Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.965
Filter
1.
Mol Biol Rep ; 51(1): 709, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824265

ABSTRACT

BACKGROUND: Cystatin is a protease inhibitor that also regulates genes expression linked to inflammation and plays a role in defense and regulation. METHODS AND RESULTS: Cystatin 10 (Smcys10) was cloned from Scophthalmus maximus and encodes a 145 amino acid polypeptide. The results of qRT-PCR showed that Smcys10 exhibited tissue-specific expression patterns, and its expression was significantly higher in the skin than in other tissues. The expression level of Smcys10 was significantly different in the skin, gill, head kidney, spleen and macrophages after Vibrio anguillarum infection, indicating that Smcys10 may play an important role in resistance to V. anguillarum infection. The recombinant Smcys10 protein showed binding and agglutinating activity in a Ca2+-dependent manner against bacteria. rSmcys10 treatment upregulated the expression of IL-10, TNF-α and TGF-ß in macrophages of turbot and hindered the release of lactate dehydrogenase (LDH) from macrophages after V. anguillarum infection, which confirmed that rSmcys10 reduced the damage to macrophages by V. anguillarum. The NF-κB pathway was suppressed by Smcys10, as demonstrated by dual-luciferase analysis. CONCLUSIONS: These results indicated that Smcys10 is involved in the host antibacterial immune response.


Subject(s)
Cystatins , Fish Diseases , Fish Proteins , Flatfishes , Macrophages , Vibrio , Animals , Flatfishes/immunology , Flatfishes/genetics , Flatfishes/metabolism , Vibrio/pathogenicity , Cystatins/genetics , Cystatins/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Macrophages/metabolism , Macrophages/immunology , Fish Diseases/immunology , Fish Diseases/genetics , Fish Diseases/microbiology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Vibrio Infections/genetics , NF-kappa B/metabolism , Cloning, Molecular/methods , Gene Expression Regulation
2.
BMC Vet Res ; 20(1): 243, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835040

ABSTRACT

BACKGROUND: The liver-expressed antimicrobial peptide 2 (LEAP2) plays a pivotal role in the host's immune response against pathogenic microorganisms. Numerous such antimicrobial peptides have recently been shown to mitigate infection risk in fish, and studying those harboured by the economically important fish Acrossocheilus fasciatus is imperative for enhancing its immune responses against pathogenic microorganisms. In this study, we cloned and sequenced LEAP2 cDNA from A. fasciatus to examine its expression in immune tissues and investigate the structure-activity relationships of its intramolecular disulphide bonds. RESULTS: The predicted amino acid sequence of A. fasciatus LEAP2 was found to include a signal peptide, pro-domain, and mature peptide. Sequence analysis indicated that A. fasciatus LEAP2 is a member of the fish LEAP2A cluster and is closely related to Cyprinus carpio LEAP2A. A. fasciatus LEAP2 transcripts were expressed in various tissues, with the head kidney exhibiting the highest mRNA levels. Upon exposure to Aeromonas hydrophila infection, LEAP2 expression was significantly upregulated in the liver, head kidney, and spleen. A mature peptide of A. fasciatus LEAP2, consisting of two disulphide bonds (Af-LEAP2-cys), and a linear form of the LEAP2 mature peptide (Af-LEAP2) were chemically synthesised. The circular dichroism spectroscopy result shows differences between the secondary structures of Af-LEAP2 and Af-LEAP2-cys, with a lower proportion of alpha helix and a higher proportion of random coil in Af-LEAP2. Af-LEAP2 exhibited potent antimicrobial activity against most tested bacteria, including Acinetobacter guillouiae, Pseudomonas aeruginosa, Staphylococcus saprophyticus, and Staphylococcus warneri. In contrast, Af-LEAP2-cys demonstrated weak or no antibacterial activity against the tested bacteria. Af-LEAP2 had a disruptive effect on bacterial cell membrane integrity, whereas Af-LEAP2-cys did not exhibit this effect. Additionally, neither Af-LEAP2 nor Af-LEAP2-cys displayed any observable ability to hydrolyse the genomic DNA of P. aeruginosa. CONCLUSIONS: Our study provides clear evidence that linear LEAP2 exhibits better antibacterial activity than oxidised LEAP2, thereby confirming, for the first time, this phenomenon in fish.


