Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.523
Filter
1.
Drug Des Devel Ther ; 18: 1947-1968, 2024.
Article in English | MEDLINE | ID: mdl-38831870

ABSTRACT

In an era where synthetic supplements have raised concerns regarding their effects on human health, Ficus carica has emerged as a natural alternative rich in polyphenolic compounds with potent therapeutic properties. Various studies on F. carica focusing on the analysis and validation of its pharmacological and nutritional properties are emerging. This paper summarizes present data and information on the phytochemical, nutritional values, therapeutic potential, as well as the toxicity profile of F. carica. An extensive search was conducted from various databases, including PubMed, ScienceDirect, Scopus, and Google Scholar. A total of 126 studies and articles related to F. carica that were published between 1999 and 2023 were included in this review. Remarkably, F. carica exhibits a diverse array of advantageous effects, including, but not limited to, antioxidant, anti-neurodegenerative, antimicrobial, antiviral, anti-inflammatory, anti-arthritic, antiepileptic, anticonvulsant, anti-hyperlipidemic, anti-angiogenic, antidiabetic, anti-cancer, and antimutagenic properties. Among the highlights include that antioxidants from F. carica were demonstrated to inhibit cholinesterase, potentially protecting neurons in Alzheimer's disease and other neurodegenerative conditions. The antimicrobial activities of F. carica were attributed to its high flavonoids and terpenoids content, while its virucidal action through the inhibition of DNA and RNA replication was postulated due to its triterpenes content. Inflammatory and arthritic conditions may also benefit from its anti-inflammatory and anti-arthritic properties through the modulation of various signalling proteins. Studies have also shown that F. carica extracts were generally safe and exhibit low toxicity profile, although more research in this aspect is required, specifically its effects on the skin. In conclusion, this study highlights the potential of F. carica as a valuable natural therapeutic agent and dietary supplement. However, continued exploration on F. carica's safety and efficacy is still required prior to embarking on clinical trials, as its role in personalized nutrition and medication will open a new paradigm to improve health outcomes.


Subject(s)
Dietary Supplements , Ficus , Ficus/chemistry , Humans , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification
2.
J Oleo Sci ; 73(5): 717-727, 2024.
Article in English | MEDLINE | ID: mdl-38692894

ABSTRACT

The anti-diabetic effect of Ficus carica (Fig) seed oil was investigated. 4 groups with 6 rats in each group were used in the experiment as control, diabetes (45 mg/kg streptozotocin), fig seed oil (FSO) (6 mL/ kg/day/rat by gavage) and diabetes+FSO groups. Glucose, urea, creatinine, ALT, AST, GSH, AOPP and MDA analyses were done. Pancreatic tissues were examined histopathologically. When fig seed oil was given to the diabetic group, the blood glucose level decreased. In the diabetes+FSO group, serum urea, creatinine, AOPP, MDA levels and ALT and AST activities decreased statistically significantly compared to the diabetes group, while GSH levels increased significantly, histopathological, immunohistochemical, and immunofluorescent improvements were observed. It has been shown for the first time that FSO has positive effects on blood glucose level and pancreatic health. It can be said that the protective effect of fig seed oil on tissues may be due to its antioxidant activity.


Subject(s)
Antioxidants , Blood Glucose , Diabetes Mellitus, Experimental , Ficus , Hypoglycemic Agents , Pancreas , Plant Oils , Seeds , Streptozocin , Animals , Ficus/chemistry , Diabetes Mellitus, Experimental/drug therapy , Plant Oils/pharmacology , Plant Oils/isolation & purification , Seeds/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Blood Glucose/metabolism , Male , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Antioxidants/pharmacology , Rats , Rats, Wistar , Creatinine/blood
3.
Pak J Pharm Sci ; 37(1): 129-137, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741409

