Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.443
Filter
1.
J Water Health ; 22(5): 905-922, 2024 May.
Article in English | MEDLINE | ID: mdl-38822469

ABSTRACT

This study addresses the heightened global reliance on point-of-use (PoU) systems driven by water quality concerns, ageing infrastructure, and urbanization. While widely used in Egypt, there is a lack of comprehensive evaluation of these systems. We assessed 10 reverse osmosis point-of-use systems, examining physicochemical, bacteriological, and protozoological aspects of tap water (inlets) and filtered water (outlets), adhering to standard methods for the examination of water and wastewater. Results showed significant reductions in total dissolved solids across most systems, with a decrease from 210 ± 23.6 mg/L in tap water to 21 ± 2.8 mg/L in filtered water for PoU-10. Ammonia nitrogen levels in tap water decreased from 0.05 ± 0.04 to 2.28 ± 1.47 mg/L to 0.02 ± 0.04 to 0.69 ± 0.64 mg/L in filtered water. Despite this, bacterial indicators showed no significant changes, with some systems even increasing coliform levels. Protozoological analysis identified prevalent Acanthamoeba (42.5%), less frequent Naegleria (2.5%), Vermamoeba vermiformis (5%), and potentially pathogenic Acanthamoeba genotypes. Elevated bacterial indicators in filtered water of point-of-use systems, combined with essential mineral removal, indicate non-compliance with water quality standards, posing a public health concern. Further research on the long-term health implications of these filtration systems is essential.


Subject(s)
Drinking Water , Osmosis , Water Purification , Egypt , Water Purification/methods , Drinking Water/microbiology , Drinking Water/parasitology , Water Quality , Water Microbiology , Filtration/instrumentation , Filtration/methods , Water Supply
2.
Methods Mol Biol ; 2804: 195-206, 2024.
Article in English | MEDLINE | ID: mdl-38753149

ABSTRACT

Clinical diagnostics of infectious diseases via nucleic acid amplification tests (NAATs) depend on a separate step of isolation of nucleic acids from cells/viruses embedded in complex biological matrices. The most recent example has been reverse transcription polymerase chain reaction (RT-PCR) for amplification and detection of SARS-CoV-2 RNA for COVID-19 diagnostics. Kits for RNA extraction and purification are commercially available; however, their integration with amplification systems is generally lacking, resulting in two separate steps, i.e., sample preparation and amplification. This makes NAATs more time-consuming, requiring skilled personnel, and can increase the likelihood of contamination. Here, we describe a setup and methodology to perform the quick extraction and detection of nucleic acids in an integrated manner. In particular, we focus on the use of an immiscible filtration device for capture, isolation, concentration, amplification, and colorimetric detection of SARS-CoV-2 RNA.


Subject(s)
COVID-19 , Filtration , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2 , RNA, Viral/isolation & purification , RNA, Viral/analysis , RNA, Viral/genetics , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/instrumentation , COVID-19/diagnosis , COVID-19/virology , Filtration/instrumentation , Filtration/methods , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/instrumentation , Colorimetry/methods , Colorimetry/instrumentation
3.
Int J Pharm Compd ; 28(3): 229-240, 2024.
Article in English | MEDLINE | ID: mdl-38768508

ABSTRACT

Sterilization methods to produce sterile preparations include heat, gas, radiation, and filtration. This article focuses on heat, gas, and radiation sterilization, plus a brief introduction to bright-light sterilization. Microbiology basics and microbial death kinetics, key to understanding why these sterilization methods work, will also be briefly discussed. Filtration sterilization will be covered in a separate article.


Subject(s)
Drug Compounding , Sterilization , Sterilization/methods , Drug Compounding/standards , Hot Temperature , Drug Contamination/prevention & control , Filtration/instrumentation , Gases
4.
Water Sci Technol ; 89(9): 2290-2310, 2024 May.
Article in English | MEDLINE | ID: mdl-38747950

