Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.629
Filter
1.
PLoS One ; 19(5): e0298864, 2024.
Article in English | MEDLINE | ID: mdl-38753630

ABSTRACT

Fibrotic remodeling is the primary driver of functional loss in chronic kidney disease, with no specific anti-fibrotic agent available for clinical use. Transglutaminase 2 (TG2), a wound response enzyme that irreversibly crosslinks extracellular matrix proteins causing dysregulation of extracellular matrix turnover, is a well-characterized anti-fibrotic target in the kidney. We describe the humanization and characterization of two anti-TG2 monoclonal antibodies (zampilimab [hDC1/UCB7858] and BB7) that inhibit crosslinking by TG2 in human in vitro and rabbit/cynomolgus monkey in vivo models of chronic kidney disease. Determination of zampilimab half-maximal inhibitory concentration (IC50) against recombinant human TG2 was undertaken using the KxD assay and determination of dissociation constant (Kd) by surface plasmon resonance. Efficacy in vitro was established using a primary human renal epithelial cell model of tubulointerstitial fibrosis, to assess mature deposited extracellular matrix proteins. Proof of concept in vivo used a cynomolgus monkey unilateral ureteral obstruction model of chronic kidney disease. Zampilimab inhibited TG2 crosslinking transamidation activity with an IC50 of 0.25 nM and Kd of <50 pM. In cell culture, zampilimab inhibited extracellular TG2 activity (IC50 119 nM) and dramatically reduced transforming growth factor-ß1-driven accumulation of multiple extracellular matrix proteins including collagens I, III, IV, V, and fibronectin. Intravenous administration of BB7 in rabbits resulted in a 68% reduction in fibrotic index at Day 25 post-unilateral ureteral obstruction. Weekly intravenous administration of zampilimab in cynomolgus monkeys with unilateral ureteral obstruction reduced fibrosis at 4 weeks by >50%, with no safety signals. Our data support the clinical investigation of zampilimab for the treatment of kidney fibrosis.


Subject(s)
Disease Models, Animal , Fibrosis , GTP-Binding Proteins , Macaca fascicularis , Protein Glutamine gamma Glutamyltransferase 2 , Renal Insufficiency, Chronic , Transglutaminases , Animals , Humans , Fibrosis/drug therapy , Rabbits , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/pathology , Transglutaminases/antagonists & inhibitors , Transglutaminases/metabolism , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , Male , Kidney/pathology , Kidney/drug effects , Kidney/metabolism
2.
J Tradit Chin Med ; 44(3): 448-457, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767628

ABSTRACT

OBJECTIVE: Exploring the effect of Optimized New Shengmai powder (, ONSMP) on myocardial fibrosis in heart failure (HF) based on rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway. METHODS: Randomized 70 Sprague-Dawley rats into sham (n = 10) and operation (n = 60) groups, then established the HF rat by ligating the left anterior descending branch of the coronary artery. We randomly divided the operation group rats into the model, ONSMP [including low (L), medium (M), and high (H) dose], and enalapril groups. After the 4-week drug intervention, echocardiography examines the cardiac function and calculates the ratios of the whole/left heart to the rat's body weight. Finally, we observed the degree of myocardial fibrosis by pathological sections, determined myocardium collagen (COL) I and COL Ⅲ content by enzyme-linked immunosorbent assay, detected the mRNA levels of COL I, COL Ⅲ, α-smooth muscle actin (α-SMA), and c-Fos proto-oncogene (c-Fos) by universal real-time, and detected the protein expression of p-RAS, p-RAF, p-MEK1/2, p-ERK1/2, p-ETS-like-1 transcription factor (p-ELK1), p-c-Fos, α-SMA, COL I, and COL Ⅲ by Western blot. RESULTS: ONSMP can effectively improve HF rat's cardiac function, decrease cardiac organ coefficient, COL volume fraction, and COL I/Ⅲ content, down-regulate the mRNA of COL I/Ⅲ, α-SMA and c-Fos, and the protein of p-RAS, p-RAF, p-MEK1/ 2, p-ERK1/2, p-ELK1, c-Fos, COL Ⅰ/Ⅲ, and α-SMA. CONCLUSIONS: ONSMP can effectively reduce myocardial fibrosis in HF rats, and the mechanism may be related to the inhibition of the RAS/RAF/MEK/ERK signaling pathway.


