and immune receptors in primary colonic fibroblasts. The TWEAK upregulated transcriptome shared 29% homology with a previously published transcriptional profile of inflammatory fibroblasts from ulcerative colitis. TWEAK elevated surface expression of activated fibroblast markers and adhesion molecules (podoplanin [PDPN], ICAM-1, and VCAM-1) and secretion of IL-6, CCL2, and CXCL10. In coculture, fibroblasts induced monocyte adhesion and secretion of CXCL1 and IL-8, and they promoted a CD14high/ICAM-1high phenotype in THP-1 cells, which was enhanced when fibroblasts were prestimulated with TWEAK. Primary monocytes in coculture with TWEAK-treated fibroblasts had altered surface expression of CD16 and triggering receptor expressed on myeloid cells-1 (TREM-1) as well as increased CXCL1 and CXCL10 secretion. Conversely, inhibition of the noncanonical NF-κB pathway on colonic fibroblasts with a NF-κB-inducing kinase small molecule inhibitor impaired their ability to induce a CD14high phenotype on monocytes. Our results indicate that TWEAK promotes an inflammatory fibroblast-monocyte crosstalk that may be amenable for therapeutic intervention.


Subject(s)
Cell Differentiation , Colon , Cytokine TWEAK , Fibroblasts , Monocytes , Humans , Cytokine TWEAK/metabolism , Monocytes/immunology , Monocytes/metabolism , Fibroblasts/metabolism , Fibroblasts/immunology , Colon/immunology , Colon/pathology , Colon/metabolism , Cell Differentiation/immunology , Cell Communication/immunology , Inflammation/immunology , THP-1 Cells , Coculture Techniques , Cytokines/metabolism , Cell Adhesion
5.
Front Immunol ; 15: 1394108, 2024.
Article in English | MEDLINE | ID: mdl-38799455

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent synovial inflammation and progressive joint destruction. Macrophages are key effector cells that play a central role in RA pathogenesis through their ability to polarize into distinct functional phenotypes. An imbalance favoring pro-inflammatory M1 macrophages over anti-inflammatory M2 macrophages disrupts immune homeostasis and exacerbates joint inflammation. Multiple signaling pathways, including Notch, JAK/STAT, NF-κb, and MAPK, regulate macrophage polarization towards the M1 phenotype in RA. Metabolic reprogramming also contributes to this process, with M1 macrophages prioritizing glycolysis while M2 macrophages utilize oxidative phosphorylation. Redressing this imbalance by modulating macrophage polarization and metabolic state represents a promising therapeutic strategy. Furthermore, complex bidirectional interactions exist between synovial macrophages and fibroblast-like synoviocytes (FLS), forming a self-perpetuating inflammatory loop. Macrophage-derived factors promote aggressive phenotypes in FLS, while FLS-secreted mediators contribute to aberrant macrophage activation. Elucidating the signaling networks governing macrophage polarization, metabolic adaptations, and crosstalk with FLS is crucial to developing targeted therapies that can restore immune homeostasis and mitigate joint pathology in RA.


Subject(s)
Arthritis, Rheumatoid , Fibroblasts , Macrophage Activation , Macrophages , Signal Transduction , Synovial Membrane , Humans , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Macrophages/immunology , Macrophages/metabolism , Synovial Membrane/metabolism , Synovial Membrane/immunology , Synovial Membrane/pathology , Fibroblasts/metabolism , Fibroblasts/immunology , Animals , Macrophage Activation/immunology , Cell Communication/immunology , Metabolic Reprogramming
7.
F1000Res ; 13: 54, 2024.
Article in English | MEDLINE | ID: mdl-38681509

ABSTRACT

Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.


Subject(s)
Fibroblasts , Fibrosis , Inflammation , Humans , Fibroblasts/immunology , Fibroblasts/pathology , Inflammation/immunology , Inflammation/pathology , Animals
8.
Int Immunopharmacol ; 132: 112016, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38593506