ABSTRACT

In the face of growing global freshwater scarcity, the imperative to recycle and reuse water becomes increasingly apparent across industrial, agricultural, and domestic sectors. Eliminating a range of organic pollutants in wastewater, from pesticides to industrial byproducts, presents a formidable challenge. Among the potential solutions, membrane technologies emerge as promising contenders for treating diverse organic contaminants from industrial, agricultural, and household origins. This paper explores cutting-edge membrane-based approaches, including reverse osmosis, nanofiltration, ultrafiltration, microfiltration, gas separation membranes, and pervaporation. Each technology's efficacy in removing distinct organic pollutants while producing purified water is scrutinized. This review delves into membrane fouling, discussing its influencing factors and preventative strategies. It sheds light on the merits, limitations, and prospects of these various membrane techniques, contributing to the advancement of wastewater treatment. It advocates for future research in membrane technology with a focus on fouling control and the development of energy-efficient devices. Interdisciplinary collaboration among researchers, engineers, policymakers, and industry players is vital for shaping water purification innovation. Ongoing research and collaboration position us to fulfill the promise of accessible, clean water for all.


Subject(s)
Membranes, Artificial , Water Pollutants, Chemical , Water Purification , Water Purification/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Waste Disposal, Fluid/methods , Filtration/methods , Filtration/instrumentation , Ultrafiltration/methods , Organic Chemicals/isolation & purification
5.
ACS Appl Mater Interfaces ; 16(19): 25160-25168, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38701174

ABSTRACT

Fiber has been considered as an ideal material for virus insulation due to the readily available electrostatic adsorption. However, restricted by the electrostatic attenuation and filtration performance decline, their long-lasting applications are unable to satisfy the requirements of medical protective equipment for major medical and health emergencies such as global epidemics, which results in both a waste of resources and environmental pollution. We overcame these issues by constructing a fiber-in-tube structure, achieving the robust reusability of fibrous membranes. Core fibers within the hollow could form generators with tube walls of shell fibers to provide persistent, renewable static electricity via piezoelectricity and triboelectricity. The PM0.3 insulation efficiency achieved 98% even after 72 h of humidity and heat aging, through beating and acoustic waves, which is greatly improved compared with that of traditional nonwoven fabric (∼10% insulation). A mask spun with our fiber also has a low breathing resistance (differential pressure <24.4 Pa/cm2). We offer an approach to enrich multifunctional fiber for developing electrifiable filters, which make the fiber-in-tube filtration membrane able to durably maintain a higher level of protective performance to reduce the replacement and provide a new train of thought for the preparation of other high-performance protective products.


Subject(s)
Filtration , Static Electricity , Vibration , Filtration/instrumentation , Sound , SARS-CoV-2/isolation & purification , Textiles , Humans
6.
Chemosphere ; 359: 142327, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754483

ABSTRACT

Prefiltration before chromatographic analysis is critical in the monitoring of environmental micropollutants (MPs). However, in an aqueous matrix, such monitoring often leads to out-of-specification results owing to the loss of MPs on syringe filters. Therefore, this study investigated the loss of seventy MPs on eight different syringe filters by employing Random Forest, a machine learning algorithm. The results indicate that the loss of MPs during filtration is filter specific, with glass microfiber and polytetrafluoroethylene filters being the most effective (<20%) compared with nylon (>90%) and others (regenerated-cellulose, polyethersulfone, polyvinylidene difluoride, cellulose acetate, and polypropylene). The Random Forest classifier showed outstanding performance (accuracy range 0.81-0.95) for determining whether the loss of MPs on filters exceeded 20%. Important factors in this classification were analyzed using the SHapley Additive exPlanation value and Kruskal-Wallis test. The results show that the physicochemical properties (LogKow/LogD, pKa, functional groups, and charges) of MPs are more important than the operational parameters (sample volume, filter pore size, diameter, and flow rate) in determining the loss of most MPs on syringe filters. However, other important factors such as the implications of the roles of pH for nylon and pre-rinsing for PTFE syringe filters should not be ignored. Overall, this study provides a systematic framework for understanding the behavior of various MP classes and their potential losses on syringe filters.


