Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.969
Filter
1.
Curr Biol ; 34(11): R539-R541, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834027

ABSTRACT

Strain-specific pili enable Vibrio cholerae bacteria to adhere to each other and form aggregates in liquid culture. A new study focuses on strains with less specific, promiscuous pili and suggests a role for contact-dependent bacterial killing in shaping the composition of these aggregates.


Subject(s)
Fimbriae, Bacterial , Vibrio cholerae , Vibrio cholerae/physiology , Vibrio cholerae/genetics , Fimbriae, Bacterial/physiology , Fimbriae, Bacterial/metabolism , Bacterial Adhesion/physiology
2.
mBio ; 15(5): e0069024, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717196

ABSTRACT

Extracellular cytochrome filaments are proposed to serve as conduits for long-range extracellular electron transfer. The primary functional physiological evidence has been the reported inhibition of Geobacter sulfurreducens Fe(III) oxide reduction when the gene for the filament-forming cytochrome OmcS is deleted. Here we report that the OmcS-deficient strain from that original report reduces Fe(III) oxide as well as the wild-type, as does a triple mutant in which the genes for the other known filament-forming cytochromes were also deleted. The triple cytochrome mutant displayed filaments with the same 3 nm diameter morphology and conductance as those produced by Escherichia coli heterologously expressing the G. sulfurreducens PilA pilin gene. Fe(III) oxide reduction was inhibited when the pilin gene in cytochrome-deficient mutants was modified to yield poorly conductive 3 nm diameter filaments. The results are consistent with the concept that 3 nm diameter electrically conductive pili (e-pili) are required for G. sulfurreducens long-range extracellular electron transfer. In contrast, rigorous physiological functional evidence is lacking for cytochrome filaments serving as conduits for long-range electron transport. IMPORTANCE: Unraveling microbial extracellular electron transfer mechanisms has profound implications for environmental processes and advancing biological applications. This study on Geobacter sulfurreducens challenges prevailing beliefs on cytochrome filaments as crucial components thought to facilitate long-range electron transport. The discovery of an OmcS-deficient strain's unexpected effectiveness in Fe(III) oxide reduction prompted a reevaluation of the key conduits for extracellular electron transfer. By exploring the impact of genetic modifications on G. sulfurreducens' performance, this research sheds light on the importance of 3-nm diameter electrically conductive pili in Fe(III) oxide reduction. Reassessing these mechanisms is essential for uncovering the true drivers of extracellular electron transfer in microbial systems, offering insights that could revolutionize applications across diverse fields.


Subject(s)
Cytochromes , Ferric Compounds , Geobacter , Oxidation-Reduction , Electron Transport , Geobacter/genetics , Geobacter/metabolism , Cytochromes/metabolism , Cytochromes/genetics , Ferric Compounds/metabolism , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism
3.
Sci Adv ; 10(18): eadl4450, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701202

ABSTRACT

Caulobacter crescentus Tad (tight adherence) pili, part of the type IV pili family, are crucial for mechanosensing, surface adherence, bacteriophage (phage) adsorption, and cell-cycle regulation. Unlike other type IV pilins, Tad pilins lack the typical globular ß sheet domain responsible for pilus assembly and phage binding. The mechanisms of Tad pilus assembly and its interaction with phage ΦCb5 have been elusive. Using cryo-electron microscopy, we unveiled the Tad pilus assembly mechanism, featuring a unique network of hydrogen bonds at its core. We then identified the Tad pilus binding to the ΦCb5 maturation protein (Mat) through its ß region. Notably, the amino terminus of ΦCb5 Mat is exposed outside the capsid and phage/pilus interface, enabling the attachment of fluorescent and affinity tags. These engineered ΦCb5 virions can be efficiently assembled and purified in Escherichia coli, maintaining infectivity against C. crescentus, which presents promising applications, including RNA delivery and phage display.


