Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47.274
Filter
1.
2.
J Transl Med ; 22(1): 609, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956586

ABSTRACT

Sustained injury from factors such as hypoxia, infection, or physical damage may provoke improper tissue repair and the anomalous deposition of connective tissue that causes fibrosis. This phenomenon may take place in any organ, ultimately leading to their dysfunction and eventual failure. Tissue fibrosis has also been found to be central in both the process of carcinogenesis and cancer progression. Thus, its prompt diagnosis and regular monitoring is necessary for implementing effective disease-modifying interventions aiming to reduce mortality and improve overall quality of life. While significant research has been conducted on these subjects, a comprehensive understanding of how their relationship manifests through modern imaging techniques remains to be established. This work intends to provide a comprehensive overview of imaging technologies relevant to the detection of fibrosis affecting thoracic organs as well as to explore potential future advancements in this field.


Subject(s)
Fibrosis , Humans , Thorax/diagnostic imaging , Thorax/pathology
3.
J Transl Med ; 22(1): 610, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956593

ABSTRACT

Fibrosis is the aberrant process of connective tissue deposition from abnormal tissue repair in response to sustained tissue injury caused by hypoxia, infection, or physical damage. It can affect almost all organs in the body causing dysfunction and ultimate organ failure. Tissue fibrosis also plays a vital role in carcinogenesis and cancer progression. The early and accurate diagnosis of organ fibrosis along with adequate surveillance are helpful to implement early disease-modifying interventions, important to reduce mortality and improve quality of life. While extensive research has already been carried out on the topic, a thorough understanding of how this relationship reveals itself using modern imaging techniques has yet to be established. This work outlines the ways in which fibrosis shows up in abdominal organs and has listed the most relevant imaging technologies employed for its detection. New imaging technologies and developments are discussed along with their promising applications in the early detection of organ fibrosis.


Subject(s)
Abdomen , Fibrosis , Humans , Abdomen/diagnostic imaging , Abdomen/pathology
4.
Biol Direct ; 19(1): 52, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956667

ABSTRACT

BACKGROUND: Adiposity profoundly impacts reproductive health in both humans and animals. However, the precise subpopulations contributing to infertility under obese conditions remain elusive. RESULTS: In this study, we established an obese mouse model through an eighteen-week high-fat diet regimen in adult female mice. Employing single-cell RNA sequencing (scRNA-seq), we constructed a comprehensive single-cell atlas of ovarian tissues from these mice to scrutinize the impact of obesity on the ovarian microenvironment. ScRNA-seq revealed notable alterations in the microenvironment of ovarian tissues in obese mice. Granulosa cells, stromal cells, T cells, and macrophages exhibited functional imbalances compared to the control group. We observed heightened interaction strength in the SPP1-CD44 pairing within lgfbp7+ granulosa cell subtypes and Il1bhigh monocyte subtypes in the ovarian tissues of obese mice. Moreover, the interaction strength between Il1bhigh monocyte subtypes and Pdgfrb+ stromal cell subtypes in the form of TNF - TNFrsf1α interaction was also enhanced subsequently to obesity, potentially contributing to ovarian fibrosis pathogenesis. CONCLUSIONS: We propose a model wherein granulosa cells secrete SPP1 to activate monocytes, subsequently triggering TNF-α secretion by monocytes, thereby activating stromal cells and ultimately leading to the development of ovarian fibrosis. Intervening in this process may represent a promising avenue for improving clinical outcomes in fertility treatments for obese women.


Subject(s)
Fibrosis , Mice, Obese , Obesity , Single-Cell Analysis , Animals , Female , Mice , Fibrosis/genetics , Obesity/genetics , Obesity/metabolism , Gene Expression Profiling , Ovary/metabolism , Transcriptome , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Granulosa Cells/metabolism
5.
Sci Adv ; 10(27): eadl1197, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959305

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by increasing fibrosis, which can enhance tumor progression and spread. Here, we undertook an unbiased temporal assessment of the matrisome of the highly metastatic KPC (Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+) and poorly metastatic KPflC (Pdx1-Cre, LSL-KrasG12D/+, Trp53fl/+) genetically engineered mouse models of pancreatic cancer using mass spectrometry proteomics. Our assessment at early-, mid-, and late-stage disease reveals an increased abundance of nidogen-2 (NID2) in the KPC model compared to KPflC, with further validation showing that NID2 is primarily expressed by cancer-associated fibroblasts (CAFs). Using biomechanical assessments, second harmonic generation imaging, and birefringence analysis, we show that NID2 reduction by CRISPR interference (CRISPRi) in CAFs reduces stiffness and matrix remodeling in three-dimensional models, leading to impaired cancer cell invasion. Intravital imaging revealed improved vascular patency in live NID2-depleted tumors, with enhanced response to gemcitabine/Abraxane. In orthotopic models, NID2 CRISPRi tumors had less liver metastasis and increased survival, highlighting NID2 as a potential PDAC cotarget.