ABSTRACT

Osteoarthritis (OA) is a low-grade inflammatory joint illness in which monocytes migrate and infiltrate synovial tissue, differentiating into the pro-inflammatory M1 macrophage phenotype. IL-17 is a proinflammatory mediator principally generated by Th17 cells, which is elevated in OA patients; nevertheless, investigators have yet to elucidate the function of IL-17 in M1 polarization during OA development. Our analysis of clinical tissues and results from the open online dataset discovered that the level of M1 macrophage markers is elevated in human OA tissue samples than in normal tissue. High-throughput screening demonstrated that MCP-1 is a potential candidate factor after IL-17 treatment in OA synovial fibroblasts (OASFs). Immunohistochemistry data revealed that the level of MCP-1 is higher in humans and mice with OA than in normal tissues. IL-17 stimulation facilitates MCP-1-dependent macrophage polarization to the M1 phenotype. It also appears that IL-17 enhances MCP-1 synthesis in human OASFs, enhancing monocyte migration via the JAK and STAT3 signaling cascades. Our findings indicate the IL-17/MCP-1 axis as a novel strategy for the remedy of OA.


Subject(s)
Cell Movement , Chemokine CCL2 , Interleukin-17 , Macrophages , Monocytes , Osteoarthritis , Animals , Humans , Male , Mice , Cell Movement/drug effects , Cells, Cultured , Chemokine CCL2/metabolism , Fibroblasts/drug effects , Fibroblasts/immunology , Interleukin-17/metabolism , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Monocytes/immunology , Monocytes/drug effects , Monocytes/metabolism , Osteoarthritis/immunology , Signal Transduction , STAT3 Transcription Factor/metabolism , Synovial Membrane/immunology , Synovial Membrane/pathology
9.
Nat Immunol ; 25(5): 764-777, 2024 May.
Article in English | MEDLINE | ID: mdl-38609546

ABSTRACT

The linear ubiquitin assembly complex (LUBAC) consists of HOIP, HOIL-1 and SHARPIN and is essential for proper immune responses. Individuals with HOIP and HOIL-1 deficiencies present with severe immunodeficiency, autoinflammation and glycogen storage disease. In mice, the loss of Sharpin leads to severe dermatitis due to excessive keratinocyte cell death. Here, we report two individuals with SHARPIN deficiency who manifest autoinflammatory symptoms but unexpectedly no dermatological problems. Fibroblasts and B cells from these individuals showed attenuated canonical NF-κB responses and a propensity for cell death mediated by TNF superfamily members. Both SHARPIN-deficient and HOIP-deficient individuals showed a substantial reduction of secondary lymphoid germinal center B cell development. Treatment of one SHARPIN-deficient individual with anti-TNF therapies led to complete clinical and transcriptomic resolution of autoinflammation. These findings underscore the critical function of the LUBAC as a gatekeeper for cell death-mediated immune dysregulation in humans.


Subject(s)
Immunologic Deficiency Syndromes , Nerve Tissue Proteins , Ubiquitins , Humans , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Female , Male , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/genetics , Inflammation/immunology , Inflammation/genetics , B-Lymphocytes/immunology , Loss of Function Mutation , Fibroblasts/metabolism , Fibroblasts/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Mice , Alleles
10.
Ageing Res Rev ; 97: 102296, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588867

ABSTRACT

Fibroblasts are abundant stromal cells which not only control the integrity of extracellular matrix (ECM) but also act as immune regulators. It is known that the structural cells within tissues can establish an organ-specific immunity expressing many immune-related genes and closely interact with immune cells. In fact, fibroblasts can modify their immune properties to display both pro-inflammatory and immunosuppressive activities in a context-dependent manner. After acute insults, fibroblasts promote tissue inflammation although they concurrently recruit immunosuppressive cells to enhance the resolution of inflammation. In chronic pathological states, tissue fibroblasts, especially senescent fibroblasts, can display many pro-inflammatory and immunosuppressive properties and stimulate the activities of different immunosuppressive cells. In return, immunosuppressive cells, such as M2 macrophages and myeloid-derived suppressor cells (MDSC), evoke an excessive conversion of fibroblasts into myofibroblasts, thus aggravating the severity of tissue fibrosis. Single-cell transcriptome studies on fibroblasts isolated from aged tissues have confirmed that tissue fibroblasts express many genes coding for cytokines, chemokines, and complement factors, whereas they lose some fibrogenic properties. The versatile immune properties of fibroblasts and their close cooperation with immune cells indicate that tissue fibroblasts have a crucial role in the aging process and age-related diseases.