Subject(s)
Caulobacter crescentus , Fimbriae, Bacterial , Caulobacter crescentus/virology , Caulobacter crescentus/metabolism , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/chemistry , Fimbriae, Bacterial/ultrastructure , Protein Binding , Cryoelectron Microscopy , Fimbriae Proteins/metabolism , Fimbriae Proteins/chemistry , Fimbriae Proteins/genetics , RNA Phages/metabolism , RNA Phages/chemistry , Models, Molecular
4.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791440

ABSTRACT

The pil gene cluster for Type IV pilus (Tfp) biosynthesis is commonly present and highly conserved in Streptococcus sanguinis. Nevertheless, Tfp-mediated twitching motility is less common among strains, and the factors determining twitching activity are not fully understood. Here, we analyzed the functions of three major pilin proteins (PilA1, PilA2, and PilA3) in the assembly and activity of Tfp in motile S. sanguinis CGMH010. Using various recombinant pilA deletion strains, we found that Tfp composed of different PilA proteins varied morphologically and functionally. Among the three PilA proteins, PilA1 was most critical in the assembly of twitching-active Tfp, and recombinant strains expressing motility generated more structured biofilms under constant shearing forces compared to the non-motile recombinant strains. Although PilA1 and PilA3 shared 94% identity, PilA3 could not compensate for the loss of PilA1, suggesting that the nature of PilA proteins plays an essential role in twitching activity. The single deletion of individual pilA genes had little effect on the invasion of host endothelia by S. sanguinis CGMH010. In contrast, the deletion of all three pilA genes or pilT, encoding the retraction ATPase, abolished Tfp-mediated invasion. Tfp- and PilT-dependent invasion were also detected in the non-motile S. sanguinis SK36, and thus, the retraction of Tfp, but not active twitching, was found to be essential for invasion.


Subject(s)
Biofilms , Fimbriae Proteins , Fimbriae, Bacterial , Streptococcus sanguis , Fimbriae Proteins/metabolism , Fimbriae Proteins/genetics , Streptococcus sanguis/metabolism , Streptococcus sanguis/genetics , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Biofilms/growth & development , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
5.
Curr Biol ; 34(11): 2403-2417.e9, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38749426

ABSTRACT

The bacterial type VI secretion system (T6SS) is a widespread, kin-discriminatory weapon capable of shaping microbial communities. Due to the system's dependency on contact, cellular interactions can lead to either competition or kin protection. Cell-to-cell contact is often accomplished via surface-exposed type IV pili (T4Ps). In Vibrio cholerae, these T4Ps facilitate specific interactions when the bacteria colonize natural chitinous surfaces. However, it has remained unclear whether and, if so, how these interactions affect the bacterium's T6SS-mediated killing. In this study, we demonstrate that pilus-mediated interactions can be harnessed by T6SS-equipped V. cholerae to kill non-kin cells under liquid growth conditions. We also show that the naturally occurring diversity of pili determines the likelihood of cell-to-cell contact and, consequently, the extent of T6SS-mediated competition. To determine the factors that enable or hinder the T6SS's targeted reduction of competitors carrying pili, we developed a physics-grounded computational model for autoaggregation. Collectively, our research demonstrates that T4Ps involved in cell-to-cell contact can impose a selective burden when V. cholerae encounters non-kin cells that possess an active T6SS. Additionally, our study underscores the significance of T4P diversity in protecting closely related individuals from T6SS attacks through autoaggregation and spatial segregation.


Subject(s)
Fimbriae, Bacterial , Type VI Secretion Systems , Vibrio cholerae , Vibrio cholerae/physiology , Vibrio cholerae/metabolism , Type VI Secretion Systems/metabolism , Type VI Secretion Systems/genetics , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/physiology , Microbial Interactions/physiology
6.
Proc Natl Acad Sci U S A ; 121(17): e2321989121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625941

ABSTRACT

Type IVa pili (T4aP) are ubiquitous cell surface filaments important for surface motility, adhesion to surfaces, DNA uptake, biofilm formation, and virulence. T4aP are built from thousands of copies of the major pilin subunit and tipped by a complex composed of minor pilins and in some systems also the PilY1 adhesin. While major pilins of structurally characterized T4aP have lengths of <165 residues, the major pilin PilA of Myxococcus xanthus is unusually large with 208 residues. All major pilins have a conserved N-terminal domain and a variable C-terminal domain, and the additional residues of PilA are due to a larger C-terminal domain. We solved the structure of the M. xanthus T4aP (T4aPMx) at a resolution of 3.0 Å using cryo-EM. The T4aPMx follows the structural blueprint of other T4aP with the pilus core comprised of the interacting N-terminal α1-helices, while the globular domains decorate the T4aP surface. The atomic model of PilA built into this map shows that the large C-terminal domain has more extensive intersubunit contacts than major pilins in other T4aP. As expected from these greater contacts, the bending and axial stiffness of the T4aPMx is significantly higher than that of other T4aP and supports T4aP-dependent motility on surfaces of different stiffnesses. Notably, T4aPMx variants with interrupted intersubunit interfaces had decreased bending stiffness, pilus length, and strongly reduced motility. These observations support an evolutionary scenario whereby the large major pilin enables the formation of a rigid T4aP that expands the environmental conditions in which the T4aP system functions.