Subject(s)
Drug Combinations , Drugs, Chinese Herbal , Fibrosis , Heart Failure , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/administration & dosage , Rats , Heart Failure/drug therapy , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Failure/etiology , Male , Fibrosis/drug therapy , Humans , Myocardium/metabolism , Myocardium/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Signal Transduction/drug effects , Sarcoma/drug therapy , Sarcoma/genetics , Sarcoma/metabolism
3.
Sci Rep ; 14(1): 9976, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693148

ABSTRACT

Inflammation and fibrosis often occur in the kidney after acute injury, resulting in chronic kidney disease and consequent renal failure. Recent studies have indicated that lymphangiogenesis can drive renal inflammation and fibrosis in injured kidneys. However, whether and how this pathogenesis affects the contralateral kidney remain largely unknown. In our study, we uncovered a mechanism by which the contralateral kidney responded to injury. We found that the activation of mineralocorticoid receptors and the increase in vascular endothelial growth factor C in the contralateral kidney after unilateral ureteral obstruction could promote lymphangiogenesis. Furthermore, mineralocorticoid receptor activation in lymphatic endothelial cells resulted in the secretion of myofibroblast markers, thereby contributing to renal fibrosis. We observed that this process could be attenuated by administering the mineralocorticoid receptor blocker eplerenone, which, prevented the development of fibrotic injury in the contralateral kidneys of rats with unilateral ureteral obstruction. These findings offer valuable insights into the intricate mechanisms underlying kidney injury and may have implications for the development of therapeutic strategies to mitigate renal fibrosis in the context of kidney disease.


Subject(s)
Eplerenone , Fibrosis , Kidney , Lymphangiogenesis , Mineralocorticoid Receptor Antagonists , Ureteral Obstruction , Animals , Eplerenone/pharmacology , Lymphangiogenesis/drug effects , Rats , Fibrosis/drug therapy , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Ureteral Obstruction/drug therapy , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology , Ureteral Obstruction/complications , Mineralocorticoid Receptor Antagonists/pharmacology , Male , Receptors, Mineralocorticoid/metabolism , Spironolactone/analogs & derivatives , Spironolactone/pharmacology , Vascular Endothelial Growth Factor C/metabolism , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Rats, Sprague-Dawley , Myofibroblasts/metabolism , Myofibroblasts/drug effects , Myofibroblasts/pathology
4.
Phytomedicine ; 129: 155646, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733903

ABSTRACT

BACKGROUND: Astragalus membranaceus (AM) shows potential therapeutic benefits for managing diabetic kidney disease (DKD), a leading cause of kidney failure with no cure. However, its comprehensive effects on renal outcomes and plausible mechanisms remain unclear. PURPOSE: This systematic review and meta-analysis aimed to synthesize the effects and mechanisms of AM on renal outcomes in DKD animal models. METHODS: Seven electronic databases were searched for animal studies until September 2023. Risk of bias was assessed based on SYRCLE's Risk of Bias tool. Standardized mean difference (SMD) or mean difference (MD) were estimated for the effects of AM on serum creatinine (SCr), blood urea nitrogen (BUN), albuminuria, histological changes, oxidative stress, inflammation, fibrosis and glucolipids. Effects were pooled using random-effects models. Heterogeneity was presented as I2. Subgroup analysis investigated treatment- and animal-related factors for renal outcomes. Publication bias was assessed using funnel plots and Egger's test. Sensitivity analysis was performed to assess the results' robustness. RevMan 5.3 and Stata MP 15 software were used for statistical analysis. RESULTS: Forty studies involving 1543 animals were identified for analysis. AM treatment significantly decreased SCr (MD = -19.12 µmol/l, 95 % CI: -25.02 to -13.23), BUN (MD = -6.72 mmol/l, 95 % CI: -9.32 to -4.12), urinary albumin excretion rate (SMD = -2.74, 95 % CI: -3.57, -1.90), histological changes (SMD = -2.25, 95 % CI: -3.19 to -1.32). AM treatment significantly improved anti-oxidative stress expression (SMD = 1.69, 95 % CI: 0.97 to 2.41), and decreased inflammation biomarkers (SMD = -3.58, 95 % CI: -5.21 to -1.95). AM treatment also decreased fibrosis markers (i.e. TGF-ß1, CTGF, collagen IV, Wnt4 and ß-catenin) and increased anti-fibrosis marker BMP-7. Blood glucose, lipids and kidney size were also improved compared with the DM control group. CONCLUSION: AM could improve renal outcomes and alleviate injury through multiple signaling pathways. This indicates AM may be an option to consider for the development of future DKD therapeutics.


Subject(s)
Astragalus propinquus , Diabetic Nephropathies , Disease Models, Animal , Oxidative Stress , Diabetic Nephropathies/drug therapy , Animals , Astragalus propinquus/chemistry , Oxidative Stress/drug effects , Kidney/drug effects , Kidney/pathology , Fibrosis/drug therapy , Plant Extracts/pharmacology , Creatinine/blood , Blood Urea Nitrogen , Albuminuria/drug therapy
5.
Eur J Histochem ; 68(2)2024 May 13.
Article in English | MEDLINE | ID: mdl-38742403