Subject(s)
Carcinoma, Pancreatic Ductal , Fibrosis , Pancreatic Neoplasms , Proteomics , Animals , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Proteomics/methods , Mice , Humans , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Disease Models, Animal , Cell Line, Tumor , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Cell Adhesion Molecules
6.
J Transl Med ; 22(1): 616, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961396

ABSTRACT

Fibrosis is a pathological process involving the abnormal deposition of connective tissue, resulting from improper tissue repair in response to sustained injury caused by hypoxia, infection, or physical damage. It can impact any organ, leading to their dysfunction and eventual failure. Additionally, tissue fibrosis plays an important role in carcinogenesis and the progression of cancer.Early and accurate diagnosis of organ fibrosis, coupled with regular surveillance, is essential for timely disease-modifying interventions, ultimately reducing mortality and enhancing quality of life. While extensive research has already been carried out on the topics of aberrant wound healing and fibrogenesis, we lack a thorough understanding of how their relationship reveals itself through modern imaging techniques.This paper focuses on fibrosis of the genito-urinary system, detailing relevant imaging technologies used for its detection and exploring future directions.


Subject(s)
Fibrosis , Humans , Urogenital System/diagnostic imaging , Urogenital System/pathology , Radiology
7.
J Transl Med ; 22(1): 617, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961399

ABSTRACT

INTRODUCTION: Intrauterine adhesions (IUA) manifest as endometrial fibrosis, often causing infertility or recurrent miscarriage; however, their pathogenesis remains unclear. OBJECTIVES: This study assessed the role of Dickkopf WNT signaling pathway inhibitor 1 (DKK1) and autophagy in endometrial fibrosis, using clinical samples as well as in vitro and in vivo experiments. METHODS: Immunohistochemistry, immunofluorescence and western blot were used to determine the localization and expression of DKK1 in endometrium; DKK1 silencing and DKK1 overexpression were used to detect the biological effects of DKK1 silencing or expression in endometrial cells; DKK1 gene knockout mice were used to observe the phenotypes caused by DKK1 gene knockout. RESULTS: In patients with IUA, DKK1 and autophagy markers were down-regulated; also, α-SMA and macrophage localization were increased in the endometrium. DKK1 conditional knockout (CKO) mice showed a fibrotic phenotype with decreased autophagy and increased localization of α-SMA and macrophages in the endometrium. In vitro studies showed that DKK1 knockout (KO) suppressed the autophagic flux of endometrial stromal cells. In contrast, ectopic expression of DKK1 showed the opposite phenotype. Mechanistically, we discovered that DKK1 regulates autophagic flux through Wnt/ß-catenin and PI3K/AKT/mTOR pathways. Further studies showed that DKK1 KO promoted the secretion of interleukin (IL)-8 in exosomes, thereby promoting macrophage proliferation and metastasis. Also, in DKK1 CKO mice, treatment with autophagy activator rapamycin partially restored the endometrial fibrosis phenotype. CONCLUSION: Our findings indicated that DKK1 was a potential diagnostic marker or therapeutic target for IUA.


Subject(s)
Autophagy , Endometrium , Exosomes , Fibrosis , Intercellular Signaling Peptides and Proteins , Macrophages , Mice, Knockout , Myofibroblasts , Animals , Female , Intercellular Signaling Peptides and Proteins/metabolism , Endometrium/metabolism , Endometrium/pathology , Macrophages/metabolism , Macrophages/pathology , Humans , Exosomes/metabolism , Myofibroblasts/metabolism , Myofibroblasts/pathology , Mice , Mice, Inbred C57BL , Adult
8.
J Transl Med ; 22(1): 619, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961436