Subject(s)
Fimbriae Proteins , Myxococcus xanthus , Fimbriae Proteins/metabolism , Myxococcus xanthus/genetics , Myxococcus xanthus/metabolism , Fimbriae, Bacterial/metabolism , Protein Structure, Secondary , Virulence
7.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38647527

ABSTRACT

Pseudomonas aeruginosa is a cause of chronic respiratory tract infections in people with cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease. Prolonged infection allows the accumulation of mutations and horizontal gene transfer, increasing the likelihood of adaptive phenotypic traits. Adaptation is proposed to arise first in bacterial populations colonizing upper airway environments. Here, we model this process using an experimental evolution approach. Pseudomonas aeruginosa PAO1, which is not airway adapted, was serially passaged, separately, in media chemically reflective of upper or lower airway environments. To explore whether the CF environment selects for unique traits, we separately passaged PAO1 in airway-mimicking media with or without CF-specific factors. Our findings demonstrated that all airway environments-sinus and lungs, under CF and non-CF conditions-selected for loss of twitching motility, increased resistance to multiple antibiotic classes, and a hyper-biofilm phenotype. These traits conferred increased airway colonization potential in an in vivo model. CF-like conditions exerted stronger selective pressures, leading to emergence of more pronounced phenotypes. Loss of twitching was associated with mutations in type IV pili genes. Type IV pili mediate surface attachment, twitching, and induction of cAMP signalling. We additionally identified multiple evolutionary routes to increased biofilm formation involving regulation of cyclic-di-GMP signalling. These included the loss of function mutations in bifA and dipA phosphodiesterase genes and activating mutations in the siaA phosphatase. These data highlight that airway environments select for traits associated with sessile lifestyles and suggest upper airway niches support emergence of phenotypes that promote establishment of lung infection.


Subject(s)
Adaptation, Physiological , Biofilms , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/metabolism , Pseudomonas Infections/microbiology , Biofilms/growth & development , Animals , Lung/microbiology , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Second Messenger Systems , Cystic Fibrosis/microbiology , Mice , Humans , Anti-Bacterial Agents/pharmacology , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Mutation , Phenotype
8.
Chemosphere ; 358: 142174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685325

ABSTRACT

Silver (Ag) is a pivotal transition metal with applications in multiple industries, necessitating efficient recovery techniques. Despite various proposed methods for silver recovery from wastewaters, challenges persist especially for low concentrations. In this context, bioreduction by bacteria like Geobacter sulfurreducens, offers a promising approach by converting Ag(I) to Ag nanoparticles. To reveal the mechanisms driving microbial Ag(I) reduction, we conducted transcriptional profiling of G. sulfurreducens under Ag(I)-reducing condition. Integrated transcriptomic and protein-protein interaction network analyses identified significant transcriptional shifts, predominantly linked to c-type cytochromes, NADH, and pili. When compared to a pilus-deficient strain, the wild-type strain exhibited distinct cytochrome gene expressions, implying specialized functional roles. Additionally, despite a down-regulation in NADH dehydrogenase genes, we observed up-regulation of specific downstream cytochrome genes, highlighting NADH's potential role as an electron donor in the Ag(I) reduction process. Intriguingly, our findings also highlight the significant influence of pili on the morphology of the resulting Ag nanoparticles. The presence of pili led to the formation of smaller and more crystallized Ag nanoparticles. Overall, our findings underscore the intricate interplay of cytochromes, NADH, and pili in Ag(I) reduction. Such insights suggest potential strategies for further enhancing microbial Ag(I) reduction.