ABSTRACT

Chronic kidney disease (CKD) is a leading public health issue associated with high morbidity worldwide. However, there are only a few effective therapeutic strategies for CKD. Emodin, an anthraquinone compound from rhubarb, can inhibit fibrosis in tissues and cells. Our study aims to investigate the antifibrotic effect of emodin and the underlying molecular mechanism. A unilateral ureteral obstruction (UUO)-induced rat model was established to evaluate the effect of emodin on renal fibrosis development. Hematoxylin and eosin staining, Masson's trichrome staining, and immunohistochemistry staining were performed to analyze histopathological changes and fibrotic features after emodin treatment. Subsequently, a transforming growth factor-beta 1 (TGF-ß1)-induced cell model was used to assess the inhibition of emodin on cell fibrosis in vitro. Furthermore, Western blot analysis and real-time quantitative reverse transcription-polymerase chain reaction were performed to validate the regulatory mechanism of emodin on renal fibrosis progression. As a result, emodin significantly improved histopathological abnormalities in rats with UUO. The expression of fibrosis biomarkers and mitochondrial biogenesis-related proteins also decreased after emodin treatment. Moreover, emodin blocked TGF-ß1-induced fibrotic phenotype, lipid accumulation, and mitochondrial homeostasis in NRK-52E cells. Conversely, peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α) silencing significantly reversed these features in emodin-treated cells. Collectively, emodin plays an important role in regulating PGC-1α-mediated mitochondria function and energy homeostasis. This indicates that emodin exhibits great inhibition against renal fibrosis and acts as a promising inhibitor of CKD.


Subject(s)
Emodin , Fibrosis , Mitochondria , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Renal Insufficiency, Chronic , Animals , Emodin/pharmacology , Emodin/therapeutic use , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Fibrosis/drug therapy , Mitochondria/drug effects , Mitochondria/metabolism , Male , Rats , Rats, Sprague-Dawley , Homeostasis/drug effects , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Ureteral Obstruction/pathology , Ureteral Obstruction/drug therapy , Transforming Growth Factor beta1/metabolism , Cell Line
6.
ACS Nano ; 18(21): 13583-13598, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38740518

ABSTRACT

A significant gap exists in the demand for safe and effective drugs for inflammatory bowel disease (IBD), and its associated intestinal fibrosis. As oxidative stress plays a central role in the pathogenesis of IBD, astaxanthin (AST), a good antioxidant with high safety, holds promise for treating IBD. However, the application of AST is restricted by its poor solubility and easy oxidation. Herein, different protein-based nanoparticles (NPs) are fabricated for AST loading to identify an oral nanovehicle with potential clinical applicability. Through systematic validation via molecular dynamics simulation and in vitro characterization of properties, whey protein isolate (WPI)-driven NPs using a simple preparation method without the need for cross-linking agents or emulsifiers were identified as the optimal carrier for oral AST delivery. Upon oral administration, the WPI-driven NPs, benefiting from the intrinsic pH sensitivity and mucoadhesive properties, effectively shielded AST from degradation by gastric juices and targeted release of AST at intestinal lesion sites. Additionally, the AST NPs displayed potent therapeutic efficacy in both dextran sulfate sodium (DSS)-induced acute colitis and chronic colitis-associated intestinal fibrosis by ameliorating inflammation, oxidative damage, and intestinal microecology. In conclusion, the AST WPI NPs hold a potential therapeutic value in treating inflammation and fibrosis in IBD.


Subject(s)
Inflammatory Bowel Diseases , Nanoparticles , Prebiotics , Reactive Oxygen Species , Whey Proteins , Whey Proteins/chemistry , Whey Proteins/pharmacology , Animals , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/pathology , Reactive Oxygen Species/metabolism , Administration, Oral , Nanoparticles/chemistry , Prebiotics/administration & dosage , Fibrosis/drug therapy , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Mice , Xanthophylls/pharmacology , Xanthophylls/chemistry , Xanthophylls/administration & dosage , Dextran Sulfate , Mice, Inbred C57BL , Male , Antioxidants/chemistry , Antioxidants/pharmacology , Humans
7.
Med ; 5(5): 386-400, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38574740

ABSTRACT

The pivotal role of TL1A in modulating immune pathways crucial for inflammatory bowel disease (IBD) and intestinal fibrosis offers a promising therapeutic target. Phase 2 trials (TUSCANY and ARTEMIS-UC) evaluating an anti-TL1A antibody show progress in expanding IBD therapeutic options. First-in-human data reveal reduced expression of genes associated with extracellular matrix remodeling and fibrosis post-anti-TL1A treatment. Investigational drug TEV-48574, potentially exerting dual antifibrotic and anti-inflammatory effects, is undergoing a phase 2 basket study in both ulcerative colitis (UC) and Crohn disease (CD). Results are eagerly awaited, marking advancements in IBD therapeutics. This critical review comprehensively examines the existing literature, illuminating TL1A and the intricate role of DR3 in IBD, emphasizing the evolving therapeutic landscape and ongoing clinical trials, with potential implications for more effective IBD management.