Subject(s)
Aging , Fibroblasts , Fibroblasts/immunology , Humans , Aging/immunology , Aging/physiology , Animals , Cellular Senescence/immunology , Cellular Senescence/physiology
11.
Poult Sci ; 103(6): 103741, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670055

ABSTRACT

Fowl adenovirus serotype 4 (FAdV-4) infections result in substantial economic losses in the poultry industry. Recent findings have revealed that FAdV-4 significantly suppresses the host immune response upon infection; however, the specific viral and host factors contributing to this immunomodulatory activity remain poorly characterized. Moreover, diverse cell types exhibit differential immune responses to FAdV-4 infection. To elucidate cell-specific host responses, we performed transcriptomic analysis of FAdV-4 infected leghorn male hepatocellular (LMH) and chicken embryo fibroblast (CEF) cells. Although FAdV-4 replicated more efficiently in LMH cells, it provoked limited interferon-stimulated gene induction. In contrast, FAdV-4 infection triggered robust antiviral responses in CEF cells, including upregulation of cytosolic DNA sensing and interferon-stimulated genes. Knockdown of key cytosolic DNA sensing molecules enhanced FAdV-4 replication in LMH cells while reducing interferon-stimulated gene expression. Our findings reveal cell-specific virus-host interactions that provide insight into FAdV-4 pathogenesis while identifying factors that mediate antiviral immunity against FAdV-4.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Chickens , Fibroblasts , Immunity, Innate , Poultry Diseases , Animals , Male , Fibroblasts/virology , Fibroblasts/immunology , Chick Embryo , Adenoviridae Infections/veterinary , Adenoviridae Infections/immunology , Adenoviridae Infections/virology , Poultry Diseases/virology , Poultry Diseases/immunology , Chickens/immunology , Aviadenovirus/physiology , Aviadenovirus/immunology , Serogroup , Hepatocytes/virology , Hepatocytes/immunology
12.
Immunol Med ; 47(2): 58-67, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38168669

ABSTRACT

Synovial tissue-resident macrophages (STRMs) maintain normal joint homeostasis in a steady state. However, it is unclear whether STRMs still play homeostatic roles or change the functions in the joint of rheumatoid arthritis (RA), where infiltrating peripheral blood monocyte-derived macrophages (PBMoMs) play proinflammatory roles. In the present study, we examined changes in the phenotypes and functions of STRMs in response to RA-related stimuli in vitro. STRMs were prepared from non-inflammatory osteoarthritis (OA) joint synovium, which is histologically indistinguishable from normal joint synovium. PBMoMs were prepared and used for comparison. After stimulation with plate-bound IgG, which mimics anti-citrullinated protein antibody immunocomplex formed in RA joints, or with combinations of RA-related inflammatory mediators, namely tumor necrosis factor-α (TNF-α) and prostaglandin E2 or interferon-γ, PBMoMs downregulated surface markers and genes associated with anti-inflammatory macrophages, and upregulated cytokine and marker genes of proinflammatory macrophages in RA. On the other hand, STRMs hardly changed the expression of surface molecules and marker genes but altered the pattern of cytokine gene expression after stimulation like PBMoMs. Furthermore, in vitro stimulated STRMs promote proinflammatory functions of cocultured synovial fibroblasts. Thus, STRMs might play proinflammatory roles in RA joints, while maintaining their phenotypes in the steady state.


Subject(s)
Arthritis, Rheumatoid , Macrophages , Phenotype , Synovial Membrane , Humans , Synovial Membrane/immunology , Macrophages/immunology , Macrophages/physiology , Arthritis, Rheumatoid/immunology , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism , Male , Fibroblasts/immunology , Osteoarthritis/immunology , Osteoarthritis/etiology , Cells, Cultured , Female , Dinoprostone/metabolism , Middle Aged , Aged , Inflammation/immunology , Inflammation Mediators/metabolism
13.
Oncoimmunology ; 11(1): 2146860, 2022.
Article in English | MEDLINE | ID: mdl-36479153