Subject(s)
Cytochromes , Fimbriae, Bacterial , Geobacter , NAD , Oxidation-Reduction , Silver , Transcriptome , Geobacter/metabolism , Geobacter/genetics , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Cytochromes/metabolism , Cytochromes/genetics , NAD/metabolism , Metal Nanoparticles/chemistry
9.
Sci Total Environ ; 927: 172242, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38582122

ABSTRACT

Bacterial adhesion plays a vital role in forming and shaping the structure of electroactive biofilms that are essential for the performance of bioelectrochemical systems (BESs). Type IV pili are known to mediate cell adhesion in many Gram-negative bacteria, but the mechanism of pili-mediated cell adhesion of Geobacter species on anode surface remains unclear. Herein, a minor pilin PilV2 was found to be essential for cell adhesion ability of Geobacter sulfurreducens since the lack of pilV2 gene depressed the cell adhesion capability by 81.2% in microplate and the anodic biofilm density by 23.1 % at -0.1 V and 37.7 % at -0.3 V in BESs. The less cohesiveness of mutant biofilms increased the charge transfer resistance and biofilm resistance, which correspondingly lowered current generation of the pilV2-deficient strain by up to 63.2 % compared with that of the wild-type strain in BESs. The deletion of pilV2 posed an insignificant effect on the production of extracellular polysaccharides, pili, extracellular cytochromes and electron shuttles that are involved in biofilm formation or extracellular electron transfer (EET) process. This study demonstrated the significance of pilV2 gene in cell adhesion and biofilm formation of G. sulfurreducens, as well as the importance of pili-mediated adhesion for EET of electroactive biofilm.


Subject(s)
Bacterial Adhesion , Biofilms , Fimbriae Proteins , Geobacter , Geobacter/physiology , Geobacter/genetics , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/physiology , Fimbriae, Bacterial/metabolism , Bioelectric Energy Sources
10.
Biochem Biophys Res Commun ; 706: 149765, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38484573

ABSTRACT

Bacterial chemoreceptors sense the extracellular signals and regulate bacterial motilities, biofilm formation, etc. The periplasmic ligand binding domains of chemoreceptors occur as different structural folds and recognize a diversity of chemical molecules. In Pseudomonas aeruginosa (PAO1), two bacterial chemoreceptors, McpN (PA2788) and PilJ (PA0411), are proposed to both contain a PilJ-like ligand-binding domain (LBD) (Pfam motif PF13675) and involved in nitrate chemotaxis and type IV pilus-mediated motility, respectively. The LBDs of McpN and PilJ consist of 135 and 263 residues, respectively, and share very low sequence identity, suggesting they might occur as different structures. Here, we found that PilJ-LBD folded into an HBM module, the same as the sensor domains of McpS-LBD and TorS-LBD, but it differed from that of McpN-LBD. We also observed a trimer in SEC and AUC and proposed a trimeric model based on the crystal structure. Based on the sequence, we classified the Pfam containing McpN-LBD and PilJ-LBD into three classes: sPilJ (single PilJ) represented by McpN-LBD with only one PilJ domain, dPilJ (dual PilJ) that contained dual PilJ domains, and hPilJ (hybrid PilJ) that comprises of a PilJ domain and another non-PilJ domain. Our work indicates a significant structural difference between the ligand binding domains of PilJ and McpN and will help our further study on both kinds of chemoreceptors.


Subject(s)
Bacterial Proteins , Fimbriae, Bacterial , Bacterial Proteins/metabolism , Ligands , Fimbriae, Bacterial/metabolism , Protein Domains , Chemotaxis , Bacteria/metabolism
11.
Nat Commun ; 15(1): 2414, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499587

ABSTRACT

Type IV pili (T4P) are prevalent, polymeric surface structures in pathogenic bacteria, making them ideal targets for effective vaccines. However, bacteria have evolved efficient strategies to evade type IV pili-directed antibody responses. Neisseria meningitidis are prototypical type IV pili-expressing Gram-negative bacteria responsible for life threatening sepsis and meningitis. This species has evolved several genetic strategies to modify the surface of its type IV pili, changing pilin subunit amino acid sequence, nature of glycosylation and phosphoforms, but how these modifications affect antibody binding at the structural level is still unknown. Here, to explore this question, we determine cryo-electron microscopy (cryo-EM) structures of pili of different sequence types with sufficiently high resolution to visualize posttranslational modifications. We then generate nanobodies directed against type IV pili which alter pilus function in vitro and in vivo. Cyro-EM in combination with molecular dynamics simulation of the nanobody-pilus complexes reveals how the different types of pili surface modifications alter nanobody binding. Our findings shed light on the impressive complementarity between the different strategies used by bacteria to avoid antibody binding. Importantly, we also show that structural information can be used to make informed modifications in nanobodies as countermeasures to these immune evasion mechanisms.