Subject(s)
Fibrosis , Inflammatory Bowel Diseases , Tumor Necrosis Factor Ligand Superfamily Member 15 , Humans , Fibrosis/drug therapy , Tumor Necrosis Factor Ligand Superfamily Member 15/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 15/genetics , Tumor Necrosis Factor Ligand Superfamily Member 15/antagonists & inhibitors , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Inflammation/drug therapy , Inflammation/immunology , Crohn Disease/drug therapy , Crohn Disease/immunology , Crohn Disease/pathology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Colitis, Ulcerative/pathology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
8.
Biomed Pharmacother ; 174: 116589, 2024 May.
Article in English | MEDLINE | ID: mdl-38636400

ABSTRACT

Diabetic cardiomyopathy (DCM) is a common severe complication of diabetes that occurs independently of hypertension, coronary artery disease, and valvular cardiomyopathy, eventually leading to heart failure. Previous studies have reported that Tectorigenin (TEC) possesses extensive anti-inflammatory and anti-oxidative stress properties. In this present study, the impact of TEC on diabetic cardiomyopathy was examined. The model of DCM in mice was established with the combination of a high-fat diet and STZ treatment. Remarkably, TEC treatment significantly attenuated cardiac fibrosis and improved cardiac dysfunction. Concurrently, TEC was also found to mitigate hyperglycemia and hyperlipidemia in the DCM mouse. At the molecular level, TEC is involved in the activation of AMPK, both in vitro and in vivo, by enhancing its phosphorylation. This is achieved through the regulation of endothelial-mesenchymal transition via the AMPK/TGFß/Smad3 pathway. Furthermore, it was demonstrated that the level of ubiquitination of the adiponectin receptor 1 (AdipoR1) protein is associated with TEC-mediated improvement of cardiac dysfunction in DCM mice. Notably the substantial reduction of myocardial fibrosis. In conclusion, TEC improves cardiac fibrosis in DCM mice by modulating the AdipoR1/AMPK signaling pathway. These findings suggest that TEC could be an effective therapeutic agent for the treatment of diabetic cardiomyopathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Isoflavones , Animals , Mice , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/etiology , Diet, High-Fat/adverse effects , Epithelial-Mesenchymal Transition/drug effects , Fibrosis/drug therapy , Isoflavones/pharmacology , Isoflavones/therapeutic use , Mice, Inbred C57BL , Myocardium/pathology , Myocardium/metabolism , Receptors, Adiponectin/drug effects , Receptors, Adiponectin/metabolism , Signal Transduction/drug effects , Smad3 Protein/metabolism , Streptozocin
9.
Iran J Kidney Dis ; 18(2): 87-98, 2024 03.
Article in English | MEDLINE | ID: mdl-38660700

ABSTRACT

INTRODUCTION: One of the most significant clinical features of chronic  kidney disease is renal interstitial fibrosis (RIF). This study aimed  to investigate the role and mechanism of Shenqi Pill (SQP) on RIF. METHODS: RIF model was established by conducting unilateral  ureteral obstruction (UUO) surgery on rat or stimulating human  kidney-2 (HK-2) cell with transforming growth factor ß1 (TGFß1).  After modeling, the rats in the SQP low dose group (SQP-L), SQP  middle dose group (SQP-M) and SQP high dose group (SQP-H)  were treated with SQP at 1.5, 3 or 6 g/kg/d, and the cells in the  TGFß1+SQP-L/M/H were treated with 2.5%, 5%, 10% SQP-containing  serum. In in vivo assays, serum creatinine (SCr) and blood urea  nitrogen (BUN) content were measured, kidney histopathology  was evaluated., and α-smooth muscle actin (α-SMA) expression  was detected by immunohistochemistry. Interleukin-1ß (IL-1ß),  interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) content,  inhibitor of kappa B alpha (IKBα) and P65 phosphorylation were  assessed. Meanwhile, cell viability, inflammatory cytokines content,  α-SMA expression, IKBα and P65 phosphorylation were detected  in vitro experiment.  Results. SQP exhibited reno-protective effect by decreasing SCr  and BUN content, improving renal interstitial damage, blunting  fibronectin (FN) and α-SMA expression in RIF rats. Similarly, after  the treatment with SQP-containing serum, viability and α-SMA  expression were remarkably decreased in TGFß1-stimulated HK-2  cell. Furthermore, SQP markedly down-regulated IL-1ß, IL-6, and  TNF-α content, IKBα and RelA (P65) phosphorylation both in vivo and in vitro.  Conclusion. SQP has a reno-protective effect against RIF in vivo and in vitro, and the effect is partly linked to nuclear factor-kappa  B (NF-κB) pathway related inflammatory response, which indicates  that SQP may be a candidate drug for RIF. DOI: 10.52547/ijkd.7546.


Subject(s)
Disease Models, Animal , Drugs, Chinese Herbal , Fibrosis , Kidney , NF-kappa B , Animals , Humans , Rats , Actins/metabolism , Blood Urea Nitrogen , Cell Line , Creatinine/blood , Cytokines/metabolism , Drugs, Chinese Herbal/pharmacology , Fibrosis/drug therapy , Fibrosis/metabolism , Fibrosis/pathology , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , NF-kappa B/drug effects , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/metabolism , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/drug therapy , Transforming Growth Factor beta1/metabolism , Ureteral Obstruction/pathology , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy
10.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 231-236, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678601