Subject(s)
Filtration , Machine Learning , Syringes , Water Pollutants, Chemical , Filtration/instrumentation , Filtration/methods , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Algorithms
7.
PLoS One ; 19(5): e0303937, 2024.
Article in English | MEDLINE | ID: mdl-38805423

ABSTRACT

Diversity studies of aquatic picoplankton (bacterioplankton) communities using size-class filtration, DNA extraction, PCR and sequencing of phylogenetic markers, require a robust methodological pipeline, since biases have been demonstrated essentially at all levels, including DNA extraction, primer choice and PCR. Even different filtration volumes of the same plankton sample and, thus, different biomass loading of the filters, can distort the sequencing results. In this study, we designed an Arduino microcontroller-based flowmeter that records the decrease of initial (maximal) flowrate as proxy for increasing biomass loading and clogging of filters during plankton filtration. The device was tested using freshwater plankton of Lake Constance, and total DNA was extracted and an 16S rDNA amplicon was sequenced. We confirmed that different filtration volumes used for the same water sample affect the sequencing results. Differences were visible in alpha and beta diversities and across all taxonomic ranks. Taxa most affected were typical freshwater Actinobacteria and Bacteroidetes, increasing up to 38% and decreasing up to 29% in relative abundance, respectively. In another experiment, a lake water sample was filtered undiluted and three-fold diluted, and each filtration was stopped once the flowrate had reduced to 50% of initial flowrate, hence, at the same degree of filter clogging. The three-fold diluted sample required three-fold filtration volumes, while equivalent amounts of total DNA were extracted and differences across all taxonomic ranks were not statistically significant compared to the undiluted controls. In conclusion, this work confirms a volume/biomass-dependent bacterioplankton filtration bias for sequencing-based community analyses and provides an improved procedure for controlling biomass loading during filtrations and recovery of equivalent amounts of DNA from samples independent of the plankton density. The application of the device can also avoid the distorting of sequencing results as caused by the plankton filtration bias.


Subject(s)
Filtration , Plankton , RNA, Ribosomal, 16S , Filtration/instrumentation , Filtration/methods , Plankton/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , DNA, Bacterial/genetics , Sequence Analysis, DNA/methods , Lakes/microbiology , Phylogeny , Biomass
8.
Aerosp Med Hum Perform ; 95(6): 327-332, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38790129

ABSTRACT

INTRODUCTION: The absence of a consistent downward G vector can make separation of gases from liquids challenging, such as in field medicine without stable upright equipment or during spaceflight. This limits the use of medical equipment and procedures like administration of intravenous (IV) fluids in microgravity and can make field medicine hazardous. Administering IV fluids and medications in microgravity requires a technique to separate air from the liquid phase. Current commercial filters for separation of gases are incompatible with high flow and blood. We present a novel filter designed to provide adequate air clearance without a consistent downward G vector.METHODS: Inline air-eliminating filters were designed for use with IV fluid tubing in microgravity using computer-aided design software and printed using nylon 12 on an EOS Selective Laser Sintering 3D printer. A 0.2-µm membrane filter was adhered around a central, hollow pillar with external spiral baffles allowing separation and venting of air from the fluid. Results were compared against commercially available inline air-eliminating filters.RESULTS: The 3D-printed filters outperformed the commercial filters in both percentage of air removed and flow rates. The centrifugal, baffled filter had flow rates that far exceeded the commercial filters during rapid transfusion.DISCUSSION: IV fluid administration is an often underappreciated and a necessary basic requirement for medical treatment. An air-eliminating filter compatible with blood and rapid transfusion was developed and validated with crystalloid solutions to allow the successful administration of IV fluid and medication without a consistent downward G vector.Formanek A, Townsend J, Ottensmeyer MP, Kamine TH. A novel 3D-printed gravity-independent air-eliminating filter for rapid intravenous infusions. Aerosp Med Hum Perform. 2024; 95(6):327-332.


Subject(s)
Equipment Design , Printing, Three-Dimensional , Humans , Infusions, Intravenous/instrumentation , Filtration/instrumentation , Aerospace Medicine , Weightlessness , Gravitation , Computer-Aided Design
9.
J Hazard Mater ; 472: 134495, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38714053

ABSTRACT

Nanopore sequencing is extremely promising for the high-throughput detection of pathogenic bacteria in natural water; these bacteria may be transmitted to humans and cause waterborne infectious diseases. However, the concentration of pathogenic bacteria in natural water is too low to be detected directly by nanopore sequencing. Herein, we developed a mica filter to enrich over 85% of bacteria from > 10 L of natural water in 100 min, which led to a 102-fold improvement in the assay limits of the MinION sequencer for assessing pathogenic bacteria. Correspondingly, the sequencing time of S. Typhi detection at a concentration as low as 105 CFU/L was reduced from traditional 48 h to 3 h. The bacterial adsorption followed pseudo-first-order kinetics and the successful adsorption of bacteria to the mica filter was confirmed by scanning electron microscopy and Fourier infrared spectroscopy et al. The mica filter remained applicable to a range of water samples whose quality parameters were within the EPA standard limits for freshwater water. The mica filter is thus an effective tool for the sensitive and rapid monitoring of pathogenic bacteria by nanopore sequencing, which can provide timely alerts for waterborne transmission events.