Subject(s)
Amino Acid Sequence , Animals , Structure-Activity Relationship , Fish Diseases/microbiology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Fish Proteins/genetics , Fish Proteins/chemistry , Disulfides/chemistry , Phylogeny , Aeromonas hydrophila/drug effects , Base Sequence
3.
Mol Biol Rep ; 51(1): 616, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722391

ABSTRACT

BACKGROUND: Chlorpyrifos (CPF) is a widely used pesticide in the production of plant crops. Despite rapid CPF biodegradation, fish were exposed to wastewater containing detectable residues. Recently, medicinal plants and algae were intensively used in aquaculture to replace antibiotics and ameliorate stress impacts. METHODS AND RESULTS: An indoor experiment was conducted to evaluate the deleterious impacts of CPF pollution on Nile tilapia health and the potential mitigation role of Chlorella vulgaris algae. Firstly, the median lethal concentration LC50 - 72 h of CPF was determined to be 85.8 µg /L in Nile tilapia (35.6 ± 0.5 g body weight) at a water temperature of 27.5 °C. Secondly, fish were exposed to 10% of LC50 - 72 h for six weeks, and tissue samples were collected and examined every two weeks. Also, Nile tilapia were experimentally infected with Streptococcus agalactiae. Exposed fish were immunosuppressed expressed with a decrease in gene expressions of interleukin (IL) 1ß, IL-10, and tumor necrosis factor (TNF)-α. Also, a decline was recorded in glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) gene expression in the head kidney tissue. A high mortality rate (MR) of 100% was recorded in fish exposed to CPF for six weeks and challenged with S. agalactiae. Fish that received dietary C. vulgaris could restore gene expression cytokines and antioxidants compared to the control. After six weeks of CPF exposure, fish suffered from anemia as red blood cell count (RBCs), hemoglobin (Hb), and packed cell volume (PCV) significantly declined along with downregulation of serum total protein (TP), globulin (GLO), and albumin (ALB). Liver enzymes were significantly upregulated in fish exposed to CPF pollution, alanine aminotransferase (ALT) (42.5, 53.3, and 61.7 IU/L) and aspartate aminotransferase (AST) (30.1, 31.2, and 22.8) after 2, 4, and 6 weeks, respectively. On S. agalactiae challenge, high MR was recorded in Nile tilapia exposed to CPF (G3) 60%, 60%, and 100% in week 2, week 4, and week 6, and C. vulgaris provided a relative protection level (RPL) of 0, 14.29, and 20%, respectively. CONCLUSIONS: It was concluded that CPF pollution induces immunosuppressed status, oxidative stress, and anemic signs in Nile tilapia. In contrast, C. vulgaris at a 50 g/kg fish feed dose could partially ameliorate such withdrawals, restoring normal physiological parameters.


Subject(s)
Antioxidants , Chlorella vulgaris , Chlorpyrifos , Cichlids , Fish Diseases , Streptococcus agalactiae , Animals , Streptococcus agalactiae/drug effects , Cichlids/metabolism , Cichlids/microbiology , Cichlids/genetics , Chlorpyrifos/toxicity , Antioxidants/metabolism , Fish Diseases/microbiology , Streptococcal Infections/veterinary , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Catalase/metabolism , Catalase/genetics , Water Pollutants, Chemical/toxicity , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Oxidative Stress/drug effects , Aquaculture/methods
4.
Curr Microbiol ; 81(7): 174, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753164

ABSTRACT

The Oscar fish (Astronotus ocellatus) is among the most commonly domesticated and exported ornamental fish species from Kerala. The ornamental fish industry faces a significant challenge with the emergence of diseases caused by multi-drug-resistant bacteria. In the present study, six isolates were resolved from the diseased Oscar fish showing haemorrhages, necrosis, and loss of pigmentation. After phenotypic and genotypic characterization, the bacteria were identified as Edwardsiella tarda, Klebsiella pneumoniae, Enterococcus faecalis, Escherichia coli, Brevibacillus borstelensis, and Staphylococcus hominis. Experimental challenge studies in healthy Oscar fish showed that E. tarda caused 100% mortality within 240 h with 6.99 × 106 CFU/fish as LD50 and histopathology revealed the typical signs of infection. The pathogen was re-recovered from the moribund fish thereby confirming Koch's postulates. E. tarda was confirmed through the positive amplification of tarda-specific gene and virulence genes viz., etfD and escB were also detected using PCR. Antibiotic susceptibility tests using disc diffusion displayed that the pathogen is multi-drug-resistant towards antibiotics belonging to aminoglycosides, tetracyclines, and quinolones categories with a MAR index of 0.32, which implicated the antibiotic pressure in the farm. Plasmid curing studies showed a paradigm shift in the resistance pattern with MAR index of 0.04, highlighting the resistance genes are plasmid-borne except for the chromosome-borne tetracycline resistance gene (tetA). This study is the first of its kind in detecting mass mortality caused by E. tarda in Oscar fish. Vigilant surveillance and strategic actions are crucial for the precise detection of pathogens and AMR in aquaculture.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Edwardsiella tarda , Enterobacteriaceae Infections , Fish Diseases , Microbial Sensitivity Tests , Animals , Fish Diseases/microbiology , Fish Diseases/mortality , Edwardsiella tarda/genetics , Edwardsiella tarda/pathogenicity , Edwardsiella tarda/isolation & purification , Edwardsiella tarda/drug effects , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/mortality , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Fishes/microbiology , Virulence/genetics , Virulence Factors/genetics
5.
Article in English | MEDLINE | ID: mdl-38809248