ABSTRACT

BACKGROUND: Carbohydrate antigen 125 (CA125) is a proteolytic fragment of MUC-16 that is increased in heart failure (HF) and associated with inflammation, fluid overload, and worse adverse events. Our main objective was to study the expression of CA125 on epicardium and its association with inflammation, adipogenesis, and fibrosis. METHODS: Epicardial fat biopsies and blood were obtained from 151 non-selected patients undergoing open heart surgery. Immunohistochemistry, ELISA, or real-time PCR were used for analyzing protein or mRNA expression levels of CA125 and markers of inflammatory cells, fibroblasts, and adipocytes. Epithelial or stromal cells from epicardium were isolated and cultured to identify CA125 and its association with the adipogenesis and fibrosis pathways, respectively. RESULTS: The median age was 71 (63-74) years, 106 patients (70%) were male, and 62 (41%) had an established diagnosis of HF before surgery. The slice of epicardial fat biopsy determined a positive and colorimetric staining on the epithelial layer after incubating with the CA125 M11 antibody, providing the first description of CA125 expression in the human epicardium. Epicardial CA125 showed a strong and positive correlation with markers of inflammation and fibrosis in the epicardial fat tissue while exhibiting a negative correlation with markers of the adipogenesis pathway. This relationship remained significant after adjusting for potential confounders such as a prior HF diagnosis and plasma CA125 levels. CONCLUSION: Epicardial cells express CA125, which is positively associated with inflammatory and fibroblast markers in epicardial adipose tissue. These results suggest that CA125 may be biologically involved in HF progression (transition from adipogenesis to fibrosis).


Subject(s)
Adipose Tissue , Biomarkers , CA-125 Antigen , Fibrosis , Inflammation , Pericardium , Humans , Pericardium/pathology , Pericardium/metabolism , Male , Middle Aged , Inflammation/pathology , Female , Aged , Biomarkers/metabolism , Biomarkers/blood , CA-125 Antigen/blood , CA-125 Antigen/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Adipogenesis , Epicardial Adipose Tissue
9.
J Cell Mol Med ; 28(13): e18493, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963241

ABSTRACT

Interleukin-5 (IL-5) has been reported to be involved in cardiovascular diseases, such as atherosclerosis and cardiac injury. This study aimed to investigate the effects of IL-5 on cardiac remodelling. Mice were infused with angiotensin II (Ang II), and the expression and source of cardiac IL-5 were analysed. The results showed that cardiac IL-5 expression was time- and dose-dependently decreased after Ang II infusion, and was mainly derived from cardiac macrophages. Additionally, IL-5-knockout (IL-5-/-) mice were used to observe the effects of IL-5 knockout on Ang II-induced cardiac remodelling. We found knockout of IL-5 significantly increased the expression of cardiac hypertrophy markers, elevated myocardial cell cross-sectional areas and worsened cardiac dysfunction in Ang II-infused mice. IL-5 deletion also promoted M2 macrophage differentiation and exacerbated cardiac fibrosis. Furthermore, the effects of IL-5 deletion on cardiac remodelling was detected after the STAT3 pathway was inhibited by S31-201. The effects of IL-5 on cardiac remodelling and M2 macrophage differentiation were reversed by S31-201. Finally, the effects of IL-5 on macrophage differentiation and macrophage-related cardiac hypertrophy and fibrosis were analysed in vitro. IL-5 knockout significantly increased the Ang II-induced mRNA expression of cardiac hypertrophy markers in myocardial cells that were co-cultured with macrophages, and this effect was reversed by S31-201. Similar trends in the mRNA levels of fibrosis markers were observed when cardiac fibroblasts and macrophages were co-cultured. In conclusions, IL-5 deficiency promote the differentiation of M2 macrophages by activating the STAT3 pathway, thereby exacerbating cardiac remodelling in Ang II-infused mice. IL-5 may be a potential target for the clinical prevention of cardiac remodelling.


Subject(s)
Angiotensin II , Cardiomegaly , Fibrosis , Interleukin-5 , Macrophages , Mice, Knockout , STAT3 Transcription Factor , Signal Transduction , Ventricular Remodeling , Animals , Angiotensin II/pharmacology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Ventricular Remodeling/drug effects , Mice , Macrophages/metabolism , Macrophages/drug effects , Interleukin-5/metabolism , Interleukin-5/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/genetics , Cardiomegaly/chemically induced , Male , Mice, Inbred C57BL , Cell Differentiation , Myocardium/metabolism , Myocardium/pathology
10.
Immun Inflamm Dis ; 12(7): e1335, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967367