ABSTRACT

Stress is described as a noxious stimulus that affects the health of an individual and alters body homeostasis resulting in changes the individual behavioural and metabolic condition. Synthesis of drug from plants has main interest due the significant medicinal values. The recent investigation was designed to examine the pharmacological impacts of Ficus carica leaves extract on stress. In this experiment, the rodents were randomly distributed as (n=6) control rats were kept at standard condition, second group of rats were exposed with different stressors and Third group of rodents was exposed to stress and treated with extract of ficus carica leaves at the dose of 100 mg/kg. Acute behavioural alteration was observed after 7 days and prolonged impact was monitored after the 28 days. The current finding showed that administration of Ficus carica leaves extract produced anxiolytic behaviours and decreased depression like symptoms in CUMS treated rats. It also increased stimulatory, ambulatory, locomotor activity and enhanced spatial working memory and recognition memory in CUMS exposed rats. So, it can be concluded from recent study that leaves of Ficus carica can be utilized as secure drug for curing physiological stress with less side effect profile.


Subject(s)
Behavior, Animal , Disease Models, Animal , Ficus , Plant Extracts , Plant Leaves , Stress, Psychological , Animals , Ficus/chemistry , Plant Extracts/pharmacology , Behavior, Animal/drug effects , Stress, Psychological/drug therapy , Male , Rats , Rats, Wistar , Anti-Anxiety Agents/pharmacology , Depression/drug therapy
4.
Environ Monit Assess ; 196(6): 559, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767736

ABSTRACT

The study of biochemical parameters provides an idea of the resistance of plants against air pollutants. Biochemical and Physiological parameters are studied with the help of Air pollution tolerance index (APTI). Fifteen plant species were evaluated to assess biochemical and APTI from two polluted sites (Phagwara Industrial area and Phagwara Bus stand area). The values of APTI were found to be highest for Mangifera indica (19.6), Ficus religiosa (19.3), and Ficus benghalensis (15.8) in the industrial area. On the roadside, Mangifera indica (16.8), Ficus benghalensis (16.5), and Ficus religiosa (16.4). Mangifera indica, Ficus religiosa, and Ficus benghalensis were found to be excellent performers in reducing pollution at both the sampling sites as per the APTI values. The order of tolerance was Mangifera indica > Ficus religiosa > Ficus benghalensis > Polyalthia longifolia > Mentha piperita in both the polluted sites. Morphological changes were observed in the plants, suggesting the possibility of pollution stress, which is probably responsible for the changes in biochemical parameters. As a result, the relationship between morphological and biochemical parameters of selected plant species growing in roadside and industrial areas was explored. The findings revealed that relative water content showed a significant positive and negative correlation with leaf surface texture and leaf surface area. On the other hand, ascorbic acid showed a significant positive correlation with them. In conclusion, it has been studied that morphological parameters including biochemical parameters can be proved to be important in investigating the ability of plants to cope with air pollution and in calculating tolerance index.


Subject(s)
Air Pollutants , Environmental Monitoring , Plant Leaves , Plant Leaves/chemistry , Air Pollutants/analysis , Mangifera , Air Pollution , Ficus , Plants , Industry
5.
Sci Data ; 11(1): 526, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778063

ABSTRACT

Ficus species (Moraceae) play pivotal roles in tropical and subtropical ecosystems. Thriving across diverse habitats, from rainforests to deserts, they harbor a multitude of mutualistic and antagonistic interactions with insects, nematodes, and pathogens. Despite their ecological significance, knowledge about the genomic background of Ficus remains limited. In this study, we report a chromosome-level reference genome of F. hirta, with a total size of 297.27 Mb, containing 28,625 protein-coding genes and 44.67% repeat sequences. These findings illuminate the genetic basis of Ficus responses to environmental challenges, offering valuable genomic resources for understanding genome size, adaptive evolution, and co-evolution with natural enemies and mutualists within the genus.