ABSTRACT

A rapidly growing nontuberculous mycobacterium was isolated from diseased koi carp in Niigata, Japan, which was identified as representing a novel Mycolicibacterium species through whole genome sequence analysis. The bacterial isolates (NGTWS0302, NGTWS1803T and NGTWSNA01) were found to belong to the genus Mycolicibacterium through phylogenetic analysis using whole genome sequences of mycobacteria species. The bacterial colony was smooth, moist and non-chromogenic on 1% Ogawa medium at 30 °C. In biochemical characteristic tests, the bacterial isolates showed positive reactions for catalase activity, Tween 80 hydrolysis and tellurite reduction. The isolates were sensitive to 2-4 µg ml-1 ampicillin, kanamycin and rifampicin. Based on these results, we propose a novel Mycolicibacterium species, Mycolicibacterium cyprinidarum sp. nov. The type strain is NGTWS1803T (=JCM 35117T=ATCC TSD-289T).


Subject(s)
Bacterial Typing Techniques , Carps , DNA, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Animals , Carps/microbiology , Japan , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Fish Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Fatty Acids , Microbial Sensitivity Tests , Whole Genome Sequencing , Base Composition
6.
BMC Vet Res ; 20(1): 231, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802892

ABSTRACT

BACKGROUND: Moringa oleifera, a well-known medicinal plant, has been used in aquafeed as a dietary supplement. Based on previous studies, insufficient research is available on the dietary supplementation of Nile tilapia with M. oleifera leaf and seed mixtures, specifically the fermented form. Therefore, this study aimed to investigate the efficacy of fermented (FMO) versus non-fermented M. oleifera (MO) leaf and seed mixtures on immunological parameters, antioxidant activity, growth performance, and resistance to A. hydrophila infection after a 30-day feeding trial on Nile tilapia. METHODS: A total of 180 fingerlings were randomly divided into four groups in addition to the control group (36 fish each, in triplicate). Fish in the tested groups were fed on basal diet supplemented with MO5%, MO10%, FMO5%, and FMO10%, while those in control were fed on basal diet only. After the feeding trial, fish were challenged with A. hydrophila. The immunomodulatory activity of M. oleifera was evaluated in terms of phagocytic and lysozyme activities, immune-related cytokines and IgM gene expression. Antioxidants, and growth-promoting activities were also assessed. RESULTS: The results revealed that fish supplemented FMO markedly in FMO10% group followed by FMO5%, exhibited significant (P < 0.05) improvement in the tested immunological, hepatic antioxidants, and growth performance parameters. Furthermore, the highest survival rate post-challenge with mild clinical symptoms, and the lowest A. hydrophila bacterial count were reported in these groups. Meanwhile, MO10%-supplementation exhibited the opposite trend. CONCLUSIONS: The study' conclusion suggests that fermented M. oleifera leaf and seed mixture is a promising growth-promoting and immunostimulatory feed-additive candidate for Nile tilapia and could reduce the losses caused by A. hydrophila infection.


Subject(s)
Aeromonas hydrophila , Animal Feed , Antioxidants , Cichlids , Diet , Dietary Supplements , Fish Diseases , Gram-Negative Bacterial Infections , Moringa oleifera , Animals , Moringa oleifera/chemistry , Cichlids/growth & development , Cichlids/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Antioxidants/metabolism , Animal Feed/analysis , Fish Diseases/prevention & control , Fish Diseases/immunology , Fish Diseases/microbiology , Diet/veterinary , Plant Leaves/chemistry , Fermentation , Seeds/chemistry
7.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732232

ABSTRACT

C-type lectins in organisms play an important role in the process of innate immunity. In this study, a C-type lectin belonging to the DC-SIGN class of Micropterus salmoides was identified. MsDC-SIGN is classified as a type II transmembrane protein. The extracellular segment of MsDC-SIGN possesses a coiled-coil region and a carbohydrate recognition domain (CRD). The key amino acid motifs of the extracellular CRD of MsDC-SIGN in Ca2+-binding site 2 were EPN (Glu-Pro-Asn) and WYD (Trp-Tyr-Asp). MsDC-SIGN-CRD can bind to four pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), glucan, peptidoglycan (PGN), and mannan. Moreover, it can also bind to Gram-positive, Gram-negative bacteria, and fungi. Its CRD can agglutinate microbes and displays D-mannose and D-galactose binding specificity. MsDC-SIGN was distributed in seven tissues of the largemouth bass, among which the highest expression was observed in the liver, followed by the spleen and intestine. Additionally, MsDC-SIGN was present on the membrane of M. salmoides leukocytes, thereby augmenting the phagocytic activity against bacteria. In a subsequent investigation, the expression patterns of the MsDC-SIGN gene and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) exhibited an up-regulated expression response to the stimulation of Aeromonas hydrophila. Furthermore, through RNA interference of MsDC-SIGN, the expression level of the DC-SIGN signaling pathway-related gene (RAF1) and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) was decreased. Therefore, MsDC-SIGN plays a pivotal role in the immune defense against A. hydrophila by modulating the TLR signaling pathway.