ABSTRACT

Epidural fibrosis (EF) is a chronic, progressive and severe disease. Histone deacetylase 6 (HDAC6) regulates biological signals and cell activities by deacetylating lysine residues and participates in TGF-ß-induced epithelial-mesenchymal transition (EMT). Nevertheless, the effect and mechanism of HDAC6 in EF remain unclear. To investigate the effect and mechanism of HDAC6 inhibition on repressing epidural fibrosis. HDAC6 expression and α-smooth muscle actin (α-SMA) in normal human tissue and human EF tissue were assessed by quantitative real-time PCR (qRT-PCR) and western blotting. Human fibroblasts were treated with TGF-ß ± HDAC6 inhibitors (Tubastatin) and fibrotic markers including collagen I, collagen III, α-SMA and fibronectin were assessed using western blotting. Then TGFß1 receptor (TGFß1-R), PI3K and Akt were analyzed using qRT-PCR and western blotting. Rats were undergone laminectomy± Tubastatin (intraperitoneally injection; daily for 7 days) and epidural scar extracellular matrix (ECM) expression was gauged using immunoblots. Increasing HDAC6 expression was associated with α-SMA enrichment. Tubastatin remarkably restrained TGF-ß-induced level of collagen and ECM deposition in human fibroblasts, and the discovery was accompanied by decreased PI3K and Akt phosphorylation. Moreover, Tubastatin also inhibited TGF-ß-mediated HIF-1α and VEGF expression. In the epidural fibrosis model, we found that Tubastatin weakened scar hyperplasia and collagen deposition, and effectively inhibited the process of epidural fibrosis. These results indicated that Tubastatin inhibited HDAC6 expression and decreased TGF-ß/ PI3K/ Akt pathway that promotes collagen and ECM deposition and VEGF release, leading reduction of myofibroblast activation. Hence, Tubastatin ameliorated epidural fibrosis development.


Subject(s)
Fibroblasts , Fibrosis , Histone Deacetylase 6 , Hydroxamic Acids , Signal Transduction , Animals , Humans , Male , Rats , Actins/metabolism , Epidural Space/pathology , Epidural Space/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibrosis/drug therapy , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/antagonists & inhibitors , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Transforming Growth Factor beta/drug effects , Transforming Growth Factor beta/metabolism
11.
Adv Drug Deliv Rev ; 209: 115303, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588958

ABSTRACT

Fibronectin (FN) is a critical component of the extracellular matrix (ECM) contributing to various physiological processes, including tissue repair and immune response regulation. FN regulates various cellular functions such as adhesion, proliferation, migration, differentiation, and cytokine release. Alterations in FN expression, deposition, and molecular structure can profoundly impact its interaction with other ECM proteins, growth factors, cells, and associated signaling pathways, thus influencing the progress of diseases such as fibrosis and autoimmune disorders. Therefore, developing therapeutics that directly target FN or its interaction with cells and other ECM components can be an intriguing approach to address autoimmune and fibrosis pathogenesis.


Subject(s)
Fibronectins , Fibrosis , Humans , Fibronectins/metabolism , Fibrosis/drug therapy , Animals , Autoimmunity , Autoimmune Diseases/drug therapy , Drug Delivery Systems , Extracellular Matrix/metabolism
12.
ACS Appl Bio Mater ; 7(5): 3258-3270, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38593039

ABSTRACT

Reliable in vitro models closely resembling native tissue are urgently needed for disease modeling and drug screening applications. Recently, conductive biomaterials have received increasing attention in the development of in vitro models as they permit exogenous electrical signals to guide cells toward a desired cellular response. Interestingly, they have demonstrated that they promote cellular proliferation and adhesion even without external electrical stimulation. This paper describes the development of a conductive, fully synthetic hydrogel based on hybrids of the peptide-modified polyisocyanide (PIC-RGD) and the relatively conductive poly(aniline-co-N-(4-sulfophenyl)aniline) (PASA) and its suitability as the in vitro matrix. We demonstrate that incorporating PASA enhances the PIC-RGD hydrogel's electroactive nature without significantly altering the fibrous architecture and nonlinear mechanics of the PIC-RGD network. The biocompatibility of our model was assessed through phenotyping cultured human foreskin fibroblasts (HFF) and murine C2C12 myoblasts. Immunofluorescence analysis revealed that PIC-PASA hydrogels inhibit the fibrotic behavior of HFFs while promoting myogenesis in C2C12 cells without electrical stimulation. The composite PIC-PASA hydrogel can actively change the cell fate of different cell types, providing an attractive tool to improve skin and muscle repair.