Subject(s)
Water Microbiology , Aluminum Silicates/chemistry , Filtration/instrumentation , Nanopore Sequencing/methods , Bacteria/genetics , Bacteria/isolation & purification , Adsorption , Environmental Monitoring/methods , Nanopores
10.
Analyst ; 149(10): 2978-2987, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38602145

ABSTRACT

Cultivation-independent molecular biological methods are essential to rapidly quantify pathogens like Legionella pneumophila (L. pneumophila) which is important to control aerosol-generating engineered water systems. A standard addition method was established to quantify L. pneumophila in the very complex matrix of process water and air of exhaust air purification systems in animal husbandry. Therefore, cryopreserved standards of viable L. pneumophila were spiked in air and water samples to calibrate the total bioanalytical process which includes cell lysis, DNA extraction, and qPCR. A standard addition algorithm was employed for qPCR to determine the initial concentration of L. pneumophila. In mineral water, the recovery rate of this approach (73%-134% within the concentration range of 100-5000 Legionella per mL) was in good agreement with numbers obtained from conventional genomic unit (GU) calibration with DNA standards. In air samples of biotrickling filters, in contrast, the conventional DNA standard approach resulted in a significant overestimation of up to 729%, whereas our standard addition gave a more realistic recovery of 131%. With this proof-of-principle study, we were able to show that the molecular biology-based standard addition approach is a suitable method to determine realistic concentrations of L. pneumophila in air and process water samples of biotrickling filter systems. Moreover, this quantification strategy is generally a promising method to quantify pathogens in challenging samples containing a complex microbiota and the classical GU approach used for qPCR leads to unreliable results.


Subject(s)
Legionella pneumophila , Real-Time Polymerase Chain Reaction , Legionella pneumophila/isolation & purification , Legionella pneumophila/genetics , Real-Time Polymerase Chain Reaction/methods , Filtration/methods , Filtration/instrumentation , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , DNA, Bacterial/analysis , Water Microbiology , Air Microbiology
11.
Am J Vet Res ; 85(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38346384

ABSTRACT

OBJECTIVE: Determine the hemolytic effect of an 18-µm microaggregate blood filter during in vitro sea turtle whole blood transfusions as well as describe the average diameter of leatherback (Dermochelys coriacea) and Kemp's ridley sea turtle (Lepidochelys kempii) RBCs. ANIMALS: 5 green (Chelonia mydas), 5 loggerhead (Caretta caretta), and 5 Kemp's ridley sea turtles (total n = 15). METHODS: Heparinized sea turtle blood was infused at 60 mL/h through a microbore extension set without and then with a postsyringe, inline 18-µm microaggregate blood filter. Pre- and postfiltration PCV, Hct, total solids, sodium, chloride, potassium, glucose, and free plasma hemoglobin concentrations were measured. With the use of light microscopy and archived blood smears, the maximum and minimum diameter of 20 RBCs from each of the 5 leatherback and 5 Kemp's ridley sea turtles were measured with a calibrated ocular micrometer using 400X magnification. RESULTS: There were no significant differences between pre- and postfiltration samples for Hct, total solids, sodium, chloride, potassium, glucose, and free plasma hemoglobin concentrations; however, there was a significant median postfiltration decrease in PCV of approximately 4%, representing a 13% decrease of the total RBCs transfused. Average maximum diameters for leatherback and Kemp's ridley sea turtle RBCs were 19.7 and 16.1 µm, respectively. CLINICAL RELEVANCE: Although the 18-µm microaggregate blood filter does not hemolyze transfused sea turtle RBCs and is likely safe for in vivo blood transfusions, the filter's pores may retain a small proportion of infused RBCs given their diameter.