Subject(s)
Aeromonas hydrophila , Bass , Cell Adhesion Molecules , Lectins, C-Type , Receptors, Cell Surface , Signal Transduction , Animals , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Aeromonas hydrophila/immunology , Bass/immunology , Bass/metabolism , Bass/microbiology , Bass/genetics , Toll-Like Receptors/metabolism , Toll-Like Receptors/genetics , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/metabolism , Immunity, Innate , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/metabolism , Gram-Negative Bacterial Infections/microbiology , Fish Proteins/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Pathogen-Associated Molecular Pattern Molecules/immunology
8.
Emerg Infect Dis ; 30(6): 1125-1132, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781928

ABSTRACT

During October 2022, enteric redmouth disease (ERM) affected Chinese sturgeons at a farm in Hubei, China, causing mass mortality. Affected fish exhibited characteristic red mouth and intestinal inflammation. Investigation led to isolation of a prominent bacterial strain, zhx1, from the internal organs and intestines of affected fish. Artificial infection experiments confirmed the role of zhx1 as the pathogen responsible for the deaths. The primary pathologic manifestations consisted of degeneration, necrosis, and inflammatory reactions, resulting in multiple organ dysfunction and death. Whole-genome sequencing of the bacteria identified zhx1 as Yersinia ruckeri, which possesses 135 drug-resistance genes and 443 virulence factor-related genes. Drug-susceptibility testing of zhx1 demonstrated high sensitivity to chloramphenicol and florfenicol but varying degrees of resistance to 18 other antimicrobial drugs. Identifying the pathogenic bacteria associated with ERM in Chinese sturgeons establishes a theoretical foundation for the effective prevention and control of this disease.


Subject(s)
Fish Diseases , Fishes , Yersinia Infections , Yersinia ruckeri , Yersinia Infections/veterinary , Yersinia Infections/microbiology , Yersinia Infections/epidemiology , Animals , China/epidemiology , Fish Diseases/microbiology , Fish Diseases/epidemiology , Yersinia ruckeri/genetics , Fishes/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Whole Genome Sequencing , Drug Resistance, Bacterial
9.
Environ Pollut ; 352: 124103, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734053

ABSTRACT

At present, the quantity of micro/nano plastics in the environment is steadily rising, and their pollution has emerged as a global environmental issue. The tendency of their bioaccumulation in aquatic organisms (especially fish) has intensified people's attention to their persistent ecotoxicology. This review critically studies the accumulation of fish in the intestines of fish through active or passive intake of micro/nano plastics, resulting in their accumulation in intestinal organs and subsequent disturbance of intestinal microflora. The key lies in the complex toxic effect on the host after the disturbance of fish intestinal microflora. In addition, this review pointed out the characteristics of micro/nano plastics and the effects of their combined toxicity with adsorbed pollutants on fish intestinal microorganisms, in order to fully understand the characteristics of micro/nano plastics and emphasize the complex interaction between MNPs and other pollutants. We have an in-depth understanding of MNPs-induced intestinal flora disorders and intestinal dysfunction, affecting the host's systemic system, including immune system, nervous system, and reproductive system. The review also underscores the imperative for future research to investigate the toxic effects of prolonged exposure to MNPs, which are crucial for evaluating the ecological risks posed by MNPs and devising strategies to safeguard aquatic organisms.


Subject(s)
Dysbiosis , Fishes , Gastrointestinal Microbiome , Water Pollutants, Chemical , Animals , Gastrointestinal Microbiome/drug effects , Dysbiosis/chemically induced , Fishes/microbiology , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Plastics , Fish Diseases/microbiology , Fish Diseases/chemically induced , Nanoparticles/toxicity
10.
PLoS Biol ; 22(5): e3002606, 2024 May.
Article in English | MEDLINE | ID: mdl-38814944

ABSTRACT

Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metatranscriptomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Cohousing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.