Subject(s)
Ficus , Genome, Plant , Ficus/genetics , Chromosomes, Plant , Genome Size
6.
Front Biosci (Landmark Ed) ; 29(5): 183, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38812295

ABSTRACT

BACKGROUND: The present study aimed to investigate the in-vitro anti-diabetic, anti-cholinesterase, and anti-inflammatory potential of extracts from different parts of Ficus benghalensis, including leaves, stem, and roots, as well as isolated column fractions (F-B-1 C, F-B-2 C, F-B-3 C, and F-B-4 C). METHODS: The extracts and subsequent fractions were evaluated for their inhibitory activity against key enzymes involved in diabetes [α-glucosidase and α-amylase], neurodegenerative diseases [acetylcholinesterase and butyrylcholinesterase], and inflammation (cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX)). RESULTS: The results showed that F. benghalensis leaf extract exhibited the highest α-glucosidase inhibitory activity (73.84%) and α-amylase inhibitory activity (76.29%) at 1000 µg/mL. The stem extract (65.50%) and F-B-2 C fraction (69.67%) also demonstrated significant α-glucosidase inhibitory activity. In terms of anti-cholinesterase activity, the extracts of roots, leaves, and stem showed promising inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with half maximal inhibitory concentration (IC50) values ranging from 50.50 to 474.83 µg/mL. The derived fractions (F-B-1 C, F-B-2 C, F-B-3 C, and F-B-4 C) also exhibited notable inhibition of AChE and BChE, with IC50 values from 91.85 to 337.94 µg/mL. Moreover, the F-B-3 C fraction demonstrated the highest COX-2 inhibitory potential (85.72%), followed by F-B-1 C (83.13%), the stem extract (80.85%), and the leaves extract (79.00%). The F-B-1 C fraction showed the highest 5-LOX inhibitory activity (87.63%), while the root extract exhibited the lowest inhibition (73.39%). CONCLUSIONS: The results demonstrated promising bioactivity, suggesting the potential of F. benghalensis as a source of natural compounds with therapeutic applications. Further studies are required to identify and isolate the active components responsible for these effects and to evaluate their in-vivo efficacy and safety.


Subject(s)
Anti-Inflammatory Agents , Cholinesterase Inhibitors , Ficus , Hypoglycemic Agents , Plant Extracts , Ficus/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Plant Leaves/chemistry , Butyrylcholinesterase/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , alpha-Amylases/antagonists & inhibitors , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/isolation & purification , Acetylcholinesterase/metabolism , Arachidonate 5-Lipoxygenase/metabolism , Plant Roots/chemistry
7.
Cutis ; 113(4): 167-169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38820103

ABSTRACT

Patients presenting with a linear, erythematous, blistering eruption may experience a sudden painful sunburn that seems to get worse rather than better with time. In warm climates, exposure to the common fig tree (Ficus carica) may be the culprit. Dermatologists should recognize fig phytophotodermatitis as a possible cause and help the patient connect their symptoms with the inciting agent as well as administer proper treatment.


Subject(s)
Ficus , Humans , Ficus/adverse effects , Dermatitis, Phototoxic/etiology , Dermatitis, Phototoxic/diagnosis , Photosensitivity Disorders/diagnosis , Photosensitivity Disorders/etiology , Sunburn
8.
Oecologia ; 205(1): 215-227, 2024 May.
Article in English | MEDLINE | ID: mdl-38801540

ABSTRACT

Mutualisms are consumer-resource interactions, in which goods and services are exchanged. Biological market theory states that exchanges should be regulated by both partners. However, most studies on mutualisms are one-sided, focusing on the control exercised by host organisms on their symbionts. In the brood-site pollination mutualism between fig trees and their symbiont wasp pollinators, galled flowers are development sites for pollinator larvae and are exchanged for pollination services. We determined if pollinator galls influenced resource allocation to fig inflorescences called syconia and considered feedbacks from the host tree. We experimentally produced syconia containing only seeds (S), only pollinator galls (G) or seeds and galls (SG) with varying number of introduced female pollinator wasps, i.e., foundress wasps. Biomass allocation to syconia was affected by foundress numbers and treatment groups; SG treatments received highest biomass allocation at low foundress numbers, and both G and SG treatments at high foundress numbers. Seeds are important determinants of allocation at low foundress numbers; galls are likely more influential at high foundress numbers. Most allocation in the G and SG treatment was to the syconium wall, likely as protection from parasitoids and temperature/humidity fluctuations. Dry mass of individual seeds and wasps (except at low foundress numbers) was unchanged between treatment groups, indicating seeds and wasps regulate resource flow into them, with lower flow into galls containing the smaller males compared to females commensurate with sexual dimorphism. We demonstrate the importance of considering the direct role of symbionts in accessing resources and controlling exchanges within mutualisms.