ABSTRACT

BACKGROUND: Pirfenidone has demonstrated significant anti-inflammatory and antifibrotic effects in both animal models and some clinical trials. Its potential for antifibrotic activity positions it as a promising candidate for the treatment of various fibrotic diseases. Pirfenidone exerts several pleiotropic and anti-inflammatory effects through different molecular pathways, attenuating multiple inflammatory processes, including the secretion of pro-inflammatory cytokines, apoptosis, and fibroblast activation. OBJECTIVE: To present the current evidence of pirfenidone's effects on several fibrotic diseases, with a focus on its potential as a therapeutic option for managing chronic fibrotic conditions. FINDINGS: Pirfenidone has been extensively studied for idiopathic pulmonary fibrosis, showing a favorable impact and forming part of the current treatment regimen for this disease. Additionally, pirfenidone appears to have beneficial effects on similar fibrotic diseases such as interstitial lung disease, myocardial fibrosis, glomerulopathies, aberrant skin scarring, chronic liver disease, and other fibrotic disorders. CONCLUSION: Given the increasing incidence of chronic fibrotic conditions, pirfenidone emerges as a potential therapeutic option for these patients. However, further clinical trials are necessary to confirm its therapeutic efficacy in various fibrotic diseases. This review aims to highlight the current evidence of pirfenidone's effects in multiple fibrotic conditions.


Subject(s)
Fibrosis , Pyridones , Pyridones/therapeutic use , Humans , Animals , Fibrosis/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Idiopathic Pulmonary Fibrosis/drug therapy , Antifibrotic Agents/therapeutic use
11.
Ren Fail ; 46(2): 2371988, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38952291

ABSTRACT

AIMS: Abnormal renal lipid metabolism causes renal lipid deposition, which leads to the development of renal fibrosis in diabetic kidney disease (DKD). The aim of this study was to investigate the effect and mechanism of chlorogenic acid (CA) on reducing renal lipid accumulation and improving DKD renal fibrosis. METHODS: This study evaluated the effects of CA on renal fibrosis, lipid deposition and lipid metabolism by constructing in vitro and in vivo models of DKD, and detected the improvement of Notch1 and Stat3 signaling pathways. Molecular docking was used to predict the binding between CA and the extracellular domain NRR1 of Notch1 protein. RESULTS: In vitro studies have shown that CA decreased the expression of Fibronectin, α-smooth muscle actin (α-SMA), p-smad3/smad3, alleviated lipid deposition, promoted the expression of carnitine palmitoyl transferase 1 A (CPT1A), and inhibited the expression of cholesterol regulatory element binding protein 1c (SREBP1c). The expression of Notch1, Cleaved Notch1, Hes1, and p-stat3/stat3 were inhibited. These results suggested that CA might reduce intercellular lipid deposition in human kidney cells (HK2) by inhibiting Notch1 and stat3 signaling pathways, thereby improving fibrosis. Further, in vivo studies demonstrated that CA improved renal fibrosis and renal lipid deposition in DKD mice by inhibiting Notch1 and stat3 signaling pathways. Finally, molecular docking experiments showed that the binding energy of CA and NRR1 was -6.6 kcal/mol, which preliminarily predicted the possible action of CA on Notch1 extracellular domain NRR1. CONCLUSION: CA reduces renal lipid accumulation and improves DKD renal fibrosis by inhibiting Notch1 and stat3 signaling pathways.


Subject(s)
Chlorogenic Acid , Diabetic Nephropathies , Fibrosis , Kidney , Lipid Metabolism , Receptor, Notch1 , STAT3 Transcription Factor , Signal Transduction , STAT3 Transcription Factor/metabolism , Receptor, Notch1/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Animals , Signal Transduction/drug effects , Fibrosis/drug therapy , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Humans , Mice , Male , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Lipid Metabolism/drug effects , Molecular Docking Simulation , Mice, Inbred C57BL , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Cell Line
12.
CNS Neurosci Ther ; 30(7): e14826, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973179

ABSTRACT

AIM: We aimed to confirm the inhibitory effect of nicotinamide on fibrotic scar formation following spinal cord injury in mice using functional metabolomics. METHODS: We proposed a novel functional metabolomics strategy to establish correlations between gene expression changes and metabolic phenotypes using integrated multi-omics analysis. Through the integration of quantitative metabolites analysis and assessments of differential gene expression, we identified nicotinamide as a functional metabolite capable of inhibiting fibrotic scar formation and confirmed the effect in vivo using a mouse model of spinal cord injury. Furthermore, to mimic fibrosis models in vitro, primary mouse embryonic fibroblasts and spinal cord fibroblasts were stimulated by TGFß, and the influence of nicotinamide on TGFß-induced fibrosis-associated genes and its underlying mechanism were examined. RESULTS: Administration of nicotinamide led to a reduction in fibrotic lesion area and promoted functional rehabilitation following spinal cord injury. Nicotinamide effectively downregulated the expression of fibrosis genes, including Col1α1, Vimentin, Col4α1, Col1α2, Fn1, and Acta2, by repressing the TGFß/SMADs pathway. CONCLUSION: Our functional metabolomics strategy identified nicotinamide as a metabolite with the potential to inhibit fibrotic scar formation following SCI by suppressing the TGFß/SMADs signaling. This finding provides new therapeutic strategies and new ideas for clinical treatment.