Subject(s)
Biocompatible Materials , Hydrogels , Materials Testing , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Animals , Mice , Muscle Development/drug effects , Fibrosis/drug therapy , Particle Size , Fibroblasts/drug effects , Cell Line , Molecular Structure , Cell Proliferation/drug effects , Electric Conductivity
13.
J Nat Med ; 78(3): 722-731, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38683298

ABSTRACT

We previously demonstrated that ginsenoside Re (G-Re) has protective effects on acute kidney injury. However, the underlying mechanism is still unclear. In this study, we conducted a meta-analysis and pathway enrichment analysis of all published transcriptome data to identify differentially expressed genes (DEGs) and pathways of G-Re treatment. We then performed in vitro studies to measure the identified autophagy and fibrosis markers in HK2 cells. In vivo studies were conducted using ureteric obstruction (UUO) and aristolochic acid nephropathy (AAN) models to evaluate the effects of G-Re on autophagy and kidney fibrosis. Our informatics analysis identified autophagy-related pathways enriched for G-Re treatment. Treatment with G-Re in HK2 cells reduced autophagy and mRNA levels of profibrosis markers with TGF-ß stimulation. In addition, induction of autophagy with PP242 neutralized the anti-fibrotic effects of G-Re. In murine models with UUO and AAN, treatment with G-Re significantly improved renal function and reduced the upregulation of autophagy and profibrotic markers. A combination of informatics analysis and biological experiments confirmed that ginsenoside Re could improve renal fibrosis and kidney function through the regulation of autophagy. These findings provide important insights into the mechanisms of G-Re's protective effects in kidney injuries.


Subject(s)
Autophagy , Fibrosis , Ginsenosides , Kidney , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Autophagy/drug effects , Animals , Fibrosis/drug therapy , Mice , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Humans , Kidney Diseases/drug therapy , Male , Cell Line , Acute Kidney Injury/drug therapy , Mice, Inbred C57BL , Disease Models, Animal , Ureteral Obstruction/drug therapy
14.
Asian Pac J Cancer Prev ; 25(4): 1349-1355, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38679996

ABSTRACT

BACKGROUND: Baicalin is a flavonoid obtained from the Chinese herb Scutellaria baicalensis, which has a wide varieties of health benefits and scope to be studied for its therapeutic potential in oral fibrosis. AIM: The aim of the study was to investigate the antifibrotic effect of a Baicalin in arecoline induced human oral fibroblast in vitro setting. MATERIAL AND METHODS: Arecoline and ethanolic extracts of Baicalin were commercially purchased from Sigma-Aldrich. Human oral fibroblasts were cultured and characterized with specific fibroblast markers, and cells were stimulated with arecoline. An MTT assay (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) was executed to determine the half-maximal inhibitory concentration of arecoline and Baicalin. Arecoline-induced cells (25µg/ml) were treated with a non-toxic dose of Baicalin (proliferative dose of 25µg/ml). Cytokine (CCL2, CXCL-8, IL17, IL-beta, and IL-6) and fibrotic marker genes were studied by reverse transcription-polymerase chain reaction (RT-PCR). The inhibitory effect of Baicalin was studied to prove its antifibrotic properties. RESULTS: Arecoline significantly upregulated all inflammatory and fibrotic markers. On treatment with 25µg/ml of Baicalin, all inflammatory and fibrotic markers were inhibited. Arecoline affects fibroblast morphology, supporting the fact that arecoline is cytotoxic to cells. CONCLUSION: Baicalin can be used as an antifibrotic herb to treat OSMF.


Subject(s)
Arecoline , Fibroblasts , Flavonoids , Flavonoids/pharmacology , Humans , Fibroblasts/drug effects , Fibroblasts/metabolism , Arecoline/pharmacology , Cells, Cultured , Cell Proliferation/drug effects , Cytokines/metabolism , Fibrosis/drug therapy , In Vitro Techniques , Scutellaria baicalensis/chemistry , Antifibrotic Agents/pharmacology
15.
Exp Eye Res ; 242: 109884, 2024 May.
Article in English | MEDLINE | ID: mdl-38570181

ABSTRACT

Recent studies in rabbits and case reports in humans have demonstrated the efficacy of topical losartan in the treatment of corneal scarring fibrosis after a wide range of injuries, including chemical burns, infections, surgical complications, and some diseases. It is hypothesized that the effect of losartan on the fibrotic corneal stroma occurs through a two-phase process in which losartan first triggers the elimination of myofibroblasts by directing their apoptosis via inhibition of extracellular signal-regulated kinase (ERK)-mediated signal transduction, and possibly through signaling effects on the viability and development of corneal fibroblast and fibrocyte myofibroblast precursor cells. This first step likely occurs within a week or two in most corneas with fibrosis treated with topical losartan, but the medication must be continued for much longer until the epithelial basement membrane (EBM) is fully regenerated or new myofibroblasts will develop from precursor cells. Once the myofibroblasts are eliminated from the fibrotic stroma, corneal fibroblasts can migrate into the fibrotic tissue and reabsorb/reorganize the disordered extracellular matrix (ECM) previously produced by the myofibroblasts. This second stage is longer and more variable in different eyes of rabbits and humans, and accounts for most of the variability in the time it takes for the stromal opacity to be markedly reduced by topical losartan treatment. Eventually, keratocytes reemerge in the previously fibrotic stromal tissue to fine-tune the collagens and other ECM components and maintain the normal structure of the corneal stroma. The efficacy of losartan in the prevention and treatment of corneal fibrosis suggests that it acts as a surrogate for the EBM, by suppressing TGF beta-directed scarring of the wounded corneal stroma, until control over TGF beta action is re-established by a healed EBM, while also supporting regeneration of the EBM by allowing corneal fibroblasts to occupy the subepithelial stroma in the place of myofibroblasts.