Subject(s)
Zebrafish , Animals , Zebrafish/virology , Zebrafish/microbiology , Fish Diseases/virology , Fish Diseases/microbiology , Fish Diseases/transmission , Pets/virology , Pets/microbiology , Animals, Laboratory/virology , Animals, Laboratory/microbiology , Aquaculture
11.
Vet Res ; 55(1): 60, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750480

ABSTRACT

Bacterial ClpB is an ATP-dependent disaggregate that belongs to the Hsp100/Clp family and facilitates bacterial survival under hostile environmental conditions. Streptococcus agalactiae, which is regarded as the major bacterial pathogen of farmed Nile tilapia (Oreochromis niloticus), is known to cause high mortality and large economic losses. Here, we report a ClpB homologue of S. agalactiae and explore its functionality. S. agalactiae with a clpB deletion mutant (∆clpB) exhibited defective tolerance against heat and acidic stress, without affecting growth or morphology under optimal conditions. Moreover, the ΔclpB mutant exhibited reduced intracellular survival in RAW264.7 cells, diminished adherence to the brain cells of tilapia, increased sensitivity to leukocytes from the head kidney of tilapia and whole blood killing, and reduced mortality and bacterial loads in a tilapia infection assay. Furthermore, the reduced virulence of the ∆clpB mutant was investigated by transcriptome analysis, which revealed that deletion of clpB altered the expression levels of multiple genes that contribute to the stress response as well as certain metabolic pathways. Collectively, our findings demonstrated that ClpB, a molecular chaperone, plays critical roles in heat and acid stress resistance and virulence in S. agalactiae. This finding provides an enhanced understanding of the functionality of this ClpB homologue in gram-positive bacteria and the survival strategy of S. agalactiae against immune clearance during infection.


Subject(s)
Bacterial Proteins , Fish Diseases , Streptococcal Infections , Streptococcus agalactiae , Stress, Physiological , Streptococcus agalactiae/physiology , Streptococcus agalactiae/pathogenicity , Streptococcus agalactiae/genetics , Virulence , Animals , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Fish Diseases/microbiology , Cichlids , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mice , RAW 264.7 Cells
12.
Front Immunol ; 15: 1352469, 2024.
Article in English | MEDLINE | ID: mdl-38711504

ABSTRACT

Vibriosis, caused by Vibrio, seriously affects the health of fish, shellfish, and shrimps, causing large economic losses. Teleosts are represent the first bony vertebrates with both innate and adaptive immune responses against pathogens. Aquatic animals encounter hydraulic pressure and more pathogens, compared to terrestrial animals. The skin is the first line of defense in fish, constituting the skin-associated lymphoid tissue (SALT), which belongs to the main mucosa-associated lymphoid tissues (MALT). However, little is known about the function of immunity related proteins in fish. Therefore, this study used iTRAQ (isobaric tags for relative and absolute quantitation) to compare the skin proteome between the resistant and susceptible families of Cynoglossus semilaevis. The protein integrin beta-2, the alpha-enolase isoform X1, subunit B of V-type proton ATPase, eukaryotic translation initiation factor 6, and ubiquitin-like protein ISG15, were highly expressed in the resistant family. The 16S sequencing of the skin tissues of the resistant and susceptible families showed significant differences in the microbial communities of the two families. The protein-microbial interaction identified ten proteins associated with skin microbes, including immunoglobulin heavy chain gene (IGH), B-cell lymphoma/leukemia 10 (BCL10) and pre-B-cell leukemia transcription factor 1 isoform X2 (PBX2). This study highlights the interaction between skin proteins and the microbial compositions of C. semilaevis and provides new insights into understanding aquaculture breeding research.


Subject(s)
Disease Resistance , Fish Diseases , Fish Proteins , Flatfishes , Microbiota , Skin , Vibrio Infections , Vibrio , Animals , Skin/immunology , Skin/microbiology , Skin/metabolism , Fish Diseases/immunology , Fish Diseases/microbiology , Disease Resistance/immunology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Flatfishes/immunology , Flatfishes/microbiology , Microbiota/immunology , Vibrio/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Proteome , Proteomics/methods
13.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739115

ABSTRACT

Aeromonas spp. are commonly found in the aquatic environment and have been responsible for motile Aeromonas septicemia (MAS) in striped catfish, resulting in significant economic loss. These organisms also cause a range of opportunistic infections in humans with compromised immune systems. Here, we conducted a genomic investigation of 87 Aeromonas isolates derived from diseased catfish, healthy catfish and environmental water in catfish farms affected by MAS outbreaks in eight provinces in Mekong Delta (years: 2012-2022), together with 25 isolates from humans with bloodstream infections (years: 2010-2020). Genomics-based typing method precisely delineated Aeromonas species while traditional methods such as aerA PCR and MALDI-TOF were unable identify A. dhakensis. A. dhakensis was found to be more prevalent than A. hydrophila in both diseased catfish and human infections. A. dhakensis sequence type (ST) 656 followed by A. hydrophila ST251 were the predominant virulent species-lineages in diseased catfish (43.7 and 20.7 %, respectively), while diverse STs were found in humans with bloodstream infections. There was evidence of widespread transmission of ST656 and ST251 on striped catfish in the Mekong Delta region. ST656 and ST251 isolates carried a significantly higher number of acquired antimicrobial resistance (AMR) genes and virulence factors in comparison to other STs. They, however, exhibited several distinctions in key virulence factors (i.e. lack of type IV pili and enterotoxin ast in A. dhakensis), AMR genes (i.e. presence of imiH carbapenemase in A. dhakensis), and accessory gene content. To uncover potential conserved proteins of Aeromonas spp. for vaccine development, pangenome analysis has unveiled 2202 core genes between ST656 and ST251, of which 78 proteins were in either outer membrane or extracellular proteins. Our study represents one of the first genomic investigations of the species distribution, genetic landscape, and epidemiology of Aeromonas in diseased catfish and human infections in Vietnam. The emergence of antimicrobial resistant and virulent A. dhakensis strains underscores the needs of enhanced genomic surveillance and strengthening vaccine research and development in preventing Aeromonas diseases in catfish and humans, and the search for potential vaccine candidates could focus on Aeromonas core genes encoded for membrane and secreted proteins.