Subject(s)
Hemolysis , Turtles , Animals , Turtles/blood , Turtles/physiology , Blood Transfusion/veterinary , Filtration/veterinary , Filtration/instrumentation , Filtration/methods
12.
Environ Res ; 250: 118487, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38365055

ABSTRACT

With the increasing population worldwide more wastewater is created by human activities and discharged into the waterbodies. This is causing the contamination of aquatic bodies, thus disturbing the marine ecosystems. The rising population is also posing a challenge to meet the demands of fresh drinking water in the water-scarce regions of the world, where drinking water is made available to people by desalination process. The fouling of composite membranes remains a major challenge in water desalination. In this innovative study, we present a novel probabilistic approach to analyse and anticipate the predominant fouling mechanisms in the filtration process. Our establishment of a robust theoretical framework hinges upon the utilization of both the geometric law and the Hermia model, elucidating the concept of resistance in series (RIS). By manipulating the transmembrane pressure, we demonstrate effective management of permeate flux rate and overall product quality. Our investigations reveal a decrease in permeate flux in three distinct phases over time, with the final stage marked by a significant reduction due to the accumulation of a denser cake layer. Additionally, an increase in transmembrane pressure leads to a correlative rise in permeate flux, while also exerting negative effects such as membrane ruptures. Our study highlights the minimal immediate impact of the intermediate blocking mechanism (n = 1) on permeate flux, necessitating continuous monitoring for potential long-term effects. Additionally, we note a reduced membrane selectivity across all three fouling types (n = 0, n = 1.5, n = 2). Ultimately, our findings indicate that the membrane undergoes complete fouling with a probability of P = 0.9 in the presence of all three fouling mechanisms. This situation renders the membrane unable to produce water at its previous flow rate, resulting in a significant reduction in the desalination plant's productivity. I have demonstrated that higher pressure values notably correlate with increased permeate flux across all four membrane types. This correlation highlights the significant role of TMP in enhancing the production rate of purified water or desired substances through membrane filtration systems. Our innovative approach opens new perspectives for water desalination management and optimization, providing crucial insights into fouling mechanisms and proposing potential strategies to address associated challenges.


Subject(s)
Filtration , Membranes, Artificial , Water Purification , Water Purification/methods , Water Purification/instrumentation , Filtration/methods , Filtration/instrumentation , Biofouling/prevention & control
13.
Environ Res ; 249: 118051, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38159668

ABSTRACT

Is there a "missing device" for respiratory personal protection? Does it exist an easy-to-use device, allowing extensive use in everyday settings by the population, maximizing tolerability and low visual and physical invasiveness protecting from a wide range of threats including airborne pathogens, hence including the particle range of fine and ultrafine particles? Looking at the recent past, in the urgency of finding ready-to-use solutions for the respiratory protection of the population during the outbreak of the SARS-CoV-2 pandemic, devices for occupational safety have been used, such as filtering face masks. These are devices intended for workers operating during work shifts in environments characterized by potential high risk, known a priori, often directly sensible; this makes wearers motivated to tolerate discomfort for a given period to face a localized risk, and safety managers determined to supervise compliance with usage specifications. Their use by general population has implied known shortcomings, such as weak compatibility with relational work and activities, low tolerability during prolonged use, low compliance with the proper use of the device, all of this lessening actual protection. The need for a new perspective has emerged, targeting effectiveness in whole daily life, rather than punctual efficacy. Nasal filters are promising candidates to protect individuals throughout the day during the most varied activities, but they lack a systematic definition as a device and as a product; it follows that the high complexity needed to reach an effective performance envelop is generally underestimated. By reviewing available literature, the present paper draws on the experience from the pandemic and infers systematic product specifications and characterization methods for a new, effective personal respiratory protection device; these specifications are compared with the stringent constraints associated with the endonasal applications and, based on air filtration state of the art, quantifies the need for technology disruption and outlining possible new development paths.