ABSTRACT

Tumor-associated macrophages (TAM) and cancer-associated fibroblasts (CAF) and their precursor mesenchymal stromal cells (MSC) are often detected together in tumors, but how they cooperate is not well understood. Here, we show that TAM and CAF are the most abundant nonmalignant cells and are present together in untreated human neuroblastoma (NB) tumors that are also poorly infiltrated with T and natural killer (NK) cells. We then show that MSC and CAF-MSC harvested from NB tumors protected human monocytes (MN) from spontaneous apoptosis in an interleukin (IL)-6 dependent mechanism. The interactions of MN and MSC with NB cells resulted in a significant induction or increase in the expression of several pro-tumorigenic cytokines/chemokines (TGF-ß1, MCP-1, IL-6, IL-8, and IL-4) but not of anti-tumorigenic cytokines (TNF-α, IL-12) by MN or MSC, while also inducing cytokine expression in quiescent NB cells. We then identified a TGF-ß1/IL-6 pathway where TGF-ß1 stimulated the expression of IL-6 in NB cells and MSC, promoting TAM survival. Evidence for the contribution of TAM and MSC to the activation of this pathway was then provided in xenotransplanted NB tumors and patients with primary tumors by demonstrating a direct correlation between the presence of CAF and p-SMAD2 and p-STAT3. The data highlight a new mechanism of interaction between TAM and CAF supporting their pro-tumorigenic function in cancer.


Subject(s)
Fibroblasts , Interleukin-6 , Macrophages , Neuroblastoma , Transforming Growth Factor beta1 , Humans , Neuroblastoma/immunology , Fibroblasts/immunology , Macrophages/immunology , Animals
14.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35162939

ABSTRACT

The inflammatory mechanisms of environmental pollutants in chronic rhinosinusitis (CRS) have recently been proposed. However, the mechanisms underlying the inflammatory effects of particulate matter (PM) on nasal polyp (NP) tissues remain unknown. Here we investigated the mechanism underlying the inflammatory effects of PM10 on human nasal polyp-derived fibroblasts (NPDFs). We isolated NPDFs from human NP tissues obtained from patients with CRS with NPs (CRSwNP). The NPDFs were exposed to PM10 in vitro. Immunologic characteristics were assessed using real-time polymerase chain reaction, enzyme-linked immunosorbent assay, Western blot, and flow cytometry. Additionally, we investigated the effect of NPDF-conditioned media (CM) on the expression of CD4+ T cell inflammatory mediators. PM10-treated NPDFs significantly upregulated interleukin (IL)-6, IL-4, and IL-33 expression and CXCL1 protein levels than PM10-treated normal tissues. MAP kinase, AP-1, and NF-kB were the primary cell signaling proteins. Immune cells in NPDF-CM had elevated IL-13, IL-17A, and IL-10 expression, but no significant difference in IFN-γ, TNF-α, and IL-4 expression. Moreover, under a Th2 inducing condition, NPDF-CM-treated CD4+ T cells had increased expression of IL-13, IL-10, and IL-17, which was reversed on ST2 inhibitor addition. Our study suggests that PM10 exposure could significantly increase the Th2 inflammatory pathway in NP tissues, specifically the IL-33/ST2 pathway-mediated immune response.


Subject(s)
Fibroblasts/cytology , Nasal Polyps/pathology , Particulate Matter/toxicity , Rhinitis/pathology , Sinusitis/pathology , CD4-Positive T-Lymphocytes/metabolism , Cell Culture Techniques , Culture Media, Conditioned/metabolism , Cytokines/genetics , Cytokines/metabolism , Fibroblasts/drug effects , Fibroblasts/immunology , Gene Expression Regulation/drug effects , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Nasal Polyps/genetics , Nasal Polyps/immunology , Primary Cell Culture , Rhinitis/genetics , Rhinitis/immunology , Sinusitis/genetics , Sinusitis/immunology , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
15.
PLoS Biol ; 20(1): e3001532, 2022 01.
Article in English | MEDLINE | ID: mdl-35085231

ABSTRACT

Chronic inflammation is often associated with the development of tissue fibrosis, but how mesenchymal cell responses dictate pathological fibrosis versus resolution and healing remains unclear. Defining stromal heterogeneity and identifying molecular circuits driving extracellular matrix deposition and remodeling stands to illuminate the relationship between inflammation, fibrosis, and healing. We performed single-cell RNA-sequencing of colon-derived stromal cells and identified distinct classes of fibroblasts with gene signatures that are differentially regulated by chronic inflammation, including IL-11-producing inflammatory fibroblasts. We further identify a transcriptional program associated with trans-differentiation of mucosa-associated fibroblasts and define a functional gene signature associated with matrix deposition and remodeling in the inflamed colon. Our analysis supports a critical role for the metalloprotease Adamdec1 at the interface between tissue remodeling and healing during colitis, demonstrating its requirement for colon epithelial integrity. These findings provide mechanistic insight into how inflammation perturbs stromal cell behaviors to drive fibroblastic responses controlling mucosal matrix remodeling and healing.