Subject(s)
Aeromonas , Catfishes , Fish Diseases , Gram-Negative Bacterial Infections , Sepsis , Animals , Catfishes/microbiology , Vietnam/epidemiology , Aeromonas/genetics , Aeromonas/isolation & purification , Aeromonas/classification , Aeromonas/pathogenicity , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/epidemiology , Humans , Sepsis/microbiology , Sepsis/veterinary , Sepsis/epidemiology , Fish Diseases/microbiology , Phylogeny , Genomics , Genome, Bacterial , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology
14.
Dis Aquat Organ ; 158: 133-141, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813854

ABSTRACT

A novel microsporidium was observed in wild swamp guppies Micropoecilia picta from Levera Pond within Levera National Park Grenada, West Indies. Initial observations indicated similarity with Pseudoloma neurophilia, an important pathogen in zebrafish Danio rerio. P. neurophilia exhibit broad host specifity, including members of the family Poecillidae, and both parasites infect the central nervous system. However, spore morphology and molecular phylogeny based on rDNA showed that the swamp guppy microsporidium (SGM) is distinct from P. neurophilia and related microsporidia (Microsporidium cerebralis and M. luceopercae). Spores of the SGM were smaller than others in the clade (3.6 µm long). Differences were also noted in histology; the SGM formed large aggregates of spores within neural tissues along with a high incidence of numerous smaller aggregates and single spores within the surface tissue along the ventricular spaces that extended submeninx, whereas P. neurophilia and M. cerebralis infect deep into the neuropile and cause associated lesions. Analysis of small subunit ribosomal DNA sequences showed that the SGM was <93% similar to these related microsporidia. Nevertheless, one of 2 commonly used PCR tests for P. neurophilia cross reacted with tissues infected with SGM. These data suggest that there could be other related microsporidia capable of infecting zebrafish and other laboratory fishes that are not being detected by these highly specific assays. Consequently, exclusive use of these PCR tests may not accurately diagnose other related microsporidia infecting animals in laboratory and ornamental fish facilities.


Subject(s)
Fish Diseases , Microsporidia , Microsporidiosis , Phylogeny , Poecilia , Animals , Fish Diseases/microbiology , Fish Diseases/parasitology , Microsporidia/genetics , Microsporidia/isolation & purification , Microsporidia/classification , Microsporidiosis/veterinary , Microsporidiosis/microbiology , Grenada/epidemiology
15.
An Acad Bras Cienc ; 96(1): e20230188, 2024.
Article in English | MEDLINE | ID: mdl-38597489

ABSTRACT

The growing increase in the fish farming sector has favored the establishment of bacterial outbreaks caused by Aeromonas hydrophila in several species. The hexane extract of Hesperozygis ringens (HEHR) (Lamiaceae) leaves increased the survival rate of silver catfish (Rhamdia quelen) experimentally infected by A. hydrophila. However, it is noteworthy that no reports have been found on the possible mechanisms of action of this extract in infected fish. This study aimed to evaluate the effect of the HEHR, administered through single immersion bath, on lipid peroxidation and antioxidant defenses in muscle and liver tissue of silver catfish challenged with A. hydrophila. The results showed that the oxidative status of silver catfish was altered, although oxidative stress was not triggered during the experiment. HEHR at 30 mg/L (HEHR30) was not characterized as a pro-oxidant agent in the presence of infection, unlike florfenicol and HEHR at 15 mg/L treatments in some cases. In short, HEHR30 provided an important increase in hepatic catalase activity, characterizing one of the possible mechanisms involved in the greater survival of fish experimentally infected by A. hydrophila. Additionally, HEHR30 did not induce lipid peroxidation, nor reduced antioxidant defenses of silver catfish infected or not by A. hydrophila.