Subject(s)
Cicatrix , Fibrosis , Mice, Inbred C57BL , Niacinamide , Spinal Cord Injuries , Animals , Niacinamide/pharmacology , Niacinamide/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/complications , Cicatrix/drug therapy , Cicatrix/pathology , Cicatrix/metabolism , Cicatrix/prevention & control , Mice , Fibrosis/drug therapy , Transforming Growth Factor beta/metabolism , Metabolomics , Fibroblasts/drug effects , Fibroblasts/metabolism , Cells, Cultured , Disease Models, Animal , Female
13.
Sci Signal ; 17(844): eado5279, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980923

ABSTRACT

In this issue of Science Signaling, Jackson et al. present a new antibody strategy to-quite literally-strap transforming growth factor-ß1 (TGF-ß1) to latent complexes in the extracellular matrix. The antibody has no effect on latent TGF-ß1 presented on the surface of immune cells and thus allows targeting of the detrimental effects of TGF-ß1 in fibrosis without affecting its beneficial immune-suppressing activities.


Subject(s)
Extracellular Matrix , Transforming Growth Factor beta1 , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/immunology , Humans , Extracellular Matrix/metabolism , Extracellular Matrix/immunology , Animals , Fibrosis , Antibodies/immunology , Antibodies/metabolism , Mice
14.
Sci Signal ; 17(844): eadn6052, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980922

ABSTRACT

Inhibitors of the transforming growth factor-ß (TGF-ß) pathway are potentially promising antifibrotic therapies, but nonselective simultaneous inhibition of all three TGF-ß homologs has safety liabilities. TGF-ß1 is noncovalently bound to a latency-associated peptide that is, in turn, covalently bound to different presenting molecules within large latent complexes. The latent TGF-ß-binding proteins (LTBPs) present TGF-ß1 in the extracellular matrix, and TGF-ß1 is presented on immune cells by two transmembrane proteins, glycoprotein A repetitions predominant (GARP) and leucine-rich repeat protein 33 (LRRC33). Here, we describe LTBP-49247, an antibody that selectively bound to and inhibited the activation of TGF-ß1 presented by LTBPs but did not bind to TGF-ß1 presented by GARP or LRRC33. Structural studies demonstrated that LTBP-49247 recognized an epitope on LTBP-presented TGF-ß1 that is not accessible on GARP- or LRRC33-presented TGF-ß1, explaining the antibody's selectivity for LTBP-complexed TGF-ß1. In two rodent models of kidney fibrosis of different etiologies, LTBP-49247 attenuated fibrotic progression, indicating the central role of LTBP-presented TGF-ß1 in renal fibrosis. In mice, LTBP-49247 did not have the toxic effects associated with less selective TGF-ß inhibitors. These results establish the feasibility of selectively targeting LTBP-bound TGF-ß1 as an approach for treating fibrosis.


Subject(s)
Extracellular Matrix , Fibrosis , Latent TGF-beta Binding Proteins , Transforming Growth Factor beta1 , Transforming Growth Factor beta1/metabolism , Animals , Humans , Latent TGF-beta Binding Proteins/metabolism , Latent TGF-beta Binding Proteins/antagonists & inhibitors , Extracellular Matrix/metabolism , Mice , Male , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/drug therapy , Disease Progression , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Mice, Inbred C57BL
15.
Front Immunol ; 15: 1411979, 2024.
Article in English | MEDLINE | ID: mdl-38989288