Subject(s)
Ficus , Pollination , Symbiosis , Wasps , Wasps/physiology , Animals , Plant Tumors , Seeds , Female , Biomass
9.
Ultrason Sonochem ; 106: 106883, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703594

ABSTRACT

Ultrasound has been widely used in industry due to its high energy and efficiency. This study optimized the ultrasonic-assisted extraction (UAE) process of frosted figs pectin (FFP) using response surface methodology (RSM), and further investigated the effect of ultrasonic power on the structural characteristics and antioxidant activities of FFPs. The UAE method of FFP through RSM was optimized, and the optimal extraction process conditions, particle size of 100 mesh, pH value of 1.95, liquid-solid ratio of 47:1 (mL/g), extraction temperature of 50 °C and extraction time of 65 min, were obtained. The extraction rate of FFP under this condition was 37.97 ± 2.56 %. Then, the four FFPs modified by ultrasound were obtained by changing the ultrasonic power. Research had found that ultrasonic power had little effect on the monosaccharide composition, Zeta potential, as well as the thermal stability and appearance structure of the four FFPs. However, ultrasonic power had a significant impact on other properties of FFP: as the ultrasonic power increased, the DM% and particle size decreased continuously, while the total carbohydrate content increased. Meanwhile, ultrasonic power also had a significant impact on antioxidant activities of FFPs. From the research results, it could be seen that different ultrasonic power had certain changes in its spatial structure and properties, and the structural changes also affected the biological activity of FFP. The study of the effects of ultrasonic power on the physicochemical properties and biological activity of FFP lays the foundation for the development and application of FFP in food additives and natural drug carriers.


Subject(s)
Antioxidants , Chemical Phenomena , Ficus , Pectins , Ultrasonic Waves , Pectins/chemistry , Pectins/isolation & purification , Ficus/chemistry , Antioxidants/chemistry , Temperature , Particle Size , Hydrogen-Ion Concentration
10.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731494

ABSTRACT

Figs are the edible fruits of the fig tree, Ficus carica L., that have been used for centuries for human consumption and in traditional medicine, to treat skin problems, inflammation, and gastrointestinal disorders. Our previous study investigated the presence of phenolic compounds in aqueous extracts of two Algerian popular fig varieties, azendjar (Az) and taamriouth (Ta), as well as their in vitro antioxidant activity. In this study, we assessed hydroethanolic extracts of these fig varieties. The total phenolic content was measured, along with the phenolic profile. Rutin was determined to be the dominant phenolic compound, followed by vanillic acid, 3,4-dihydroxybenzoic acid, quercetin, 4-hydroxybenzoic acid, rosmarinic acid (in Az only), and cinnamic acid. The antioxidant activity of the extracts was evaluated both in vitro (DPPH and FRAP assays) and in vivo, in rats intoxicated with carbon tetrachloride. In all assays, the fig extract-especially the dark-peeled fig variety azendjar-showed antioxidant potency. The administration of fig extract resulted in a reduction in liver damage, expressed by both different biochemical markers and histopathological study (less degraded liver architecture, reduced fibrosis, and only mild inflammation). A dose-dependent therapeutic effect was observed. The extract from the dark-peeled fig variety, Az, was characterized by a higher phenolic content and a stronger antioxidant activity than the extract from the light-peeled variety-Ta. Our study justifies the use of figs in traditional healing and shows the potential of using fig extracts in natural medicines and functional foods.