Subject(s)
Catfishes , Fish Diseases , Gram-Negative Bacterial Infections , Lamiaceae , Animals , Aeromonas hydrophila , Antioxidants/pharmacology , Hexanes , Immersion , Oxidation-Reduction , Fish Diseases/drug therapy , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology
16.
BMC Vet Res ; 20(1): 156, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664683

ABSTRACT

The present study aimed to determine the major cause of the high mortality affecting farmed gilthead seabream (Sparus aurata) and controlling this disease condition. Fifteen diseased S. aurata were sampled from a private fish farm located at Eldeba Triangle, Damietta, fish showed external skin hemorrhages, and ulceration. Bacterial isolates retrieved from the diseased fish were identified biochemically as Pseudomonas putida and then confirmed by phylogenetic analysis of the 16 S rRNA gene sequence. P. putida was also isolated from three batches of tilapia-trash feed given to S. aurata. Biofilm and hemolytic assay indicated that all P. putida isolates produced biofilm, but 61.11% can haemolyse red blood cells. Based on the antibiotic susceptibility test results, P. putida was sensitive to florfenicol with minimum inhibitory concentrations ranging between 0.25 and 1.0 µg mL- 1, but all isolates were resistant to ampicillin and sulfamethoxazole-trimethoprim. Pathogenicity test revealed that P. putida isolate (recovered from the tilapia-trash feed) was virulent for S. aurata with LD50 equal to 4.67 × 107 colony forming unit (CFU) fish- 1. After intraperitoneal (IP) challenge, fish treated with 10 mg kg- 1 of florfenicol showed 16.7% mortality, while no mortality was recorded for the fish group that received 20 mg kg- 1. The non-treated fish group showed 46.7% mortality after bacterial challenge. HPLC analysis of serum florfenicol levels reached 1.07 and 2.52 µg mL- 1 at the 5th -day post-drug administration in the fish groups received 10 and 20 mg kg- 1, respectively. In conclusion, P. putida was responsible for the high mortality affecting cultured S. aurata, in-feed administration of florfenicol (20 mg kg- 1) effectively protected the challenged fish.


Subject(s)
Animal Feed , Anti-Bacterial Agents , Fish Diseases , Pseudomonas putida , Sea Bream , Thiamphenicol , Thiamphenicol/analogs & derivatives , Animals , Thiamphenicol/therapeutic use , Thiamphenicol/pharmacology , Thiamphenicol/administration & dosage , Fish Diseases/microbiology , Fish Diseases/drug therapy , Pseudomonas putida/drug effects , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Animal Feed/analysis , Sea Bream/microbiology , Pseudomonas Infections/veterinary , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Microbial Sensitivity Tests/veterinary , Tilapia , Phylogeny , RNA, Ribosomal, 16S/genetics , Biofilms/drug effects
17.
BMC Vet Res ; 20(1): 127, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561720

ABSTRACT

BACKGROUND: Pseudomonas putida is a pathogenic bacterium that induces great losses in fishes, including Nile tilapia (Oreochromis niloticus). Currently, the application of nanomaterials in aquaculture practices has gained more success as it endows promising results in therapies compared to traditional protocols. OBJECTIVE: Therefore, the current perspective is considered the first report to assess the anti-bacterial efficacy of titanium dioxide nanogel (TDNG) against Pseudomonas putida (P. putida) in Nile tilapia. METHODS: The fish (n = 200; average body weight: 47.50±1.32 g) were allocated into four random groups (control, TDNG, P. putida, and TDNG + P. putida), where 0.9 mg/L of TDNG was applied as bath treatment for ten days. RESULTS: Outcomes revealed that P. putida infection caused ethological alterations (surfacing, abnormal movement, and aggression) and depression of immune-antioxidant variables (complement 3, lysozyme activity, total antioxidant capacity, superoxide dismutase, and reduced glutathione content). Additionally, a substantial elevation in hepatorenal biomarkers (aspartate and alanine aminotransferases and creatinine) with clear histopathological changes and immuno-histochemical alterations (very weak BCL-2 and potent caspase-3 immuno-expressions) were seen. Surprisingly, treating P. putida-infected fish with TDNG improved these variables and obvious restoration of the tissue architectures. CONCLUSION: Overall, this report encompasses the key role of TDNG as an anti-bacterial agent for controlling P. putida infection and improving the health status of Nile tilapia.


Subject(s)
Cichlids , Fish Diseases , Polyethylene Glycols , Polyethyleneimine , Pseudomonas putida , Titanium , Animals , Antioxidants , Nanogels , Diet , Dietary Supplements , Animal Feed/analysis , Fish Diseases/drug therapy , Fish Diseases/microbiology
18.
Sci Rep ; 14(1): 7971, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575637