Subject(s)
Single-Domain Antibodies , Cryoelectron Microscopy , Single-Domain Antibodies/metabolism , Fimbriae, Bacterial/metabolism , Fimbriae Proteins/metabolism , Amino Acid Sequence
12.
Front Cell Infect Microbiol ; 14: 1375887, 2024.
Article in English | MEDLINE | ID: mdl-38505286

ABSTRACT

Salmonella enterica is a food-borne pathogen able to cause a wide spectrum of diseases ranging from mild gastroenteritis to systemic infections. During almost all stages of the infection process Salmonella is likely to be exposed to a wide variety of host-derived antimicrobial peptides (AMPs). AMPs are important components of the innate immune response which integrate within the bacterial membrane, thus forming pores which lead ultimately to bacterial killing. In contrast to other AMPs Bactericidal/Permeability-increasing Protein (BPI) displayed only weak bacteriostatic or bactericidal effects towards Salmonella enterica sv. Typhimurium (STM) cultures. Surprisingly, we found that sub-antimicrobial concentrations of BPI fold-containing (BPIF) superfamily members mediated adhesion of STM depending on pre-formed type 1 fimbriae. BPIF proteins directly bind to type 1 fimbriae through mannose-containing oligosaccharide modifications. Fimbriae decorated with BPIF proteins exhibit extended binding specificity, allowing for bacterial adhesion on a greater variety of abiotic and biotic surfaces likely promoting host colonization. Further, fimbriae significantly contributed to the resistance against BPI, probably through sequestration of the AMP before membrane interaction. In conclusion, functional subversion of innate immune proteins of the BPIF family through binding to fimbriae promotes Salmonella virulence by survival of host defense and promotion of host colonization.


Subject(s)
Salmonella enterica , Salmonella typhimurium , Fimbriae, Bacterial/metabolism , Bacterial Adhesion , Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism
13.
Nat Commun ; 15(1): 2746, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553443

ABSTRACT

Acinetobacters pose a significant threat to human health, especially those with weakened immune systems. Type IV pili of acinetobacters play crucial roles in virulence and antibiotic resistance. Single-stranded RNA bacteriophages target the bacterial retractile pili, including type IV. Our study delves into the interaction between Acinetobacter phage AP205 and type IV pili. Using cryo-electron microscopy, we solve structures of the AP205 virion with an asymmetric dimer of maturation proteins, the native Acinetobacter type IV pili bearing a distinct post-translational pilin cleavage, and the pili-bound AP205 showing its maturation proteins adapted to pilin modifications, allowing each phage to bind to one or two pili. Leveraging these results, we develop a 20-kilodalton AP205-derived protein scaffold targeting type IV pili in situ, with potential for research and diagnostics.


Subject(s)
Acinetobacter , Bacteriophages , RNA Viruses , Humans , Fimbriae Proteins/metabolism , Acinetobacter/metabolism , Cryoelectron Microscopy , Fimbriae, Bacterial/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism
14.
Mol Microbiol ; 121(5): 833-849, 2024 05.
Article in English | MEDLINE | ID: mdl-38308563

ABSTRACT

The nosocomial bacterium Acinetobacter baumannii is protected from antibiotic treatment by acquiring antibiotic resistances and by forming biofilms. Cell attachment, one of the first steps in biofilm formation, is normally induced by environmental metabolites. We hypothesized that vanillic acid (VA), the oxidized form of vanillin and a widely available metabolite, may play a role in A. baumannii cell attachment. We first discovered that A. baumannii actively breaks down VA through the evolutionarily conserved vanABKP genes. These genes are under the control of the repressor VanR, which we show binds directly to VanR binding sites within the vanABKP genes bidirectional promoter. VA in turn counteracts VanR inhibition. We identified a VanR binding site and searched for it throughout the genome, especially in pili encoding promoter genes. We found a VanR binding site in the pilus encoding csu operon promoter and showed that VanR binds specifically to it. As expected, a strain lacking VanR overproduces Csu pili and makes robust biofilms. Our study uncovers the role that VA plays in facilitating the attachment of A. baumannii cells to surfaces, a crucial step in biofilm formation. These findings provide valuable insights into a previously obscure catabolic pathway with significant clinical implications.