Subject(s)
COVID-19 , Filtration , Pandemics , SARS-CoV-2 , COVID-19/prevention & control , COVID-19/epidemiology , Humans , Pandemics/prevention & control , Filtration/instrumentation , Coronavirus Infections/prevention & control , Coronavirus Infections/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/epidemiology , Betacoronavirus , Respiratory Protective Devices , Air Filters , Occupational Exposure/prevention & control , Masks
14.
Nature ; 610(7930): 74-80, 2022 10.
Article in English | MEDLINE | ID: mdl-36163287

ABSTRACT

The adverse impact of particulate air pollution on human health1,2 has prompted the development of purification systems that filter particulates out of air3-5. To maintain performance, the filter units must inevitably be replaced at some point, which requires maintenance, involves costs and generates solid waste6,7. Here we show that an ion-doped conjugated polymer-coated matrix infiltrated with a selected functional liquid enables efficient, continuous and maintenance-free air purification. As the air to be purified moves through the system in the form of bubbles, the functional fluid provides interfaces for filtration and for removal of particulate matter and pollutant molecules from air. Theoretical modelling and experimental results demonstrate that the system exhibits high efficiency and robustness: its one-time air purification efficiency can reach 99.6%, and its dust-holding capacity can reach 950 g m-2. The system is durable and resistant to fouling and corrosion, and the liquid acting as filter can be reused and adjusted to also enable removal of bacteria or odours. We anticipate that our purification approach will be useful for the development of specialist air purifiers that might prove useful in a settings such as hospitals, factories and mines.


Subject(s)
Absorption, Physicochemical , Air Pollutants , Filtration , Particulate Matter , Air Pollutants/chemistry , Air Pollutants/isolation & purification , Bacteria/isolation & purification , Dust/prevention & control , Filtration/instrumentation , Filtration/methods , Humans , Odorants/prevention & control , Particulate Matter/chemistry , Particulate Matter/isolation & purification , Polymers/chemistry , Solid Waste
15.
Biosens Bioelectron ; 214: 114479, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35780538

ABSTRACT

Electronic devices with multifunctional capabilities is forever an attractive area with diverse scope including towards developing solutions to sustainable energy technology. Microbial biofuel cells (MiBFCs) are one such sustainable energy technology based electronic device which can not only harvest energy, but can perform biosensing leading to bioremediation. However, low energy yield, costly fabrication procedures and bulky devices are some of the limitations of such MiBFCs. In this work, for the first time a simple vacuum filtration fabrication technique is used for making thin and conductive electrodes with homogeneous CNT solution for MiBFC application. The fully paper-based MiBFC is integrated into a compact micro device with 3D printed components which adds novelty to the work. The MiBFC is capable of maintaining a stable open circuit voltage of 410 mV for more than 1 h and can deliver a maximum power density of 192 µW/cm2 which is reasonably high for such paper-based MiBFCs operating with micro-volume of substrate. This device will help in developing more freestanding power sources for instant diagnostics and data transfer.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques , Renewable Energy , Biosensing Techniques/methods , Electrodes , Filtration/instrumentation , Filtration/methods , Printing, Three-Dimensional/trends , Renewable Energy/standards , Vacuum
16.
Langmuir ; 38(20): 6376-6386, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35561306

ABSTRACT

In recent years, adsorption-based membranes have been widely investigated to remove and separate textile pollutants. However, cyclic adsorption-desorption to reuse a single adsorbent and clear scientific evidence for the adsorption-desorption mechanism remains challenging. Herein, silk nanofibers were used to assess the adsorption potential for the typical anionic dyes from an aqueous medium, and they show great potential toward the removal of acid dyes from the aqueous solution with an adsorption rate of ∼98% in a 1 min interaction. Further, we measured the filtration proficiency of a silk nanofiber membrane in order to propose a continuous mechanism for the removal of acid blue dye, and a complete rejection was observed with a maximum permeability rate of ∼360 ± 5 L·m-2·h-1. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy studies demonstrate that this fast adsorption occurs due to multiple interactions between the dye molecule and the adsorbent substrate. The as-prepared material also shows remarkable results in desorption. A 50-time cycle exhibits complete adsorption and desorption ability, which not only facilitates high removal aptitude but also produces less solid waste than other conventional adsorbents. Additionally, fluorescent 2-bromo-2-methyl-propionic acid (abbreviated as EtOxPY)-silk nanofibers can facilitate to illustrate a clear adsorption and desorption mechanism. Therefore, the above-prescribed results make electrospun silk nanofibers a suitable choice for removing anionic dyes in real-time applications.