ABSTRACT

This study was divided into two parts. The first part involved the isolation, and detection of the prevalence and antimicrobial resistance profile of Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio species from Nile tilapia fish and marine aquatic water. One hundred freshly dead Nile tilapia fish were collected from freshwater aquaculture fish farms located in Al-Abbassah district, Sharkia Governorate, and 100 samples of marine aquatic water were collected from fish farms in Port Said. The second part of the study focused on determining the in vitro inhibitory effect of dual-combination of AgNPs-H2O2 on bacterial growth and its down regulatory effect on crucial virulence factors using RT-PCR. The highest levels of A. hydrophila and P. aeruginosa were detected in 43%, and 34% of Nile tilapia fish samples, respectively. Meanwhile, the highest level of Vibrio species was found in 37% of marine water samples. Additionally, most of the isolated A. hydrophila, P. aeruginosa and Vibrio species exhibited a multi-drug resistance profile. The MIC and MBC results indicated a bactericidal effect of AgNPs-H2O2. Furthermore, a transcriptional modulation effect of AgNPs-H2O2 on the virulence-associated genes resulted in a significant down-regulation of aerA, exoU, and trh genes in A. hydrophila, P. aeruginosa, and Vibrio spp., respectively. The findings of this study suggest the effectiveness of AgNPs-H2O2 against drug resistant pathogens related to aquaculture.


Subject(s)
Cichlids , Fish Diseases , Metal Nanoparticles , Animals , Hydrogen Peroxide/pharmacology , Silver/pharmacology , Fisheries , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/genetics , Water/pharmacology , Fish Diseases/drug therapy , Fish Diseases/microbiology , Aeromonas hydrophila
19.
Dis Aquat Organ ; 158: 27-36, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661135

ABSTRACT

Streptococcus agalactiae infection is one of the major factors limiting the expansion of tilapia farming globally. In this study, we investigated the serotype distribution, virulence and antimicrobial resistance of S. agalactiae isolates from tilapia farmed in Lake Volta, Ghana. Isolates from 300 moribund fish were characterised by Gram staining, MALDI-TOF/MS and 16S rRNA sequencing. Serotype identification was based on multiplex polymerase chain reaction (PCR) amplification of the capsular polysaccharide genes. Detection of virulence genes (cfb, fbsA and cspA) and histopathology were used to infer the pathogenicity of the isolates. The susceptibility of isolates to antibiotics was tested using the Kirby-Bauer disk diffusion assay. All 32 isolates identified as S. agalactiae were of serotype Ia. This was notably different from isolates previously collected from the farms in 2017, which belonged to serotype Ib, suggesting a possible serotype replacement. The prevalence of the pathogen was related to the scale of farm operation, with large-scale farms showing higher S. agalactiae positivity. Data from histopathological analysis and PCR amplification of targeted virulence genes confirmed the virulence potential and ability of the isolates to cause systemic infection in tilapia. Except for gentamicin, the majority of the isolates were less resistant to the tested antibiotics. All isolates were fully sensitive to oxytetracycline, erythromycin, florfenicol, enrofloxacin, ampicillin and amoxicillin. This study has improved our understanding of the specific S. agalactiae serotypes circulating in Lake Volta and demonstrates the need for continuous monitoring to guide the use of antimicrobials and vaccines against streptococcal infections in Ghanaian aquaculture systems.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Fish Diseases , Serogroup , Streptococcal Infections , Streptococcus agalactiae , Animals , Streptococcus agalactiae/drug effects , Streptococcus agalactiae/genetics , Streptococcus agalactiae/pathogenicity , Ghana/epidemiology , Fish Diseases/microbiology , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Streptococcal Infections/epidemiology , Virulence , Anti-Bacterial Agents/pharmacology , Lakes/microbiology , Cichlids , Aquaculture
20.
Dis Aquat Organ ; 158: 21-25, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661134

ABSTRACT

In order to establish the meaning of data generated in antimicrobial agent susceptibility tests, it is necessary to develop internationally harmonised interpretive criteria. Currently, such criteria have not been developed for data generated in studies of the susceptibility of the fish pathogen Yersinia ruckeri. This work generated the data that would be required to set epidemiological cut-off values for the susceptibility data of this species that had been generated using a standardised disc diffusion method that specified the use of Mueller Hinton agar and incubation at 22°C for 24-28 h. Using this method, sets of inhibition zones data for 4 antimicrobial agents were generated by 3 independent laboratories. The data from these laboratories were aggregated and analysed using the statistically based normalised resistance interpretation. For ampicillin, florfenicol, oxytetracycline and trimethoprim-sulfamethoxazole the cut-off values calculated by this analysis were ≥16, ≥23, ≥24 and ≥30 mm, respectively. Evidence is presented demonstrating that the data for these 4 agents was of sufficient quantity and quality that they could be used by the relevant authorities to set internationally harmonised, consensus epidemiological cut-off values for Y. ruckeri.


Subject(s)
Anti-Bacterial Agents , Fish Diseases , Yersinia ruckeri , Anti-Bacterial Agents/pharmacology , Fish Diseases/microbiology , Fish Diseases/epidemiology , Yersinia ruckeri/drug effects , Animals , Microbial Sensitivity Tests , Yersinia Infections/veterinary , Yersinia Infections/microbiology , Yersinia Infections/epidemiology , Drug Resistance, Bacterial , Fishes
SELECTION OF CITATIONS
SEARCH DETAIL
...