Subject(s)
ADAM Proteins/immunology , Colitis/immunology , Extracellular Matrix/metabolism , Fibroblasts/immunology , Intestinal Mucosa/immunology , Mesenchymal Stem Cells/immunology , ADAM Proteins/deficiency , ADAM Proteins/genetics , Animals , Cell Differentiation , Colitis/chemically induced , Colitis/genetics , Colitis/pathology , Colon/immunology , Colon/pathology , Extracellular Matrix/immunology , Fibroblasts/pathology , Fibrosis , Gene Expression Regulation , Humans , Inflammation , Interleukin-11/genetics , Interleukin-11/immunology , Intestinal Mucosa/pathology , Male , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis , Sodium Dodecyl Sulfate/administration & dosage , Transcription, Genetic , Transcriptome , Wound Healing/genetics , Wound Healing/immunology
17.
Science ; 375(6576): 91-96, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34990237

ABSTRACT

Fibrosis affects millions of people with cardiac disease. We developed a therapeutic approach to generate transient antifibrotic chimeric antigen receptor (CAR) T cells in vivo by delivering modified messenger RNA (mRNA) in T cell­targeted lipid nanoparticles (LNPs). The efficacy of these in vivo­reprogrammed CAR T cells was evaluated by injecting CD5-targeted LNPs into a mouse model of heart failure. Efficient delivery of modified mRNA encoding the CAR to T lymphocytes was observed, which produced transient, effective CAR T cells in vivo. Antifibrotic CAR T cells exhibited trogocytosis and retained the target antigen as they accumulated in the spleen. Treatment with modified mRNA-targeted LNPs reduced fibrosis and restored cardiac function after injury. In vivo generation of CAR T cells may hold promise as a therapeutic platform to treat various diseases.


Subject(s)
Cell Engineering , Endopeptidases/immunology , Heart Diseases/therapy , Immunotherapy, Adoptive , Liposomes , Membrane Proteins/immunology , Nanoparticles , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Adoptive Transfer , Animals , CD5 Antigens/immunology , Endopeptidases/metabolism , Fibroblasts/immunology , Fibroblasts/pathology , Fibrosis/therapy , HEK293 Cells , Heart Diseases/pathology , Heart Failure/therapy , Humans , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Myocardium/pathology , RNA, Messenger/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Spleen/immunology , Trogocytosis
18.
Sci Immunol ; 7(67): eabj0641, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34995096

ABSTRACT

The spleen is a compartmentalized organ that serves as a blood filter and safeguard of systemic immune surveillance. Labyrinthine networks of fibroblastic stromal cells construct complex niches within the white pulp and red pulp that are important for tissue homeostasis and immune activation. However, the identity and roles of the global splenic fibroblastic stromal cells in homeostasis and immune responses are poorly defined. Here, we performed a cellular and molecular dissection of the splenic reticular stromal cell landscape. We found that white pulp fibroblastic reticular cells (FRCs) responded robustly during acute viral infection, but this program of gene regulation was suppressed during persistent viral infection. Single-cell transcriptomic analyses in mice revealed diverse fibroblast cell niches and unexpected heterogeneity among podoplanin-expressing cells that include glial, mesothelial, and adventitial cells in addition to FRCs. We found analogous fibroblastic stromal cell diversity in the human spleen. In addition, we identify the transcription factor SpiB as a critical regulator required to support white pulp FRC differentiation, homeostatic chemokine expression, and antiviral T cell responses. Together, our study provides a comprehensive map of fibroblastic stromal cell types in the spleen and defines roles for red and white pulp fibroblasts for splenic function and orchestration of immune responses.