Subject(s)
Antioxidants , Carbon Tetrachloride , Ficus , Oxidative Stress , Plant Extracts , Animals , Ficus/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Rats , Oxidative Stress/drug effects , Phenols/pharmacology , Phenols/chemistry , Male , Liver/drug effects , Liver/metabolism , Liver/pathology , Rats, Wistar
11.
Int J Biol Macromol ; 270(Pt 1): 132176, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750845

ABSTRACT

Cancer is a fatal disease, and unfortunately, the anticancer drugs harm normal cells. Plant's extracts are the golden key to solving this issue. In this research, fig latex - from Ficus carica- was encapsulated using cellulose acetate (CA) and poly (ethylene oxide) (PEO) polymers via electrospinning method (Fig@CA/PEO). Fig@CA/PEO nanofiber scaffold was characterized by thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The average fiber diameter was decreased with an increase in latex concentration from 715 nm to 583 nm. FT-IR spectroscopy indicated the presence of fig latex in Fig@CA/PEO nanofibers. Compared to 5-fluorouracil, Fig@CA/PEO nanofiber scaffold considered safe towards normal cells (WI-38). Moreover, the nanofiber scaffold was efficient against colon cancer cells (Caco) and liver cancer cells (HepG2) as it demonstrated IC50 values for cells by 23.97 µg/mL and 23.96 µg/mL, respectively. Besides, the nanofiber scaffold revealed mechanistic variations in apoptotic oncogenes; described by the upregulation of BCL2 and P21, combined by downregulation of p53 and TNF. Moreover, the nanofiber scaffold showed antioxidant activity counting 33.4, 36 and 41 % of DPPH scavenging as the fig latex concentration increased. The results demonstrate that the Fig@CA/PEO nanofiber scaffold is a promising substitute to traditional chemotherapy.


Subject(s)
Antineoplastic Agents , Antioxidants , Cellulose , Ficus , Latex , Nanofibers , Polyethylene Glycols , Nanofibers/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Cellulose/pharmacology , Humans , Ficus/chemistry , Polyethylene Glycols/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Latex/chemistry , Latex/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Hep G2 Cells , Spectroscopy, Fourier Transform Infrared , Cell Line, Tumor
12.
Int J Biol Macromol ; 270(Pt 1): 132352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754676

ABSTRACT

Polysaccharides are used in starch-based product formulations to enhance the final quality of food products. This study examined the interaction mechanisms in Ficus pumila polysaccharide (FPP) and wheat starch (WS) gel systems with varying FPP concentrations using linear and nonlinear rheological analysis. Physicochemical structural analyses showed non-covalent FPP-WS interactions, strengthening hydrogen bonding between molecules and promoting water binding and ordered structure generation during WS gel aging. Small amplitude oscillatory shear analyses revealed that elevated FPP concentrations led to increased storage modulus (G'), loss modulus (G"), critical strains (From 29.02 % to 53.32 %) and yield stresses (From 0.94 Pa to 30.97 Pa) in the WS gel system, along with improved resistance to deformation and short-term regeneration. In the nonlinear viscoelastic region, FPP-WS gels shifted from elastic to viscous behavior. Higher FPP concentrations displayed increased energy dissipation, strain hardening (S>0, e3/e1 > 0) and shear thinning (T<0, v3/v1<0). FPP contributes more nonlinearity in the dynamic flow field as showed by the high harmonic ratio, with a larger I3/I1 values overall. This study highlights FPP's potential in starch gel food processing, and offers a theoretical basis for understanding hydrocolloid-starch interactions.


Subject(s)
Ficus , Gels , Polysaccharides , Rheology , Starch , Triticum , Starch/chemistry , Polysaccharides/chemistry , Ficus/chemistry , Gels/chemistry , Triticum/chemistry , Viscosity , Shear Strength
13.
PLoS One ; 19(4): e0300615, 2024.
Article in English | MEDLINE | ID: mdl-38568985