ABSTRACT

Background: Kawasaki disease (KD), an acute febrile illness and systemic vasculitis, is the leading cause of acquired heart disease in children in industrialized countries. KD leads to the development of coronary artery aneurysms (CAA) in affected children, which may persist for months and even years after the acute phase of the disease. There is an unmet need to characterize the immune and pathological mechanisms of the long-term complications of KD. Methods: We examined cardiovascular complications in the Lactobacillus casei cell wall extract (LCWE) mouse model of KD-like vasculitis over 4 months. The long-term immune, pathological, and functional changes occurring in cardiovascular lesions were characterized by histological examination, flow cytometric analysis, immunofluorescent staining of cardiovascular tissues, and transthoracic echocardiogram. Results: CAA and abdominal aorta dilations were detected up to 16 weeks following LCWE injection and initiation of acute vasculitis. We observed alterations in the composition of circulating immune cell profiles, such as increased monocyte frequencies in the acute phase of the disease and higher counts of neutrophils. We determined a positive correlation between circulating neutrophil and inflammatory monocyte counts and the severity of cardiovascular lesions early after LCWE injection. LCWE-induced KD-like vasculitis was associated with myocarditis and myocardial dysfunction, characterized by diminished ejection fraction and left ventricular remodeling, which worsened over time. We observed extensive fibrosis within the inflamed cardiac tissue early in the disease and myocardial fibrosis in later stages. Conclusion: Our findings indicate that increased circulating neutrophil counts in the acute phase are a reliable predictor of cardiovascular inflammation severity in LCWE-injected mice. Furthermore, long-term cardiac complications stemming from inflammatory cell infiltrations in the aortic root and coronary arteries, myocardial dysfunction, and myocardial fibrosis persist over long periods and are still detected up to 16 weeks after LCWE injection.


Subject(s)
Cell Wall , Disease Models, Animal , Fibrosis , Lacticaseibacillus casei , Mucocutaneous Lymph Node Syndrome , Vasculitis , Animals , Mice , Cell Wall/immunology , Vasculitis/immunology , Vasculitis/etiology , Vasculitis/pathology , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/complications , Male , Myocarditis/etiology , Myocarditis/pathology , Myocarditis/immunology , Inflammation/immunology
16.
Drug Des Devel Ther ; 18: 2693-2712, 2024.
Article in English | MEDLINE | ID: mdl-38974121

ABSTRACT

Background: Chronic kidney disease (CKD) is a significant worldwide health concern that leads to high mortality rates. The bioactive substance costunolide (CTD) has demonstrated several pharmacological effects and holds promise as a CKD treatment. This study aims to investigate the impact of CTD on CKD and delve into its mechanisms of action. Methods: Unilateral ureteral obstruction (UUO) methods and renal fibrosis mice models were created. Various concentrations of CTD were injected into UUO mice models to investigate the therapeutic effects of CTD on renal fibrosis of mice. Then, renal morphology, pathological changes, and the expression of genes related to fibrosis, inflammation and ferroptosis were analysed. RNA sequencing was utilized to identify the main biological processes and pathways involved in renal injury. Finally, both overexpression and inhibition of IKKß were studied to examine their respective effects on fibrosis and inflammation in both in vitro and in vivo models. Results: CTD treatment was found to significantly alleviate fibrosis, inflammation and ferroptosis in UUO-induced renal fibrosis mice models. The results of RNA sequencing suggested that the IKKß acted as key regulatory factor in renal injury and the expression of IKKß was increased in vitro and in vivo renal fibrosis model. Functionally, down-regulated IKKß expression inhibits ferroptosis, inflammatory cytokine production and collagen deposition. Conversely, IKKß overexpression exacerbates progressive renal fibrosis. Mechanistically, CTD alleviated renal fibrosis and inflammation by inhibiting the expression of IKKß and attenuating IKKß/NF-κB pathway. Conclusion: This study demonstrates that CTD could mitigate renal fibrosis, ferroptosis and inflammation in CKD by modulating the IKKß/NF-κB pathway, which indicates targeting IKKß has an enormous potential for treating CKD.


Subject(s)
I-kappa B Kinase , Mice, Inbred C57BL , NF-kappa B , Renal Insufficiency, Chronic , Sesquiterpenes , Animals , I-kappa B Kinase/metabolism , I-kappa B Kinase/antagonists & inhibitors , Mice , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Sesquiterpenes/pharmacology , Male , Disease Models, Animal , Fibrosis/drug therapy , Humans , Ureteral Obstruction/drug therapy , Ureteral Obstruction/metabolism , Signal Transduction/drug effects , Dose-Response Relationship, Drug , Inflammation/drug therapy , Inflammation/metabolism
17.
J Transl Med ; 22(1): 649, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992710