Subject(s)
Corneal Stroma , Fibrosis , Losartan , Myofibroblasts , Losartan/therapeutic use , Corneal Stroma/drug effects , Corneal Stroma/metabolism , Corneal Stroma/pathology , Fibrosis/drug therapy , Humans , Animals , Myofibroblasts/pathology , Myofibroblasts/drug effects , Rabbits , Corneal Diseases/drug therapy , Corneal Diseases/pathology , Angiotensin II Type 1 Receptor Blockers , Administration, Topical
16.
Turk Neurosurg ; 34(3): 435-440, 2024.
Article in English | MEDLINE | ID: mdl-38650558

ABSTRACT

AIM: To investigate the effectiveness of local halofuginone application for spinal epidural fibrosis (EF) after lumbar laminectomy in rats. MATERIAL AND METHODS: Forty rats were equally divided into four groups (Groups I-IV; 10 rats in each group), and lumbar laminectomy was performed under general anesthesia. After laminectomy, Group I received saline (NaCl 0.9%) locally (control), Group II received spongostan, Group III received 0.5 mL of halofuginone-impregnated spongostan, and Group IV received 0.5 mL of halofuginone. Spongostan was used to prolong the exposure period of halofuginone. All rats were sacrificed after four weeks and evaluated according to histopathological criteria. A p-value of < 0.05 was considered statistically significant. RESULTS: Fibrosis was significantly lower in Group IV than in Group I (p < 0.05). There was no significant difference in fibrosis between Group II/III and Group I. It was observed that spongostan increased fibrosis. CONCLUSION: Halofuginone helps prevent EF after spinal surgery. However, further clinical and experimental studies are needed to assess its safety in humans.


Subject(s)
Epidural Space , Fibrosis , Laminectomy , Piperidines , Quinazolinones , Animals , Fibrosis/drug therapy , Rats , Piperidines/administration & dosage , Laminectomy/adverse effects , Quinazolinones/administration & dosage , Quinazolinones/therapeutic use , Epidural Space/pathology , Male , Postoperative Complications/drug therapy , Lumbar Vertebrae/surgery , Disease Models, Animal , Rats, Sprague-Dawley
17.
Adv Drug Deliv Rev ; 209: 115317, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642593

ABSTRACT

Fibrotic diseases are characterised by myofibroblast differentiation, uncontrolled pathological extracellular matrix accumulation, tissue contraction, scar formation and, ultimately tissue / organ dysfunction. The cornea, the transparent tissue located on the anterior chamber of the eye, is extremely susceptible to fibrotic diseases, which cause loss of corneal transparency and are often associated with blindness. Although topical corticosteroids and antimetabolites are extensively used in the management of corneal fibrosis, they are associated with glaucoma, cataract formation, corneoscleral melting and infection, imposing the need of far more effective therapies. Herein, we summarise and discuss shortfalls and recent advances in in vitro models (e.g. transforming growth factor-ß (TGF-ß) / ascorbic acid / interleukin (IL) induced) and drug (e.g. TGF-ß inhibitors, epigenetic modulators) and gene (e.g. gene editing, gene silencing) therapeutic strategies in the corneal fibrosis context. Emerging therapeutical agents (e.g. neutralising antibodies, ligand traps, receptor kinase inhibitors, antisense oligonucleotides) that have shown promise in clinical setting but have not yet assessed in corneal fibrosis context are also discussed.


Subject(s)
Corneal Diseases , Fibrosis , Humans , Fibrosis/drug therapy , Corneal Diseases/drug therapy , Corneal Diseases/metabolism , Corneal Diseases/pathology , Animals , Genetic Therapy/methods , Cornea/metabolism , Cornea/pathology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/antagonists & inhibitors
18.
Mol Med ; 30(1): 52, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641575

ABSTRACT

BACKGROUND: Skin fibrosis affects the normal function of the skin. TGF-ß1 is a key cytokine that affects organ fibrosis. The latency-associated peptide (LAP) is essential for TGF-ß1 activation. We previously constructed and prepared truncated LAP (tLAP), and confirmed that tLAP inhibited liver fibrosis by affecting TGF-ß1. SPACE peptide has both transdermal and transmembrane functions. SPACE promotes the delivery of macromolecules through the stratum corneum into the dermis. This study aimed to alleviate skin fibrosis through the delivery of tLAP by SPACE. METHODS: The SPACE-tLAP (SE-tLAP) recombinant plasmid was constructed. SE-tLAP was purified by nickel affinity chromatography. The effects of SE-tLAP on the proliferation, migration, and expression of fibrosis-related and inflammatory factors were evaluated in TGF-ß1-induced NIH-3T3 cells. F127-SE-tLAP hydrogel was constructed by using F127 as a carrier to load SE-tLAP polypeptide. The degradation, drug release, and biocompatibility of F127-SE-tLAP were evaluated. Bleomycin was used to induce skin fibrosis in mice. HE, Masson, and immunohistochemistry were used to observe the skin histological characteristics. RESULTS: SE-tLAP inhibited the proliferation, migration, and expression of fibrosis-related and inflammatory factors in NIH-3T3 cells. F127-SE-tLAP significantly reduced ECM production, collagen deposition, and fibrotic pathological changes, thereby alleviating skin fibrosis. CONCLUSION: F127-SE-tLAP could increase the transdermal delivery of LAP, reduce the production and deposition of ECM, inhibit the formation of dermal collagen fibers, and alleviate the progression of skin fibrosis. It may provide a new idea for the therapy of skin fibrosis.