ABSTRACT

The majority of Iranian fig production is exported, making it one of the world's most well-known healthy crops. Therefore, the main objective of the current experiment was to investigate the effects of various types of organic fertilizers, such as animal manure (cow and sheep), bird manure (partridge, turkey, quail, and chicken), and vermicompost, on the nutritional status of trees, vegetative and reproductive tree characteristics, fruit yield, and fruit quality traits in dried fig cultivar ("Sabz"). According to the findings, applying organic fertilizers, particularly turkey and quail, significantly improves vegetative and reproductive characteristics. However, other manures such as sheep, chicken, and vermicompost had a similar effect on the growth parameters of fig trees. Additionally, the findings indicated that except for potassium, use of all organic fertilizers had an impact on macro and microelements such as phosphorus, nitrogen, and sodium amount in fig tree leaves. Also, based on fruit color analysis in dried figs, the use of all organic fertilizers improved fruit color. Moreover, the analyses fruit biochemical showed that the use of some organic fertilizers improved that TSS and polyphenol compounds such as coumarin, vanillin, hesperidin gallic acid and trans frolic acid. In general, the results indicated that the addition of organic fertilizers, especially turkey manure, led to increased vegetative productivity and improvement in the fruit quality of the rain-fed fig orchard.


Subject(s)
Ficus , Fruit , Sheep , Animals , Soil/chemistry , Ficus/chemistry , Iran , Fertilizers/analysis , Manure/analysis , Nutritional Status , Nitrogen/analysis
14.
Fitoterapia ; 175: 105966, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631600

ABSTRACT

Ficus altissima, also known as lofty fig, is a monoecious plant from the Moraceae family commonly found in southern China. In this study, we isolated and identified one new isoflavone (1), three new hydroxycoumaronochromones (2a, 2b and 3a) and 12 known compounds from the fruits of F. altissima. Their chemical structures were determined using spectroscopic analysis methods. We also tested all the isolated compounds for their anti-proliferative activities against eight human tumour cell lines (A-549, AGS, K562, K562/ADR, HepG2, HeLa, SPC-A-1 and CNE2) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Our experiments showed that compound 6 exhibited obvious anti-proliferative activity against the K562 cell line with an IC50 value of 1.55 µM. Additionally, compounds 8 and 9 showed significant anti-proliferative activities against the AGS and K562 cell lines, respectively. Moreover, compound 6 induced apoptosis in K562 cells through the caspase family signalling pathway.


Subject(s)
Antineoplastic Agents, Phytogenic , Apoptosis , Ficus , Fruit , Isoflavones , Humans , Ficus/chemistry , Fruit/chemistry , Isoflavones/pharmacology , Isoflavones/isolation & purification , Molecular Structure , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Cell Line, Tumor , China , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Cell Proliferation/drug effects , K562 Cells
15.
Appl Radiat Isot ; 208: 111286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38498957

ABSTRACT

Dried figs were studied by Electron Paramagnetic Resonance (EPR) spectroscopy for identification of radiation treatment and dosage assessment. Gamma-irradiated samples show a multicomponent "sugar-like" EPR spectrum with line width of 6-8 mT, centered at g = 2.004. The investigation of the influence of the instrumental parameters microwave power and modulation amplitude on the EPR signal show saturation effect at microwave power above 2 mW and over modulation at modulation amplitude above 0.4 mT. Determination of the stability of radiation induced signals shows, that identification of previous radiation treatment is possible for a long time period after irradiation even more than one year. Dose-response curves of gamma-irradiated samples exhibits a linear response up to about 4 kGy and the saturation of the EPR signal at higher doses. A Single Aliquot Additive dosing method used to estimate the initial absorbed dose in irradiated dried fig flesh shows initial dose 0.25 kGy for the sample irradiated by 5 kGy and 3.7 kGy for those irradiated using 10 kGy. Taking into account the signal decay after 150 days of storage, the dose defined as initial should be 4.65 kGy for the 5 kGy irradiated sample and 8 kGy for that irradiated using 10 kGy.