ABSTRACT

BACKGROUND: Renal interstitial fibrosis (RIF) is a progressive, irreversible terminal kidney disease with a poor prognosis and high mortality. Angiopoietin-like 4 (ANGPTL4) is known to be associated with fibrosis in various organs, but its impact on the RIF process remains unclear. This study aimed to elucidate the role and underlying mechanisms of ANGPTL4 in the progression of RIF. METHODS: In vivo, a chronic kidney disease (CKD) rat model of renal interstitial fibrosis was established via intragastric administration of adenine at different time points (4 and 6 weeks). Blood and urine samples were collected to assess renal function and 24-h urinary protein levels. Kidney tissues were subjected to HE and Masson staining for pathological observation. Immunohistochemistry and real-time quantitative PCR (qRT‒PCR) were performed to evaluate the expression of ANGPTL4 and hypoxia-inducible factor-1α (HIF-1α), followed by Pearson correlation analysis. Subsequently, kidney biopsy tissues from 11 CKD patients (6 with RIF and 5 without RIF) were subjected to immunohistochemical staining to validate the expression of ANGPTL4. In vitro, a fibrosis model of human renal tubular epithelial cells (HK2) was established through hypoxic stimulation. Subsequently, an HIF-1α inhibitor (2-MeOE2) was used, and ANGPTL4 was manipulated using siRNA or plasmid overexpression. Changes in ANGPTL4 and fibrosis markers were analyzed through Western blotting, qRT‒PCR, and immunofluorescence. RESULTS: ANGPTL4 was significantly upregulated in the CKD rat model and was significantly positively correlated with renal injury markers, the fibrotic area, and HIF-1α. These results were confirmed by clinical samples, which showed a significant increase in the expression level of ANGPTL4 in CKD patients with RIF, which was positively correlated with HIF-1α. Further in vitro studies indicated that the expression of ANGPTL4 is regulated by HIF-1α, which in turn is subject to negative feedback regulation by ANGPTL4. Moreover, modulation of ANGPTL4 expression influences the progression of fibrosis in HK2 cells. CONCLUSION: Our findings indicate that ANGPTL4 is a key regulatory factor in renal fibrosis, forming a loop with HIF-1α, potentially serving as a novel therapeutic target for RIF.


Subject(s)
Angiopoietin-Like Protein 4 , Fibrosis , Hypoxia-Inducible Factor 1, alpha Subunit , Kidney , Rats, Sprague-Dawley , Animals , Angiopoietin-Like Protein 4/metabolism , Angiopoietin-Like Protein 4/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Humans , Male , Kidney/pathology , Kidney/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Rats , Cell Line , Kidney Diseases/pathology , Kidney Diseases/metabolism , Middle Aged
18.
Cells ; 13(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38994938

ABSTRACT

In Crohn's Disease (CD), intestinal fibrosis is a prevalent yet unresolved complication arising from chronic and transmural inflammation. The histological assessment of CD intestines shows changes in tissue morphology in all the layers, including the mucosa and muscularis. This study aimed to determine the differences in fibrogenesis between mucosa and muscularis. Human precision-cut intestinal slices (hPCIS) were prepared from human intestine mucosa and muscularis and treated with TGF-ß1 and/or PDGF-BB for 72 h. Gene and protein expression and matrix metalloproteinase (MMP) activity were determined. The basal gene expression of various fibrosis markers was higher in muscularis compared to mucosa hPCIS. During incubation, Pro-Collagen-1A1 secretion increased in muscularis but not in mucosa hPCIS. MMP gene expression increased during incubation in mucosa and muscularis hPCIS, except for MMP9, MMP12, and MMP13 in muscularis hPCIS. Incubation with TGF-ß1 caused increased COL1A1 expression in the mucosa but not in muscularis hPCIS. In muscularis hPCIS, TGF-ß1 treatment caused a decrease in MMP1 and CTSK expression, while MMP13 was increased. In the presence of TGF-ß1, protease inhibitor expression was stable, except for SERPINE1, which was increased in muscularis hPCIS. We conclude that fibrogenesis is more pronounced in muscularis hPCIS compared to mucosa hPCIS, especially when stimulated with TGF-ß1.