Subject(s)
Acinetobacter baumannii , Bacterial Adhesion , Bacterial Proteins , Biofilms , Fimbriae, Bacterial , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Vanillic Acid , Acinetobacter baumannii/metabolism , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Vanillic Acid/metabolism , Vanillic Acid/pharmacology , Biofilms/growth & development , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Operon , Binding Sites , Benzaldehydes/metabolism , Benzaldehydes/pharmacology
15.
PLoS Biol ; 22(2): e3002488, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38349934

ABSTRACT

Bacteria live in social communities, where the ability to sense and respond to interspecies and environmental signals is critical for survival. We previously showed the pathogen Pseudomonas aeruginosa detects secreted peptides from bacterial competitors and navigates through interspecies signal gradients using pilus-based motility. Yet, it was unknown whether P. aeruginosa utilizes a designated chemosensory system for this behavior. Here, we performed a systematic genetic analysis of a putative pilus chemosensory system, followed by high-speed live-imaging and single-cell tracking, to reveal behaviors of mutants that retain motility but are blind to interspecies signals. The enzymes predicted to methylate (PilK) and demethylate (ChpB) the putative pilus chemoreceptor, PilJ, are necessary for cells to control the direction of migration. While these findings implicate PilJ as a bona fide chemoreceptor, such function had yet to be experimentally defined, as full-length PilJ is essential for motility. Thus, we constructed systematic genetic modifications of PilJ and found that without the predicted ligand binding domains or predicted methylation sites, cells lose the ability to detect competitor gradients, despite retaining pilus-mediated motility. Chemotaxis trajectory analysis revealed that increased probability and size of P. aeruginosa pilus-mediated steps towards S. aureus peptides, versus steps away, determines motility bias in wild type cells. However, PilJ mutants blind to interspecies signals take less frequent steps towards S. aureus or steps of equal size towards and away. Collectively, this work uncovers the chemosensory nature of PilJ, provides insight into how cell movements are biased during pilus-based chemotaxis, and identifies chemotactic interactions necessary for bacterial survival in polymicrobial communities, revealing putative pathways where therapeutic intervention might disrupt bacterial communication.


Subject(s)
Chemotaxis , Staphylococcus aureus , Chemotaxis/genetics , Staphylococcus aureus/metabolism , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Cell Movement , Peptides/metabolism , Bacterial Proteins/metabolism , Pseudomonas aeruginosa/metabolism
16.
Proc Natl Acad Sci U S A ; 121(4): e2317452121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38236729

ABSTRACT

Bacterial flagella and type IV pili (TFP) are surface appendages that enable motility and mechanosensing through distinct mechanisms. These structures were previously thought to have no components in common. Here, we report that TFP and some flagella share proteins PilO, PilN, and PilM, which we identified as part of the Helicobacter pylori flagellar motor. H. pylori mutants lacking PilO or PilN migrated better than wild type in semisolid agar because they continued swimming rather than aggregated into microcolonies, mimicking the TFP-regulated surface response. Like their TFP homologs, flagellar PilO/PilN heterodimers formed a peripheral cage that encircled the flagellar motor. These results indicate that PilO and PilN act similarly in flagella and TFP by differentially regulating motility and microcolony formation when bacteria encounter surfaces.


Subject(s)
Bacterial Proteins , Fimbriae, Bacterial , Bacterial Proteins/metabolism , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Bacteria , Flagella/physiology
17.
mBio ; 15(1): e0142323, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38063437

ABSTRACT

IMPORTANCE: Type IV pili and type II secretion systems are members of the widespread type IV filament (T4F) superfamily of nanomachines that assemble dynamic and versatile surface fibers in archaea and bacteria. The assembly and retraction of T4 filaments with diverse surface properties and functions require the plasma membrane platform proteins of the GspF/PilC superfamily. Generally considered dimeric, platform proteins are thought to function as passive transmitters of the mechanical energy generated by the ATPase motor, to somehow promote insertion of pilin subunits into the nascent pilus fibers. Here, we generate and experimentally validate structural predictions that support the trimeric state of a platform protein PulF from a type II secretion system. The PulF trimers form selective proton or sodium channels which might energize pilus assembly using the membrane potential. The conservation of the channel sequence and structural features implies a common mechanism for all T4F assembly systems. We propose a model of the oligomeric PulF-PulE ATPase complex that provides an essential framework to investigate and understand the pilus assembly mechanism.