Subject(s)
Ficus , Electron Spin Resonance Spectroscopy/methods , Gamma Rays
16.
J Nat Prod ; 87(4): 675-691, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38442031

ABSTRACT

Schwarzinicines A-D, a series of alkaloids recently discovered from Ficus schwarzii, exhibit pronounced vasorelaxant activity in rat isolated aorta. Building on this finding, a concise synthesis of schwarzinicines A and B has been reported, allowing further investigations into their biological properties. Herein, a preliminary exploration of the chemical space surrounding the structure of schwarzinicine A (1) was carried out aiming to identify structural features that are essential for vasorelaxant activity. A total of 57 analogs were synthesized and tested for vasorelaxant activity in rat isolated aorta. Both efficacy (Emax) and potency (EC50) of these analogs were compared. In addition to identifying structural features that are required for activity or associated with potency enhancement effect, four analogs showed significant potency improvements of up to 40.2-fold when compared to 1. Molecular dynamics simulation of a tetrameric 44-bound transient receptor potential canonical-6 (TRPC6) protein indicated that 44 could potentially form important interactions with the residues Glu509, Asp530, Lys748, Arg758, and Tyr521. These results may serve as a foundation for guiding further structural optimization of the schwarzinicine A scaffold, aiming to discover even more potent analogs.


Subject(s)
Vasodilator Agents , Vasodilator Agents/pharmacology , Vasodilator Agents/chemistry , Vasodilator Agents/chemical synthesis , Animals , Structure-Activity Relationship , Rats , Molecular Structure , Ficus/chemistry , Aorta/drug effects , Alkaloids/pharmacology , Alkaloids/chemistry , Male , Molecular Dynamics Simulation
17.
Zootaxa ; 5401(1): 1-190, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38480114

ABSTRACT

Eurytomidae (Chalcidoidea) species associated with fig trees (Ficus) are still poorly documented. A phylogenetic analysis of 63 morphological characters was conducted to revise Afrotropical species of Sycophila Walker and Ficomila Bouek associated with fig trees. Based on our results, which also included Palaearctic species of Sycophila, three subgenera of Sycophila are proposed: Sycophila s. str., Tineomyza Rondani stat. rev. and a new subgenus, Ficorytoma subgen. n. Lotfalizadeh & Rasplus. Ficomila is maintained as a valid genus. Thirty-six species are also newly described by Lotfalizadeh & Rasplus, namely Ficomila artocarpoides sp. n., F. carolae sp. n., F. bouceki sp. n., F. comptoni sp. n., F. flava sp. n., F. gabonensis sp. n., F. gibba sp. n., F. guinensis sp. n., F. sinai sp. n., F. tanzanica sp. n., F. vannoorti sp. n., Sycophila (Tineomyza) beninensis sp. n., S. (T.) busseicola sp. n., S. (T.) glumosae sp. n., S. (T.) luteacola sp. n., S. (T.) maldesi sp. n., S. (T.) minuta sp. n., S. (T.) platygastra sp. n., S. (T.) risbeci sp. n., S. (T.) wiebesi sp. n., S. (T.) zebrogastra sp. n., S. (Ficorytoma) delvarei sp. n., S. (F.) persicae sp. n., S. (Sycophila) annae sp. n., S. (S.) bidentata sp. n., S. (S.) longiflagellata sp. n., S. (S.) chirindensis sp. n., S. (S.) ficophila sp. n., S. (S.) fusca sp. n., S. (S.) lasallei sp. n., S. (S.) macrospermae sp. n., S. (S.) meridionalis sp. n., S. (S.) nigra sp. n., S. (S.) nigriterga sp. n., S. (S.) suricola sp. n., S. (S.) zebra sp. n.. Seven described species of Sycophila are reclassified in the subgenus Tineomyza: Sycophila (Tineomyza) flaviclava Bouek, 1981; S. (T.) modesta Bouek, 1981; S. (T.) naso Bouek, 1981; S. (T.) punctum Bouek, 1981; S. (T.) ruandensis Risbec, 1957; S. (T.) sessilis Bouek, 1981 and S. (T.) setulosa Zerova, 2009. After this revision, Ficomila and Sycophila include 46 species associated with Afrotropical Ficus. Detailed morphological descriptions and illustrations as well as identification keys are provided for the subgenera, species-groups and species of Ficomila and Sycophila associated with Afrotropical fig trees; their host fig association and relative lack of host-specificity are also discussed.