Subject(s)
Fibrosis , Intestinal Mucosa , Transforming Growth Factor beta1 , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/drug effects , Transforming Growth Factor beta1/metabolism , Collagen Type I, alpha 1 Chain , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Crohn Disease/pathology , Crohn Disease/metabolism , Crohn Disease/genetics , Collagen Type I/metabolism , Collagen Type I/genetics , Muscle, Smooth/metabolism , Muscle, Smooth/pathology , Muscle, Smooth/drug effects , Male , Female , Adult
19.
PLoS One ; 19(7): e0298353, 2024.
Article in English | MEDLINE | ID: mdl-38995910

ABSTRACT

CONTEXT: Nephrotic syndrome(NS) has emerged as a worldwide public health problem. Renal fibrosis is the most common pathological change from NS to end-stage renal failure, seriously affecting the prognosis of renal disease. Although tremendous efforts have been made to treat NS, specific drug therapies to delay the progression of NS toward end-stage renal failure are limited. Epimedium is generally used to treat kidney disease in traditional Chinese medicine. Icariin is a principal active component of Epimedium. METHODS: We used Sprague Dawley rats to establish NS models by injecting doxorubicin through the tail vein. Then icariin and prednisone were intragastric administration. Renal function was examined by an automatic biochemical analyzer. Pathology of the kidney was detected by Hematoxylin-Eosin and Masson staining respectively. Furthermore, RT-PCR, Enzyme-Linked Immunosorbent Assay, Immunohistochemistry, Western Blot and Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling staining were employed to detect the proteins related to pyroptosis and EMT. HK-2 cells exposed to doxorubicin were treated with icariin, and cell viability was assessed using the MTT. EMT was assessed using Enzyme-Linked Immunosorbent Assay and Western Blot. RESULTS: The study showed that icariin significantly improved renal function and renal fibrosis in rats. In addition, icariin effectively decreased NOD-like receptor thermal protein domain associated protein 3,Caspase-1, Gasdermin D, Ly6C, and interleukin (IL)-1ß. Notably, treatment with icariin also inhibited the levels of TGF-ß, α-SMA and E-cadherin. DISCUSSION AND CONCLUSIONS: It is confirmed that icariin can improve renal function and alleviate renal fibrosis by inhibiting pyroptosis and the mechanism may be related to epithelial-to-mesenchymal transition. Icariin treatment might be recommended as a new approach for NS.


Subject(s)
Doxorubicin , Epithelial-Mesenchymal Transition , Flavonoids , Nephrotic Syndrome , Pyroptosis , Rats, Sprague-Dawley , Animals , Flavonoids/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Pyroptosis/drug effects , Rats , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/pathology , Nephrotic Syndrome/metabolism , Male , Doxorubicin/pharmacology , Humans , Fibrosis/drug therapy , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Cell Line , Disease Models, Animal
20.
FASEB J ; 38(14): e23818, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38989572

ABSTRACT

The association between cardiac fibrosis and galectin-3 was evaluated in patients with acute myocardial infarction (MI). The role of galectin-3 and its association with endoplasmic reticulum (ER) stress activation in the progression of cardiovascular fibrosis was also evaluated in obese-infarcted rats. The inhibitor of galectin-3 activity, modified citrus pectin (MCP; 100 mg/kg/day), and the inhibitor of the ER stress activation, 4-phenylbutyric acid (4-PBA; 500 mg/kg/day), were administered for 4 weeks after MI in obese rats. Overweight-obese patients who suffered a first MI showed higher circulating galectin-3 levels, higher extracellular volume, and LV infarcted size, as well as lower E/e'ratio and LVEF compared with normal-weight patients. A correlation was observed between galectin-3 levels and extracellular volume. Obese-infarcted animals presented cardiac hypertrophy and reduction in LVEF, and E/A ratio as compared with control animals. They also showed an increase in galectin-3 gene expression, as well as cardiac fibrosis and reduced autophagic flux. These alterations were associated with ER stress activation characterized by enhanced cardiac levels of binding immunoglobulin protein, which were correlated with those of galectin-3. Both MCP and 4-PBA not only reduced cardiac fibrosis, oxidative stress, galectin-3 levels, and ER stress activation, but also prevented cardiac functional alterations and ameliorated autophagic flux. These results show the relevant role of galectin-3 in the development of diffuse fibrosis associated with MI in the context of obesity in both the animal model and patients. Galectin-3 in tandem with ER stress activation could modulate different downstream mechanisms, including inflammation, oxidative stress, and autophagy.


Subject(s)
Endoplasmic Reticulum Stress , Galectin 3 , Obesity , Animals , Galectin 3/metabolism , Obesity/metabolism , Obesity/complications , Male , Rats , Humans , Pectins/pharmacology , Middle Aged , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/complications , Female , Fibrosis , Rats, Wistar , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Phenylbutyrates/pharmacology , Autophagy , Myocardium/metabolism , Myocardium/pathology , Galectins/metabolism , Aged , Blood Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...