Subject(s)
Polyethylenes , Polypropylenes , Skin Diseases , Transforming Growth Factor beta , Animals , Mice , Bleomycin/adverse effects , Collagen/metabolism , Fibrosis/drug therapy , Hydrogels/chemistry , Hydrogels/pharmacology , Polyethylenes/pharmacology , Polypropylenes/pharmacology , Signal Transduction , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Skin Diseases/chemically induced , Skin Diseases/drug therapy , Skin Diseases/metabolism , Smad Proteins/drug effects , Smad Proteins/metabolism , Skin/drug effects , Skin/metabolism , Skin/pathology
19.
Mol Biol Rep ; 51(1): 541, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642208

ABSTRACT

BACKGROUND AND PURPOSE: Liver fibrosis is a reversible liver injury that occurs as a result of many chronic inflammatory diseases and can lead to cirrhosis, which is irreversible and fatal. So, we studied the anti-fibrotic effects of saroglitazar on LX-2 cell lines, as a dual PPARα/γ agonist. METHODS: Cells, after 80% confluence, were treated with TGF-ß (2 ng/mL) for 24 h. Then cells were treated with saroglitazar at different doses (2.5, 5, 10 µM) for 24 h. After same incubation, the cells of control group, TGF-ß group, and TGF-ß + saroglitazar group were harvested for RNA and protein extraction to determine the effects of saroglitazar. RT-PCR and western blot methods were used to express genes related to fibrosis. RESULTS: Our results show that the relative expression of α-SMA, collagen1α, N-cadherin, NOX (1, 2, and 4), and phosphorylated Smad3 protein was significantly higher in TGF-ß-treated cells compared with the normal group, and E-cadherin expression was decreased in TGF-ß-treated cells. After TGF-ß-treated cells were exposed to saroglitazar, the expression of these genes was significantly reversed (P < 0.05). CONCLUSIONS: Our results clearly show the short-term inhibitory role of saroglitazar in the expression of fibrotic factors using the TGF-ß/Smad signaling pathway. These results suggest that saroglitazar can be considered as a suitable therapeutic strategy for fibrotic patients. Although more studies are needed.


Subject(s)
Liver Cirrhosis , Phenylpropionates , Pyrroles , Smad3 Protein , Transforming Growth Factor beta , Humans , Cell Line , Fibrosis/drug therapy , Fibrosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Phenylpropionates/pharmacology , Phosphorylation/drug effects , Pyrroles/pharmacology , Signal Transduction/drug effects , Smad3 Protein/genetics , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology
20.
Carbohydr Polym ; 336: 122136, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670762

ABSTRACT

The standard treatment for early-stage breast cancer involves breast-conserving surgery followed by adjuvant radiotherapy. However, approximately 20 % of patients experience distant metastasis, and adjuvant radiotherapy often leads to radiation-induced skin fibrosis (RISF). In this study, we develop an on-site injectable formulation composed of selenocystamine (SeCA) and hyaluronic acid (HyA), referred to as SeCA cross-linked HyA (SCH) agent, and investigate its potential to mitigate metastasis and prevent RISF associated with breast cancer therapy. SCH agents are synthesized using the nanoprecipitation method to modulate cell-cell tight junctions and tissue inflammation. The toxicity assessments reveal that SCH agents with a higher Se content (Se payload 17.4 µg/mL) are well tolerated by L929 cells compared to SeCA (Se payload 3.2 µg/mL). In vitro, SCH agents significantly enhance cell-cell tight junctions and effectively mitigate migration and invasion of breast cancer cells (4T1). In vivo, SCH agents mitigate distant lung metastasis. Furthermore, in animal models, SCH agents reduce RISF and promote wound repair. These findings highlight the potential of SCH agents as a novel therapeutic formulation for effectively mitigating metastasis and reducing RISF. This holds great promise for improving clinical outcomes in breast cancer patients undergoing adjuvant radiotherapy.


Subject(s)
Breast Neoplasms , Fibrosis , Hyaluronic Acid , Hyaluronic Acid/chemistry , Animals , Female , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Mice , Fibrosis/drug therapy , Cell Line, Tumor , Humans , Mice, Inbred BALB C , Cystamine/chemistry , Cystamine/pharmacology , Skin/drug effects , Skin/pathology , Skin/radiation effects , Cell Movement/drug effects , Injections
SELECTION OF CITATIONS
SEARCH DETAIL
...