Subject(s)
Coloring Agents , Membranes, Artificial , Nanofibers , Silk , Water Decolorization , Water Pollutants, Chemical , Acids/chemistry , Adsorption , Anions/chemistry , Coloring Agents/chemistry , Filtration/instrumentation , Filtration/methods , Hydrogen-Ion Concentration , Kinetics , Nanofibers/chemistry , Photoelectron Spectroscopy , Silk/chemistry , Spectroscopy, Fourier Transform Infrared , Water Decolorization/instrumentation , Water Decolorization/methods , Water Pollutants, Chemical/chemistry
17.
PLoS One ; 17(2): e0263418, 2022.
Article in English | MEDLINE | ID: mdl-35130300

ABSTRACT

Routing protocols for underwater wireless sensor networks (UWSN) and underwater Internet of Things (IoT_UWSN) networks have expanded significantly. DBR routing protocol is one of the most critical routing protocols in UWSNs. In this routing protocol, the energy consumption of the nodes, the rate of loss of sent packets, and the rate of drop of routing packets due to node shutdown have created significant challenges. For this purpose, in a new scenario called FB-DBR, clustering is performed, and fuzzy logic and bloom filter are used in each cluster's new routing protocol in underwater wireless sensor networks. Due to the fuzzy nature of the parameters used in DBR, better results are obtained and bloom filters are used in routing tables to compensate for the deceleration. as the average number of accesses to routing table entries, dead nodes, Number of Packets Sent to Base Station (BS), Number of Packets Received at BS, Packet Dropped, and Remaining Energy has improved significantly.


Subject(s)
Algorithms , Computer Communication Networks , Filtration/instrumentation , Fuzzy Logic , Wireless Technology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Cluster Analysis , Computer Communication Networks/instrumentation , Computer Communication Networks/standards , Computer Simulation , Electric Power Supplies/standards , Electric Power Supplies/supply & distribution , Eutrophication/physiology , Filtration/methods , Humans , Oceans and Seas , Quality Improvement , Water/physiology , Water Microbiology , Wireless Technology/instrumentation , Wireless Technology/standards
19.
J Hazard Mater ; 424(Pt B): 127429, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34688006

ABSTRACT

Transmission of pathogens through air is a critical pathway for the spread of airborne diseases, as airborne pathogenic microorganisms cause several harmful infections. This review summarizes the occurrence, transmission, and adverse impacts of airborne pathogenic microorganisms that spread over large distances via bioaerosols. Air cleaning technologies have demonstrated great potential to prevent and reduce the spread of airborne diseases. The recent advances in air cleaning technologies are summarized on the basis of their advantages, disadvantages, and adverse health effects with regard to the inactivation mechanisms. The application scope and energy consumption of different technologies are compared, and the characteristics of air cleaners in the market are discussed. The development of high-efficiency, low-cost, dynamic air cleaning technology is identified as the leading research direction of air cleaning. Furthermore, future research perspectives are discussed and further development of current air cleaning technologies is proposed.


Subject(s)
Air Microbiology , Filtration/instrumentation , Technology , Air Filters
20.
J Biomech Eng ; 144(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-34467371

ABSTRACT

In this work, consideration is given to an aerodynamic concept to boost the filtration in face masks of airborne hygroscopic particles such as those caused by an infected person when coughs or sneezes. Nowadays, increasing the filtration efficiency of face masks implies either increasing the number of crisscrossing fiber layers or decreasing the equivalent hydraulic diameter of the pore, however, both measures are in clear detriment of its breathability. Here, a novel strategy is proposed in which the filtration of an airborne particle is boosted by increasing its diameter. We called properly this concept as the aerodynamic barrier layer. In this concept, a traditional crisscrossing fiber layer is replaced by a parallel rearranged of the fibers in the direction of the flow. This rearrangement will promote central lift forces which will push the particles toward the center of the channel where after clustering they will coalesce resulting in a bigger particle that can be now easily captured by a conventional fiber crisscrossing layer. Utilizing a simplified geometrical model, an expression for the required length of the aerodynamic barrier layer was derived. It is shown that an aerodynamic barrier layer with a length of only a few millimeters can aerodynamically focus water droplets around 1 µm-diameter and the penetration of airborne particles can be reduced up to 55%.


Subject(s)
Filtration/instrumentation , Masks , Particulate Matter/isolation & purification , Equipment Design , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...