Subject(s)
Ficus , Gastropoda , Hymenoptera , Snails , Animals , Phylogeny
18.
Chem Biodivers ; 21(4): e202302124, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38409929

ABSTRACT

Ficus drupacea is a medicinal tree found in temperate regions. Various parts of this plant had been used traditionally for the treatment of various ailments such as root powder applied externally for skin infections. Analysis was carried out on the bioactive lipids extracted from Ficus drupacea fruit using both petroleum-based solvent (Hexane) and an environmentally friendly solvent Dimethyl carbonate (DMC). The results showed that DMC extraction yielded a high oil content in Ficus drupacea fruit (6.51 %). When examining the fatty acid composition using GC-FID analysis, Ficus drupacea oil extracted with DMC contained significant proportions of essential fatty acids such as linoleic acid (32.317 %), oleic acid (20.946 %), palmitic acid (25.841 %), etc. Additionally, DMC extraction resulted in higher levels of total phenolics in Ficus drupacea fruit oil compared to hexane. Moreover, DMC extracted oil exhibited stronger antioxidant properties, such as radical scavenging, anti- arthritic, photoprotective activity while displayed similar anti-inflammatory and anti-microbial activity as hexane-extracted oil. In summary, these findings demonstrate that DMC is an efficient and safer alternative to conventional solvent hexane for extracting oils from Ficus drupacea fruit. It is rich in bioactive compounds essential for human nutrition, including polyunsaturated fatty acids, flavonoids, and phenolic compounds, with enhanced biological activities.


Subject(s)
Ficus , Humans , Solvents , Hexanes , Lipidomics , Antioxidants/pharmacology , Antioxidants/analysis , Oils
19.
Biosystems ; 237: 105162, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395103

ABSTRACT

Plants and animals have long been considered distinct kingdoms, yet here a 'plant-animal' is described. An extraordinary symbiosis in which neither organism can reproduce without the other, the fig tree (Ficus) provides the habitat for its exclusive pollinator: the fig wasp (Agaonidae). Characterising the 'fig-fig wasp holobiont' acknowledges, for the first time, 'plant-animal symbiogenesis'.


Subject(s)
Ficus , Wasps , Animals , Pollination , Ecosystem , Symbiosis
20.
Genome Biol Evol ; 16(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302111

ABSTRACT

The evolution of reproductive mode is expected to have profound impacts on the genetic composition of populations. At the same time, ecological interactions can generate close associations among species, which can in turn generate a high degree of overlap in their spatial distributions. Caenorhabditis elegans is a hermaphroditic nematode that has enabled extensive advances in developmental genetics. Caenorhabditis inopinata, the sister species of C. elegans, is a gonochoristic nematode that thrives in figs and obligately disperses on fig wasps. Here, we describe patterns of genomic diversity in C. inopinata. We performed RAD-seq on individual worms isolated from the field across three Okinawan island populations. C. inopinata is about five times more diverse than C. elegans. Additionally, C. inopinata harbors greater differences in diversity among functional genomic regions (such as between genic and intergenic sequences) than C. elegans. Conversely, C. elegans harbors greater differences in diversity between high-recombining chromosome arms and low-recombining chromosome centers than C. inopinata. FST is low among island population pairs, and clear population structure could not be easily detected among islands, suggesting frequent migration of wasps between islands. These patterns of population differentiation appear comparable with those previously reported in its fig wasp vector. These results confirm many theoretical population genetic predictions regarding the evolution of reproductive mode and suggest C. inopinata population dynamics may be driven by wasp dispersal. This work sets the stage for future evolutionary genomic studies aimed at understanding the evolution of sex as well as the evolution of ecological interactions.


Subject(s)
Caenorhabditis , Ficus , Animals , Caenorhabditis elegans/genetics , Ficus/genetics , Caenorhabditis/genetics , Genetics, Population , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL
...