Subject(s)
Type II Secretion Systems , Type II Secretion Systems/metabolism , Klebsiella , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Adenosine Triphosphatases/metabolism , Ion Channels/genetics , Ion Channels/metabolism
18.
mBio ; 15(1): e0266723, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38095871

ABSTRACT

IMPORTANCE: Type 4 filaments (T4F) are nanomachines ubiquitous in prokaryotes, centered on filamentous polymers of type 4 pilins. T4F are exceptionally versatile and widespread virulence factors in bacterial pathogens. The mechanisms of filament assembly and the many functions they facilitate remain poorly understood because of the complexity of T4F machineries. This hinders the development of anti-T4F drugs. The significance of our research lies in characterizing the simplest known T4F-the Com pilus that mediates DNA uptake in competent monoderm bacteria-and showing that four protein components universally conserved in T4F are sufficient for filament assembly. The Com pilus becomes a model for elucidating the mechanisms of T4F assembly.


Subject(s)
Fimbriae, Bacterial , Streptococcus sanguis , Streptococcus sanguis/genetics , Streptococcus sanguis/metabolism , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Bacteria/genetics , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , DNA/metabolism
19.
Protein Expr Purif ; 215: 106411, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38056514

ABSTRACT

Pathogenic strains of Escherichia coli F17+ are associated with various intestinal and extra-intestinal pathologies, including diarrhea, and result in significant animal mortality. These infections rely on the expression of virulence factors, such as F17 fimbriae, for adhesion. F17 fimbriae form a protective layer on the surface of E. coli bacteria, consisting of a major structural subunit, F17A, and a minor functional subunit, F17G. Because of the evolution of bacterial resistance, conventional antibiotic treatments have limited efficacy. Therefore, there is a pressing need to develop novel therapeutic tools. In this study, we cloned and produced the F17G protein. We then immunized a camel with the purified F17G protein and constructed a VHH library consisting of 2 × 109 clones. The library was then screened against F17G protein using phage display technology. Through this process, we identified an anti-F17G nanobody that was subsequently linked, via a linker, to an anti-F17A nanobody, resulting in the creation of an effective bispecific nanobody. Comprehensive characterization of this bispecific nanobody demonstrated excellent production, specific binding capacity to both recombinant forms of the two F17 antigens and the E. coli F17+ strain, remarkable stability in camel serum, and superior resistance to pepsin protease. The successful generation of this bispecific nanobody with excellent production, specific binding capacity and stability highlights its potential as a valuable tool for fighting infections caused by pathogenic E. coli F17+ strain.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Escherichia coli/genetics , Escherichia coli/chemistry , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Camelus , Fimbriae, Bacterial/chemistry , Fimbriae, Bacterial/metabolism , Diarrhea/metabolism , Diarrhea/microbiology
20.
Nat Rev Microbiol ; 22(3): 170-185, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37814112

ABSTRACT

Considerable progress has been made in recent years in the structural and molecular biology of type IV secretion systems in Gram-negative bacteria. The latest advances have substantially improved our understanding of the mechanisms underlying the recruitment and delivery of DNA and protein substrates to the extracellular environment or target cells. In this Review, we aim to summarize these exciting structural and molecular biology findings and to discuss their functional implications for substrate recognition, recruitment and translocation, as well as the biogenesis of extracellular pili. We also describe adaptations necessary for deploying a breadth of processes, such as bacterial survival, host-pathogen interactions and biotic and abiotic adhesion. We highlight the functional and structural diversity that allows this extremely versatile secretion superfamily to function under different environmental conditions and in different bacterial species. Additionally, we emphasize the importance of further understanding the mechanism of type IV secretion, which will support us in combating antimicrobial resistance and treating type IV secretion system-related infections.


Subject(s)
Fimbriae, Bacterial , Type IV Secretion Systems , Type IV Secretion Systems/genetics , Type IV Secretion Systems/chemistry , Fimbriae, Bacterial/metabolism , Bacteria/genetics , Bacteria/metabolism , Gram-Negative Bacteria/metabolism , DNA , Bacterial Proteins/genetics , Bacterial Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...