Subject(s)
Fibroblasts/immunology , Homeostasis/immunology , Spleen/immunology , Stromal Cells/immunology , Animals , Cell Differentiation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , T-Lymphocytes/immunology
19.
Thyroid ; 32(1): 90-96, 2022 01.
Article in English | MEDLINE | ID: mdl-34714162

ABSTRACT

Background: The pathogenesis of Graves' hyperthyroidism (GH) and associated Graves' orbitopathy (GO) appears to involve stimulatory autoantibodies (thyrotropin receptor [TSHR]-stimulating antibodies [TSAbs]) that bind to and activate TSHRs on thyrocytes and orbital fibroblasts. In general, measurement of circulating TSHR antibodies by clinical assays correlates with the status of GH and GO. However, most clinical measurements of TSHR antibodies use competitive binding assays that do not distinguish between TSAbs and antibodies that bind to but do not activate TSHRs. Moreover, clinical assays for TSAbs measure stimulation of only one signaling pathway, the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, in engineered cells that are not thyrocytes or orbital fibroblasts. We determined whether measuring TSAbs by a cAMP-PKA readout in engineered cells accurately reveals the efficacies of stimulation by these antibodies on thyrocytes and orbital fibroblasts. Methods: We measured TSAb stimulation of normal human thyrocytes and orbital fibroblasts from patients with GO in primary cultures in vitro. In thyrocytes, we measured secretion of thyroglobulin (TG) and in orbital fibroblasts secretion of hyaluronan (hyaluronic acid [HA]). We also measured stimulation of cAMP production in engineered TSHR-expressing cells in an assay similar to clinical assays. Furthermore, we determined whether there were differences in stimulation of thyrocytes and orbital fibroblasts by TSAbs from patients with GH alone versus from patients with GO understanding that patients with GO have accompanying GH. Results: We found a positive correlation between TSAb stimulation of cAMP production in engineered cells and TG secretion by thyrocytes as well as HA secretion by orbital fibroblasts. However, TSAbs from GH patients stimulated thyrocytes more effectively than TSAbs from GO patients, whereas TSAbs from GO patients were more effective in activating orbital fibroblasts than TSAbs from GH patients. Conclusions: Clinical assays of stimulation by TSAbs measuring activation of the cAMP-PKA pathway do correlate with stimulation of thyrocytes and orbital fibroblasts; however, they do not distinguish between TSAbs from GH and GO patients. In vitro, TSAbs exhibit selectivity in activating TSHRs since TSAbs from GO patients were more effective in stimulating orbital fibroblasts and TSAbs from GH patients were more effective in stimulating thyrocytes.


Subject(s)
Autoantibodies/immunology , Fibroblasts/immunology , Graves Ophthalmopathy/complications , Thyroid Epithelial Cells/immunology , Adult , Autoantibodies/analysis , Female , Fibroblasts/metabolism , Graves Disease/blood , Graves Disease/immunology , Graves Ophthalmopathy/blood , Graves Ophthalmopathy/pathology , Humans , Male , Middle Aged , Thyroid Epithelial Cells/metabolism , Thyrotropin/metabolism
20.
Surg Today ; 52(1): 151-164, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34120243

ABSTRACT

PURPOSE: The specific genes or pathways in fibroblasts responsible for the pathogenesis of postoperative abdominal adhesion (PAA) remain to be elucidated. We aim to provide a new insight into disease mechanisms at the transcriptome level. METHODS: Male Sprague-Dawley rats were used to establish a PAA model. Primary fibroblasts were separated from normal peritoneal tissue (NF) and postoperative adhesion tissue (PF). RNA sequencing was used to analyze the transcriptome in NF and PF. RESULTS: One thousand two hundred thirty-five upregulated and 625 downregulated DEGs were identified through RNA-Seq. A pathway enrichment analysis identified distinct enriched biological processes, among which the most prominent was related to immune and inflammatory response and fibrosis. HE staining and Masson's trichrome staining histologically validated the RNA-Seq results. Six hub genes, ITGAM, IL-1ß, TNF, IGF1, CSF1R and EGFR were further verified by RT-PCR. CONCLUSIONS: Our study revealed the roles of the immune and inflammatory responses and fibrosis in the process of PAA. We also found six hub genes that may be potential therapeutic targets for PPA.


Subject(s)
Fibroblasts , Peritoneum/pathology , Postoperative Complications/genetics , Postoperative Complications/pathology , Sequence Analysis, RNA/methods , Tissue Adhesions/genetics , Tissue Adhesions/pathology , Transcriptome/genetics , Animals , CD11b Antigen , Disease Models, Animal , ErbB Receptors , Fibroblasts/immunology , Fibroblasts/pathology , Humans , Insulin-Like Growth Factor I , Interleukin-1beta , Male , Molecular Targeted Therapy , Postoperative Complications/immunology , Postoperative Complications/therapy , Rats, Sprague-Dawley , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Tissue Adhesions/immunology , Tissue Adhesions/therapy , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL
...